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a b s t r a c t

An equitable (t, k)-tree-coloring of a graph G is a coloring of vertices of G such that the
sizes of any two color classes differ by at most one and the subgraph induced by each color
class is a forest of maximum degree at most k. The minimum t such that G has an equitable
(t ′, k)-tree-coloring for every t ′ ≥ t , denoted by va≡

k (G), is the strong equitable vertex
k-arboricity. In this paper, we give sharp upper bounds for va≡

1 (Kn,n) and va≡

k (Kn,n), and
prove that va≡

∞
(G) ≤ 3 for every planar graph G with girth at least 5 and va≡

∞
(G) ≤ 2 for

every planar graph G with girth at least 6 and for every outerplanar graph.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in the paper are finite, simple and undirected. We use V (G), E(G), δ(G) and ∆(G) to denote the
set of vertices, the set of edges, the minimum degree and the maximum degree of G, respectively. NG(v) denotes the set
of neighbors of a vertex v in G and dG(v) = |NG(v)| denotes the degree of v. Sometimes we use d(v) instead of dG(v) for
brevity. A k-, k+- and k−-vertex in G is a vertex of degree k, at least k and at most k, respectively. If uv ∈ E(G) and d(u) = k,
then we say that u is a k-neighbor of v; k−-neighbor and k+-neighbor can be similarly defined. For other undefined concepts
we refer the reader to [1].

We associate positive integers 1, 2, . . . , t with colors and call f a t-coloring of G if f is a mapping from V (G) to
{1, 2, . . . , t}. For 1 ≤ i ≤ t , let Vi = {v | f (v) = i}. A t-coloring f of G is equitable if ||Vi| − |Vj|| ≤ 1 for all i and j;
that is, every color class has size ⌊|V (G)|/t⌋ or ⌈|V (G)|/t⌉. A t-coloring of G is proper if every two adjacent vertices have
the different colors. The smallest number t such that G has a proper equitable t-coloring, denoted by χ=(G), is the equitable
chromatic number.

Note that a proper equitable t-colorable graph may admit no proper equitable t ′-colorings for some t ′ > t . For example,
the complete bipartite graph H := K2m+1,2m+1 has no proper equitable (2m+ 1)-colorings, although it satisfies χ=(H) = 2.
This fact motivates another interesting parameter for proper equitable coloring. The equitable chromatic threshold of G,
denoted by χ≡(G), is the smallest integer t such that G has proper equitable colorings for any number of colors greater
than or equal to t . In 1970, Hajnal and Szemerédi [7] answered a question of Erdős by proving that every graph G with
∆(G) ≤ r has a proper equitable (r + 1)-coloring. In fact, Hajnal–Szemerédi Theorem implies χ≡(G) ≤ ∆(G) + 1 for every
graph G. In 2008, Kierstead and Kostochka [8] simplified the proof of Hajnal–Szemerédi Theorem, and moreover, they [9]
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strengthened Hajnal–Szemerédi Theorem by proving that G has a proper equitable (r + 1)-coloring if G is a graph such that
d(x) + d(y) ≤ 2r + 1 for every edge xy.

Regarding equitable colorings, there are two well-known conjectures. Note that Conjecture 1.2 is stronger than
Conjecture 1.1.

Conjecture 1.1 ([11]). For any connected graph G, except the complete graph and the odd cycle, χ=(G) ≤ ∆(G).

Conjecture 1.2 ([4]). For any connected graph G, except the complete graph, the odd cycle and the complete bipartite graph
K2m+1,2m+1, χ

≡(G) ≤ ∆(G).

The above two conjectures have been confirmed for many classes of graphs, such as graphs with ∆ ≤ 3 [4,5] or ∆ ≥

|V (G)|/3 + 1 [4,5,14], bipartite graphs [10], outerplanar graphs [14], series–parallel graphs [16] and planar graphs with
∆ ≥ 9 [12,15]. There are other related results; see [13,17].

