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a b s t r a c t

A graph is pseudo-outerplanar if each block has an embedding on the plane in such a way
that the vertices lie on a fixed circle and the edges lie inside the disk of this circle with each
of them crossing atmost one another. In this paper, we prove that each pseudo-outerplanar
graph admits edge decompositions into a linear forest and an outerplanar graph, or a star
forest and an outerplanar graph, or two forests and amatching, ormax{∆(G), 4}matchings,
or max{⌈∆(G)/2⌉, 3} linear forests. These results generalize known results on outerplanar
graphs and K2,3-minor-free graphs, since the class of pseudo-outerplanar graphs is larger
than the class of K2,3-minor-free graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs considered are finite, simple and undirected. We use V (G), E(G), δ(G) and ∆(G) to denote the
vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. Let dG(v) (or d(v) for
simplicity) denote the degree of a vertex v ∈ V (G). A block of a graph G is a maximal 2-connected subgraph of G. A graph
H is a minor of a graph G if a copy of H can be obtained from G via repeated edge deletion and/or edge contraction. For a
subset S ⊆ V (G) ∪ E(G), G[S] denotes the subgraph of G induced by S. The connectivity of a graph G, denoted by κ(G), is
the minimum number of vertices whose deletion from G disconnects it. For other undefined concepts we refer the readers
to [3].

An outerplanar graph is a graph that can be embedded on the plane in such a way that it has no crossings and that all
its vertices lie on the outer face. In this paper, we introduce an extension of this concept. A graph is pseudo-outerplanar if
each block has an embedding on the plane in such a way that the vertices lie on a fixed circle and the edges lie inside the
disk of this circle with each of them crossing at most one another. In this embedding, the edges bounding the disk(s) are
boundary edges and a disk is closed or open according to whether or not it contains the circle that constitutes its boundary.
For example, Fig. 1 exhibits a pseudo-outerplanar embedding of a graph with two blocks: one is K4 and the other is K2,3. The
drawing of K4 in this embedding lies inside a closed disk but the one of K2,3 in this embedding lies inside an open disk. In
Fig. 1, the edges in bold are the boundary edges. A pseudo-outerplanar graph is maximal if it is not possible to add an edge
such that the resulting graph is still pseudo-outerplanar. Thus, K2,3 is not a maximal pseudo-outerplanar graph, since we
can add two edges to K2,3 and remain its pseudo-outerplanarity. One can easily check that each pseudo-outerplanar graph
has a planar embedding, so the class of pseudo-outerplanar graphs forms a subclass of planar graphs. Actually, the definition
of pseudo-outerplanar graphs is similar to that of 1-planar graphs (i.e. graphs that can be drawn on the plane so that each
edge is crossed by at most one other edge), which was introduced by Ringel [10].
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Fig. 1. An example of a pseudo-outerplanar graph.

Many classic problems in graph theory are considered for the class of planar graphs and its subclasses, such as the class
of series–parallel graphs and the class of outerplanar graphs. Consider the problem of covering graphs with forests and a
graph of bounded maximum degree, for example. We say that a graph is (t, d)-coverable if its edges can be covered by at
most t forests and a graph of maximum degree d. In [2], et al. conjectured that every simple planar graph is (2, 4)-coverable
and gave a example to show that there are infinitely many planar graphs that are not (2, 3)-coverable. This conjecture was
recently confirmed by Gonçalves in [5]. In [2], it is also proved that every series–parallel graph is (2, 0)-coverable and that
every K2,3-minor-free graph is both (1, 3)-coverable and (2, 0)-coverable. Since a graph is outerplanar if and only if it is
{K4, K2,3}-minor-free [6], every outerplanar graph is both (1, 3)-coverable and (2, 0)-coverable. It is interesting to know
what can be said about pseudo-outerplanar graphs, a larger class than outerplanar graphs.

Edge-coloring is another classic problem in graph theory. In fact, we can regard edge-coloring problems as an edge
decomposition problem. When we color the edges of a graph G, our actual task is to decompose the edge set E(G) into
many parts such that the graph induced by each part satisfies a property P . Different properties P correspond to different
types of edge-coloring. For example, a proper edge k-coloring of G is a decomposition of E(G) into k subsets such that the
graph induced by each subset is a matching in G. The minimum integer k such that G has a proper edge k-coloring, denoted
by χ ′(G), is the edge chromatic number of G. Vizing’s Theorem states that for any graph G, ∆(G) ≤ χ ′(G) ≤ ∆(G) + 1. A
graph G is of class 1 ifχ ′(G) = ∆(G) and of class 2 ifχ ′(G) = ∆(G)+1. Sanders and Zhao [11] showed that each planar graph
with maximum degree at least 7 is of class 1. Juvan et al. [9] proved that each series–parallel graph (and each outerplanar
graphs) with maximum degree at least 3 is of class 1. We ask whether each pseudo-outerplanar graph with large maximum
degree is of class 1.