In [6], Fan, Kierstead, Liu, Molla, Wu and Zhang first considered relaxed equitable coloring of graphs. They proved that
every graph has an equitable ∆-coloring such that each color class induces a forest with maximum degree at most one. On
the basis of this research, we aim to introduce the notion of equitable (t, k)-tree-coloring. A t-coloring f of a graph G is a
(t, k)-tree-coloring of G if each component of G[Vi] is a tree of maximum degree at most k. A (t, ∞)-tree-coloring is called
a t-tree-coloring for short. The vertex k-arboricity of G, denoted by vak(G), is the minimum t such that G has a (t, k)-tree-
coloring. Indeed, the notion of (t, k)-tree-coloring is a uniform form of some familiar kinds of vertex coloring. For example,
va0(G) = χ(G), va2(G) = vla(G) and va∞(G) = va(G), where χ(G) is the standard chromatic number, vla(G) is the vertex
linear arboricity and va(G) is the vertex arboricity of G. It is also trivial that vak(Km,n) = 2 for the complete bipartite graph
Km,n and an integer k ≥ 0. In [3], it was proved that the set of vertices of every planar graph can be partitioned into three
subsets such that each subset induces a forest. This implies va∞(G) ≤ 3 for every planar graph G.

An equitable (t, k)-coloring is a (t, k)-coloring that is equitable. The equitable vertex k-arboricity of a graph G, denoted by
va=

k (G), is the smallest t such thatGhas an equitable (t, k)-tree-coloring. The strong equitable vertex k-arboricity ofG, denoted
by va≡

k (G), is the smallest t such that G has an equitable (t ′, k)-coloring for every t ′ ≥ t . It is clear that va=

0 (G) = χ=(G)
and va≡

0 (G) = χ≡(G) for every graph G, and va=

k (G) and va≡

k (G) may vary a lot. In this paper, we mainly investigate the
strong equitable vertex k-arboricity of complete bipartite graphs and planar graphs. As one of the first results on this topic,
we prove that va≡

1 (Kn,n) ≤ 2⌊(n + 1)/3⌋ and va≡
∞

(Kn,n) ≤ 2⌊(
√
8n + 9 − 1)/4⌋ with those upper bounds being sharp, and

then we prove that va≡
∞

(G) ≤ 3 for every planar graph Gwith girth at least 5 and va≡
∞

(G) ≤ 2 for every planar graph Gwith
girth at least 6 and for every outerplanar graph.

2. Complete bipartite graphs

Lemma 2.1. The complete bipartite graph Kn,n has an equitable (t, k)-tree-coloring for every even integer t ≥ 2.

Proof. One can easily construct an equitable (t, k)-tree-coloring ofKn,n by dividing each partite set into t/2 classes equitably
and coloring the vertices of each class with one color. �

Theorem 2.2. va≡

1 (Kn,n) ≤ 2⌊ n+1
3 ⌋.

Proof. By Lemma 2.1, in order to show va≡

1 (Kn,n) ≤ 2⌊ n+1
3 ⌋, we only need to prove that Kn,n has an equitable (q, 1)-tree-

coloring for every odd q ≥ 2⌊ n+1
3 ⌋+1. Note that 3q−2n ≥ 6⌊ n+1

3 ⌋+3−2n ≥ 6×
n−1
3 +3−2n ≥ 1. Let X and Y be the partite

sets of Kn,n and let e = xy be an edge of Kn,n with x ∈ X and y ∈ Y . If q ≥ n, then color x and ywith 1, divide each of X \{x} and
Y \ {y} into q−1

2 classes equitably and color the vertices of each class with a color in {2, . . . , q}. One can easily check that the
resulting coloring is an equitable (q, 1)-tree-coloring ofKn,n with the size of each color class being atmost 2. Thus,we assume
q < n. Suppose 2n = aq + r , where 0 ≤ r ≤ a − 1. Since a =

2n−r
q ≤

2n
q ≤

2n
2⌊ n+1

3 ⌋+1
< 3, a ≤ 2. Now arbitrarily choose

3q−2n vertex-disjoint edges fromKn,n and color the two end-vertices of each edgewith a color in {1, . . . , 3q−2n}. LetX ′ and
Y ′ be the uncolored vertices in X and Y , respectively. One can see that |X ′

| = |Y ′
| = n− (3q−2n) = 3(n−q) > 0. Thus, we

can divide each of X ′ and Y ′ into n−q classes equitably and color the vertices of each classwith a color in {3q−2n+1, . . . , q}.
It is also easy to check that the resulting coloring of Kn,n is an equitable (q, 1)-tree-coloring with the size of each color class
being either 2 or 3. Hence va≡

1 (Kn,n) ≤ 2⌊ n+1
3 ⌋. �

Theorem 2.3. If n ≡ 2 (mod 3), then va≡

1 (Kn,n) = 2⌊ n+1
3 ⌋.

Proof. Let n = 3t + 2. If G = Kn,n has an equitable (2t + 1, 1)-tree-coloring c , then the size of every color class in c is at
least 3 because ⌈

2n
2t+1⌉ = ⌈

6t+4
2t+1⌉ ≥ 4. This implies that there is no edge in Gwith its two end-vertices colored with the same

color. Thus the vertices of every color class form an independent set. Without loss of generality, suppose that there are at
least t + 1 colors appearing in X . We then have |X | ≥ 3(t + 1) = (3t + 2) + 1 = |X | + 1, a contradiction. This implies
va≡

1 (G) ≥ 2t + 2 = 2⌊ n+1
3 ⌋ and thus va≡

1 (G) = 2⌊ n+1
3 ⌋ by Theorem 2.2. �

In the following we investigate the strong equitable vertex ∞-arboricity of Kn,n.
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Let Kn,n be a complete bipartite graph with two partite sets X and Y . For a partial q-coloring c (not needed to be proper)
of Kn,n, let V1, . . . , Vq be its color classes, a = ⌊

2n
q ⌋ and let

c(X1) = {Vi | |Vi ∩ X | = a + 1, |Vi ∩ Y | = 0}, c(X2) = {Vi | |Vi ∩ X | = a, |Vi ∩ Y | = 0},
c(X ′

1) = {Vi | |Vi ∩ X | = a, |Vi ∩ Y | = 1}, c(X ′

2) = {Vi | |Vi ∩ X | = a − 1, |Vi ∩ Y | = 1},
c(Y1) = {Vi | |Vi ∩ Y | = a + 1, |Vi ∩ X | = 0}, c(Y2) = {Vi | |Vi ∩ Y | = a, |Vi ∩ X | = 0},
c(Y ′

1) = {Vi | |Vi ∩ Y | = a, |Vi ∩ X | = 1}, c(Y ′

2) = {Vi | |Vi ∩ Y | = a − 1, |Vi ∩ X | = 1}.

We have the following lemma.

Lemma 2.4. If Kn,n is a complete bipartite graph with partite sets X and Y , where 2n = aq + r and 0 ≤ r ≤ a − 1, and c is a
partial q-coloring of Kn,n, then c is an equitable (q, ∞)-tree-coloring of Kn,n if and only if

(a + 1)|c(X1)| + a|c(X2)| + a|c(X ′

1)| + (a − 1)|c(X ′

2)| + |c(Y ′

1)| + |c(Y ′

2)| = n, (2.1)

(a + 1)|c(Y1)| + a|c(Y2)| + a|c(Y ′

1)| + (a − 1)|c(Y ′

2)| + |c(X ′

1)| + |c(X ′

2)| = n. (2.2)

Proof. Let V1, . . . , Vq be the color classes of c. First suppose that c is an equitable (q, ∞)-tree-coloring of Kn,n. Since 2n =

aq+ r , the size of each color class of c is either a or a+1. It is easy to see that min{|Vi ∩X |, |Vi ∩Y |} ≤ 1 for every 1 ≤ i ≤ q,
because otherwise we would find a 4-cycle in some color class Vi, a contradiction. Thus

c(X1) ∪ c(X2) ∪ c(X ′

1) ∪ c(X ′

2) ∪ c(Y1) ∪ c(Y2) ∪ c(Y ′

1) ∪ c(Y ′

2) =

q
i=1

Vi (2.3)

and Eqs. (2.1) and (2.2) hold accordingly. On the other hand, if Eqs. (2.1) and (2.2) hold, then c is a q-coloring of Kn,n and the
size of each color class of c is either a or a + 1. Furthermore, we also have min{|Vi ∩ X |, |Vi ∩ Y |} ≤ 1 for every 1 ≤ i ≤ q.
Hence c is an equitable (q, ∞)-tree-coloring of Kn,n. �

Lemma 2.5. The complete bipartite graph Kn,n with t(t + 3) ≤ 2n < (t + 1)(t + 4) has an equitable (q, ∞)-tree-coloring for
every integer q ≥ 2⌊ t+1

2 ⌋.