On the other hand, one can consider improper edge-colorings. Concerning this topic, Harary [7] introduced the concept
of linear arboricity. A linear forest is a forest in which every connected component is a path. A tree k-coloring of G is a
decomposition of E(G) into k subsets such that the graph induced by each subset is a linear forest. The linear arboricity
la(G) of a graph G is the minimum integer k such that G has a tree k-coloring. Akiyama et al. [1] conjectured that la(G) =

⌈(∆(G)+1)/2⌉ for any regular graphG. It is obvious that la(G) ≥ ⌈∆(G)/2⌉ for any graphG and that la(G) ≥ ⌈(∆(G)+1)/2⌉
for any regular graph G. Hence the conjecture is equivalent to the following one.

Conjecture 1.1 (Linear Arboricity Conjecture). For any graph G, ⌈∆(G)

2 ⌉ ≤ la(G) ≤ ⌈
∆(G)+1

2 ⌉.

Conjecture 1.1 has been proved true for all planar graphs [13,15]. However, it is still interesting to determine which planar
graphs satisfy la(G) = ⌈∆(G)/2⌉. Wu [13] proved that it holds for planar graphs with maximum degree at least 13, and this
bound 13was later improved to 9 by Cygan et al. [4]. For subclasses of planar graphs,Wu [14] proved that la(G) = ⌈∆(G)/2⌉
for all series–parallel graphs (hence also for all outerplanar graphs)withmaximumdegree at least 3. Can the same conclusion
extend to the class of pseudo-outerplanar graphs?

In Section 2, we give some relationships among three classes containing the outerplanar graphs; they are the K2,3-minor-
free graphs, the series–parallel graphs, and the pseudo-outerplanar graphs. In Section 3, we investigate the problem of
covering pseudo-outerplanar graphs with forests and a graph of boundedmaximum degree. In Section 4, some unavoidable
structures of pseudo-outerplanar graphs are obtained. These structures will be applied to determine the edge chromatic
number and the linear arboricity of pseudo-outerplanar graphs in Section 5.

2. Basic properties

LetGbe apseudo-outerplanar graph. In the remainder of this paper,we always assume thatGhas beendrawnon theplane
such that (1) for each block B of G, the vertices of B lie on a fixed circle and the edges of B lie inside the disk of this circle with
each of them crossing at most one another; (2) the number of crossings in G is as small as possible. We call such a drawing
pseudo-outerplanar diagram of G. Let G be a pseudo-outerplanar diagram and let B be a block of G. Denote by v1, v2, . . . , v|B|
the vertices of B, which are lying in a clockwise sequence. LetV[vi, vj] = {vi, vi+1, . . . , vj} andV(vi, vj) = V[vi, vj]\{vi, vj},
where the subscripts and the additions are taken modular |B|.
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Fig. 2. Each Hamiltonian pseudo-outerplanar graph has a Hamiltonian diagram.

Lemma 2.1 ([6]). If G is an outerplanar graph, then

(a) δ(G) ≤ 2,
(b) κ(G) ≤ 2.

Theorem 2.2. If G is a pseudo-outerplanar graph, then

(a) δ(G) ≤ 3,
(b) κ(G) ≤ 2 unless G ≃ K4.

Proof. The proof of (a) is left to Corollary 4.3; we only prove (b) here. If |G| ≤ 4, then this claim is trivial. Hence we
may assume that G is a pseudo-outerplanar diagram with |G| ≥ 5 and κ(G) ≥ 3. If G has no crossings, then G is an
outerplanar graph; thus Lemma 2.1 yields κ(G) ≤ 2, a contradiction. Therefore, we assume that there are two chords
vivj and vkvl in G that cross each other, and that vi, vk, vj, vl are lying in a clockwise sequence. Since |G| ≥ 5, at least one
of V(vi, vk), V(vk, vj), V(vj, vl) and V(vl, vi) is nonempty. Without loss of generality, assume that V(vi, vk) ≠ ∅. Since
vivj crosses vkvl, there is no edge between the two vertex sets V(vi, vk) and V(vk, vi). Thus, {vi, vk} separates V(vi, vk) and
V(vk, vi), contradicting κ(G) ≥ 3. �

It iswell-known that every 2-connected outerplanar graph isHamiltonian, but this does not hold for 2-connected pseudo-
outerplanar graphs. The complete bipartite graph K2,3 is just a counterexample. If the disk of a circle C is closed, then we call
C a closed circuit. A 2-connected pseudo-outerplanar diagram is a Hamiltonian diagram if it is drawn so that all its vertices lie
on a closed circuit C; and this closed circuit C is the Hamiltonian boundary of the diagram. By this definition, one can easily
see that a non-Hamiltonian 2-connected pseudo-outerplanar graph cannot have a Hamiltonian diagram. We ask whether
each Hamiltonian pseudo-outerplanar graph has a Hamiltonian diagram.

Theorem 2.3. Let G be a pseudo-outerplanar diagram and let C be a Hamiltonian cycle of G. If C is not the boundary of G, then
G has a Hamiltonian diagram such that C is the Hamiltonian boundary of this diagram.