Proof. By Lemma 2.1, we assume that q is an odd integer. This implies q ≥ t + 1. If 2n = aq+ r , where 0 ≤ r ≤ a− 1, then
the two integers a and r would have the same parity. Note that a =

2n−r
q ≤

2n
q < (t+1)(t+4)

q ≤ t + 4 and q ≥ t + 1. We have

r ≤ a − 2 and a ≤ t + 3. (2.4)

Now we prove the following two useful inequations:

2q ≥ a + r, (2.5)
q + r ≥ a − 1. (2.6)

First, if a ≤ t + 2, then q + r ≥ q ≥ t + 1 ≥ a − 1 and 2q ≥ a + (a − 2) ≥ a + r by (2.4). Similarly, if q ≥ a − 1, then we
would get the same results. Thus we assume that a = t +3 and q ≤ a−2. Since q ≥ t +1 = a−2, aq = (t +3)(t +1). This
implies that r = 2n− aq < (t + 1)(t + 4) − (t + 1)(t + 3) = t + 1 = a− 2, so r ≤ a− 4 and 2q = a+ (a− 4) ≥ a+ r . On
the other hand, q and a are both odd since q = a− 2. It follows that r = 2n− aq > 0. Thus we have q+ r ≥ q+ 1 = a− 1.

The proof of this lemma is constructive. Let X and Y be two partite sets of Kn,n as described in Lemma 2.4. We are going
to construct an equitable (q, ∞)-tree-coloring of Kn,n by distinguishing three cases.

Case 1. q ≤ 2r + 1.
We construct a coloring c of Kn,n by letting

|c(X1)| =
q − 1
2

, |c(Y2)| =
2q − a − r

2
, |c(Y ′

1)| =
2r + 1 − q

2
, |c(Y ′

2)| =
a − r
2

and |c(X2)| = |c(X ′

1)| = |c(X ′

2)| = |c(Y2)| = 0. Since q ≥ 1, 2q ≥ a + r by (2.5), 2r + 1 ≥ q, a − 2 ≥ r, q is odd
and a, r have the same parity, the four values |c(X1)|, |c(Y2)|, |c(Y ′

1)| and |c(Y ′

2)| must be nonnegative integers. Moreover,
one can easily check that the two equations (2.1) and (2.2) in Lemma 2.4 would hold by our choice. Thus c is an equitable
(q, ∞)-tree-coloring of Kn,n.

Case 2. 2r + 3 ≤ q ≤ a + r − 1.
In this case we can construct a coloring c of Kn,n by letting

|c(X ′

2)| =
q + 1
2

, |c(Y1)| =
a + r − 1 − q

2
, |c(Y2)| =

q − 2r − 1
2

, |c(Y ′

1)| =
q + r − a + 1

2
and |c(X1)| = |c(X2)| = |c(X ′

1)| = |c(Y ′

2)| = 0. One can easily see that |c(X ′

2)|, |c(Y1)|, |c(Y2)| and |c(Y ′

1)| are all nonnegative
integers, since 2r + 3 ≤ q ≤ a + r − 1 and q + r ≥ a − 1 by (2.6). On the other hand, the two equations (2.1) and (2.2) in
Lemma 2.4 would also hold. Thus c is an equitable (q, ∞)-tree-coloring of Kn,n.
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Case 3. q ≥ a + r + 1.
Now we construct a coloring c of Kn,n by setting

|c(X2)| =
q − 1
2

, |c(Y2)| =
q − a − r + 1

2
, |c(Y ′

1)| = r, |c(Y ′

2)| =
a − r
2

and |c(X1)| = |c(X ′

1)| = |c(X ′

2)| = |c(Y1)| = 0. One can easily check that |c(X2)|, |c(Y2)|, |c(Y ′

1)| and |c(Y ′

2)| are all
nonnegative integers and the two equations (2.1) and (2.2) in Lemma 2.4 hold. Hence, c is an equitable (q, ∞)-tree-coloring
of Kn,n. �

Theorem 2.6. va≡
∞

(Kn,n) ≤ 2⌊
√
8n+9−1

4 ⌋.

Proof. Let t = ⌊

√
8n+9−3

2 ⌋. One can easily check that t(t + 3) ≤ 2n < (t + 1)(t + 4). Hence by Lemma 2.5, we have

va≡
∞

(Kn,n) ≤ 2⌊ t+1
2 ⌋ = 2⌊

√
8n+9−1

4 ⌋. �

Lemma 2.7. The complete bipartite graph Kn,n with 2n = t(t + i), i ≥ 2 and t being odd has no equitable (t, ∞)-tree-colorings.

Proof. Suppose, to the contrary, that Kn,n admits an equitable (t, ∞)-tree-coloring c . Since 2n = t(t + i), the size of every
color class of c is exactly t + i. By Lemma 2.4, without loss of generation, we can assume that |c(X1)| + |c(X2)| + |c(X ′

1)| +

|c(X ′

2)| ≥
t+1
2 . Here one should note that t had been supposed to be odd. Thus we have 2n = 2|X | ≥ 2(t + i − 1)(|c(X1)| +

|c(X2)| + |c(X ′

1)| + |c(X ′

2)|) ≥ (t + i − 1)(t + 1) = t(t + i) + i − 1 > t(t + i) = 2n, a contradiction. �

Theorem 2.8. If 2n = t(t + 3) and t is odd, then va≡
∞

(Kn,n) = 2⌊
√
8n+9−1

4 ⌋.

Proof. By Lemma 2.7, G has no equitable (t, ∞)-tree-colorings. So we have va≡

∞,2(G) = t + 1 = 2⌊
√
8n+9−1

4 ⌋ by
Theorem 2.6. �

Note that the upper bounds for va≡

1 (Kn,n) and va≡
∞

(Kn,n) given in Theorems 2.2 and 2.6 are sharp in general case by
Theorems 2.3 and 2.8, since there are infinity graphs with the strong vertex 1-arboricity and the strong ∞-arboricity
reaching this bound, respectively. However, they are not very tight for some special graphs. For example, one can easily
check that va≡

1 (K43,43) = 22 < 28 and va≡
∞

(K65,65) = 8 < 10. Thus, to determine the strong equitable 1-arboricity or the
strong equitable ∞-arboricity of the complete bipartite graphs seems not to be an easy task.

3. Planar graphs

Lemma 3.1. Let S = {v1, . . . , vt}, where v1, . . . , vt are distinct vertices in G. If G − S has an equitable t-tree-coloring and
|NG(vi) \ S| ≤ 2i − 1 for every 1 ≤ i ≤ t, then G has an equitable t-tree-coloring.

Proof. Let Gi = G \ {v1, . . . , vi}. It follows that G = G0 and G− S = Gt . Let ct be an equitable t-tree-coloring of Gt . For every
t ≥ i ≥ 1, we extend the equitable t-tree-coloring ci of Gi to an equitable t-tree-coloring ci−1 of Gi−1 by giving vi a color
that is different from the colors in {ci(vi+1), . . . , ci(vt)} and that has been used on the neighbors of vi at most once. This is
possible since |NG(vi) \ S| ≤ 2i − 1 for every 1 ≤ i ≤ t . After t iterative extensions, one can check that the vertices in S
receive different colors under the final coloring c0. Hence, c0 is an equitable t-tree-coloring of G. �

The maximum average degree of a graph is the maximum average degree over all its subgraphs. It is well-known that a
planar graph with girth at least g has maximum average degree less than 2g/(g − 2).

Lemma 3.2. Every graph with maximum average degree less than 10
3 contains at least one of the following configurations.

(C1.1) a vertex x of degree 1;
(C1.2) a 2-vertex x adjacent to a 6-vertex y;
(C1.3) a 3-vertex x adjacent to a 4−-vertex y and a 6−-vertex z;
(C1.4) an i-vertex x adjacent to at least i − 1 2-vertices, where i = 7, 8, 9.

Proof. Suppose, to the contrary, that G contains none of the four configurations. It follows that δ(G) ≥ 2. Assign initial
charge c(v) = d(v) to every vertex v ∈ V (G). We now redistribute the charges of vertices in G according to Rules 1 and 2
below.

Rule 1. A 7+-vertex gives 2
3 to each of its 2-neighbors.

Rule 2. A 4+-vertex gives 1
6 to each of its 3-neighbors.

Let c ′(v) be the charge of v after discharging. Since (C1.2) is forbidden in G, every 2-vertex is adjacent only to 7+-vertices in
G. By Rule 1, we immediately have c ′(v) ≥ 2+2×

2
3 =

10
3 for every 2-vertex v. Since the absence of (C1.3) in G implies that

every 3-vertex is adjacent to two 4+-vertices in G, c ′(v) ≥ 3 + 2 ×
1
6 =

10
3 for every 3-vertex v by Rule 2. Let v be a vertex

of degree between 4 and 6. By Rule 2, one can easily deduce that c ′(v) ≥ d(v) −
1
6d(v) ≥

10
3 . Let v be a vertex of degree



2700 J.-L. Wu et al. / Discrete Mathematics 313 (2013) 2696–2701

between 7 and 9. Since (C1.4) is absent from G, v is adjacent to at most d(v) − 2 2-vertices; therefore, by Rules 1 and 2, we
have c ′(v) ≥ d(v) −

2
3 (d(v) − 2) − 2 ×

1
6 ≥

10
3 . At last, if d(v) ≥ 10, then by Rules 1 and 2, c ′(v) ≥ d(v) −

2
3d(v) ≥

10
3 .

Hence, we have mad(G) ≥


v∈V (G) c(v)

|G|
=


v∈V (G) c

′(v)

|G|
≥

10
3 , a contradiction. �

By Lemma 3.2, we have the following two immediate corollaries.

Corollary 3.3. Every planar graph with girth at least 5 contains at least one of four configurations mentioned in Lemma 3.2.

Corollary 3.4. Every planar graph with girth at least 5 contains a vertex of degree at most 3.

Theorem 3.5. If G is a planar graph with girth at least 5, then G has an equitable t-tree-coloring for every t ≥ 3, that is,
va≡

∞
(G) ≤ 3.

Proof. By Corollary 3.3, G contains at least one of the configurations (C1.1)–(C1.4). In what follows, we prove the theorem
by induction on the order of G, via assigning t distinct vertices to S = {v1, . . . , vt} as described in Lemma 3.1, where t ≥ 3.

If G contains the configuration (C1.1), then let x := v1. If G contains the configuration (C1.2), then let x := v1 and y := vt .
If G contains the configuration (C1.3), then let x := v1, y := v2 and w := vt . If G contains the configuration (C1.4) and i = 7,
then let y := v1, z := v2 and x := vt , where y and z are two 2-vertices that are adjacent to x. If G contains the configuration
(C4), 8 ≤ i ≤ 9 and t ≥ 4, then let y := v1, z := v2 and x := vt , where y and z are two 2-vertices that are adjacent to x.
Now in each case we fill the remaining unspecified positions in S = {v1, v2, . . . , vt} from highest to lowest indices properly.
Indeed, one can easily complete it by choosing at each step a vertex of degree at most 3 in the graph obtained from G by
deleting the vertices chosen for S with higher indices. Corollary 3.4 guarantees that such vertices always exist. Meanwhile,
by doing so, we would have |NG(vi) \ {vi+1, . . . , vt}| ≤ 2i − 1 for every 1 ≤ i ≤ t . Since G − S is a planar graph with girth
at least 5 and with order less than G, by induction hypothesis, G − S has an equitable t-tree-coloring. Hence by Lemma 3.1,
G also admits an equitable t-tree-coloring.

Now, we have ignored two cases in the above discussions. There are the cases that G contains configuration (C1.4),
8 ≤ i ≤ 9 and t = 3. Let x1, . . . , x5 be five 2-neighbors of x in G. Consider the graph G′

= G−{x, x1, . . . , x5}. By induction, G′

has an equitable 3-tree-coloring c ′. If there is one color, say 1, which has not appeared on the vertex set NG(x) \ {x1, . . . , x5}
under the coloring c ′, then we color x, x1 by 1, x2, x3 by 2 and x4, x5 by 3. One can check that the extended coloring of G is
an equitable 3-tree-coloring. Otherwise, since |NG(x) \ {x1, . . . , x5}| = i − 5 ≤ 4, there are two colors, say 1 and 2, which
have been used only once on the vertex set NG(x) \ {x1, . . . , x5} under the coloring c ′. Without loss of generality, denote the
other neighbor of x1 beside x was colored by 1. We now color x, x1 by 2, x2, x3 by 1 and x4, x5 by 3. One can also check that
the resulting coloring of G is an equitable 3-tree-coloring. �

Lemma 3.6. Every graph with maximum average degree less than 3 contains at least one of the following configurations:

(C2.1) a vertex x of degree 1;
(C2.2) a 2-vertex x adjacent to a 4−-vertex y;
(C2.3) a 5-vertex x adjacent to five 2-vertices.

Proof. Suppose, to the contrary, thatG contains none of the four configurations. It follows that δ(G) ≥ 2. Assign initial charge
c(v) = d(v) to every vertex v ∈ V (G). We now redistribute the charges of vertices in G according to the following rule.

Rule. A 5+-vertex gives 1
2 to each of its 2-neighbors.

Let c ′(v) be the charge of v after discharging. Since G does not contain (C2.2), every 2-vertex is adjacent to two 5+-vertices
in G. Therefore, c ′(v) ≥ 2 + 2 ×

1
2 = 3 for every 2-vertex v by the discharging rule. Since 3-vertices and 4-vertices are

not involved in the rule, c ′(v) = d(v) ≥ 3 for 3 ≤ d(v) ≤ 4. If d(v) = 5, then v is adjacent to at most four 2-vertices
because of the absence of (C2.3) from G, so c ′(v) ≥ d(v) − 4 1

2 = 3. If d(v) ≥ 6, then by the discharging rule, we still have

c ′(v) ≥ d(v) −
1
2d(v) ≥ 3. Hence, we have mad(G) ≥


v∈V (G) c(v)

|G|
=


v∈V (G) c

′(v)

|G|
≥ 3, a contradiction. �

By Lemma 3.6, we have the following immediate corollary.

Corollary 3.7. Every planar graph with girth at least 6 contains at least one of three configurations mentioned in Lemma 3.6.

Theorem 3.8. If G is a planar graph with girth at least 6, then G has an equitable t-tree-coloring for every t ≥ 2, that is,
va≡

∞
(G) = 2 if G is not a forest and va≡

∞
(G) = 1 otherwise.

Proof. By Theorem 3.5, we only need to show that G has an equitable 2-tree-coloring. We now apply induction on the order
of G.

By Corollary 3.7, G contains one of the configurations among (C2.1), (C2.2) and (C2.3). If G contains (C2.1), then by
Corollary 3.4, there exists a 3−-vertex y in G − x. Now let x := v1 and y := v2. If G contains (C2.2), then again let x := v1
and y := v2. In each case let S = {v1, v2}. We then have |NG(v1) \ S| ≤ 1 and |NG(v2) \ S| ≤ 3. Since G − S has an equitable
2-tree-coloring by induction, G admits an equitable 2-tree-coloring by Lemma 3.1.
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If G contains (C2.3), then let x1, . . . , x5 be the five 2-neighbors of x and let G′
= G − {x, x1, x2, x3}. By induction, G′ has

an equitable 2-tree-coloring c ′. If c ′(x4) = c ′(x5) = 1, then color x, x1 by 2 and x2, x3 by 1. If c ′(x4) = 1 and c ′(x5) = 2, then
denote the other neighbor of xi beside x be x′

i . If c
′(x′

1) = c ′(x′

2) = c ′(x′

3) = 1, then color x, x1 by 2 and x2, x3 by 1. Otherwise,
if c ′(x′

1) = 1 and c ′(x′

2) = c ′(x′

3) = 2, then color x, x1 by 2 and x2, x3 by 1. In each case one can check that the extended
coloring of G is an equitable 2-tree-coloring. �

A graph is outerplanar if it can be drawn in the plane so that all vertices are lying on the outside face. The following
structural lemma for outerplanar graphs has been proved by many authors.

Lemma 3.9 ([2]). Every outerplanar graph with minimum degree at least two contains one of the following configurations:

(C1) two adjacent 2-vertices u and v;
(C2) a 3-cycle uvw with d(u) = 2 and d(v) = 3;
(C3) two intersecting 3-cycles uvw and xyw with d(u) = d(x) = 2 and d(w) = 4.

From the above lemma, one can see that every outerplanar graph contains either a vertex x of degree 1 or an edge xywith
d(x) = 2 and d(y) ≤ 4. Thus by the same argument as in Theorem 3.10, we have the following theorem for outerplanar
graphs.

Theorem 3.10. Every outerplanar graph has an equitable t-tree-coloring for every t ≥ 2, that is, va≡
∞

(G) = 2 if G is not a forest
and va≡

∞
(G) = 1 otherwise.

4. Open problems

To end this paper, we raise two conjectures for further research. The results in Section 3 support the first conjecture, and
on the other hand, the upper bound in the second conjecture is sharp if it holds, since va≡

∞
(Kn) = ⌈

n
2⌉ (this can easily be

checked).

Conjecture 4.1. va≡
∞

(G) = O(1) for every planar graph G.

Conjecture 4.2. va≡
∞

(G) ≤ ⌈
∆(G)+1

2 ⌉ for every graph G.
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