Proof. We proceed by induction on the order of G. Since G has a Hamiltonian cycle C with vertices v1, . . . , vn that is not
the boundary of the pseudo-outerplanar diagram of G, there exists at least one crossing in the drawing of C , which is a sub-
diagram of G. Suppose that vjvj+1 and vkvk+1 for j < k cross each other and that vk, vj, vk+1, vj+1 lie in a clockwise order.
Denote respectively by U and W the set of vertices from vj to vk+1 and from vj+1 to vk in the cyclic clockwise sequence
of vertices on the outer boundary of G. Take the first graph in Fig. 2 for example, we have C = v1v2, . . . , vnv1,U =

{vj, vj−1, . . . , vi+1, v1, . . . , vi, vn, vn−1, . . . , vk+1} and W = {vj+1, vj+2, . . . , vk−1, vk}. Note that besides vjvj+1 and vkvk+1,
there is no other edge uw such that u ∈ U and w ∈ W , by the definition of G. One can see that G1 is a pseudo-outerplanar
diagramwith aHamiltonian cycle C1 having vertices vk+1, . . . , vn, v1, . . . , vj, whileG2 is a pseudo-outerplanar diagramwith
a Hamiltonian cycle C2 having vertices vj+1, . . . , vk. By the induction hypothesis, G1 and G2 have Hamiltonian diagrams
with Hamiltonian boundaries C1 and C2, respectively. We now combine these two Hamiltonian diagrams and add two
edges vjvj+1 and vkvk+1 (see the second graph in Fig. 2) to obtain a Hamiltonian diagram of G with Hamiltonian boundary
vk+1vk+2, . . . , vnv1, . . . , vjvj+1vj+2, . . . , vk−1vkvk+1, which is the cycle C . �

Corollary 2.4. Each Hamiltonian pseudo-outerplanar graph has a Hamiltonian diagram.

A graph G is quasi-Hamiltonian if each block of G is Hamiltonian. Denote the class of pseudo-outerplanar graphs,
quasi-Hamiltonian pseudo-outerplanar graphs, series–parallel graphs, K2,3-minor-free graphs, and outerplanar graphs by
P , PH , S, M2,3, and O, respectively. The following basic relationship is obvious.

Remark 2.5. P ⊃ PH ⊃ O, M2,3


S = O.

In the following, we prove other relationships among these five classes of graphs.

Theorem 2.6. PH


S = O.
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Fig. 3. Decomposability of pseudo-outerplanar graphs.

Proof. Let G ∈ PH


S and let B be a block of G. By Corollary 2.4, B has a Hamiltonian diagram, and actually this diagram
is outerplanar. If there is a crossing, there would be four vertices u, v, x, y with uv and xy crossing in B. Since the diagram
is Hamiltonian, there are four pairwise disjoint paths Pux, Pxv, Pvy and Pyu that connect u to x, x to v, v to y and y to u. Thus,
the two edges uv and vy and the four paths Pux, Pxv, Pvy, Pyu form a K4-minor, which is impossible in a series–parallel graph.
Hence B is an outerplanar graph. �

Lemma 2.7 ([8]). Let H be a graph obtained from K2,3 by adding an edge joining two vertices of degree 2. If G is a H-minor-free
graph, then each block of G is either K4-minor-free or isomorphic to K4.

Corollary 2.8. For any 2-connected graph G ∈ M2,3, either G ∈ O or G ≃ K4.

Proof. Since G ∈ M2,3,G is H-minor-free, where H is the graph in Lemma 2.7. Thus, by Remark 2.5 and Lemma 2.7, either
G ∈ O or G ≃ K4. �

Theorem 2.9. M2,3 ⊂ PH .

Proof. The inclusion of M2,3 in PH directly follows from Corollary 2.8. The inequality comes from the graph (K1


K2) ∨ K2
that belongs to PH but not to M2,3. �

3. Decomposability

Let G be a pseudo-outerplanar diagram and let B be a block of G. Denote by v1, v2, . . . , v|B| the vertices of B, which are
lying in a clockwise sequence. The edges joining consecutive vertices in this list are boundary edges and other edges are
chords of G. Since G is a pseudo-outerplanar diagram, all of the crossings are generated by one chord crossing another chord.
Let C[vi, vj] be the set of chords xywith x, y ∈ V[vi, vj] and let C(G) be the set of crossed chords in G.

Theorem 3.1. Let G be a Hamiltonian pseudo-outerplanar diagram and let C be the Hamiltonian boundary of this diagram. If
y ∈ V (C) and yx, yz ∈ E(C), then there exists a linear forest T in G such that E(T ) ⊆ C(G), dT (y) = 0, max{dT (x), dT (z)} ≤ 1,
and G − E(T ) is an outerplanar diagram.

Proof. We proceed by induction on the order of G. One can see that this claim holds for |G| ≤ 4, since the case G = K4 is
trivial. Hence, we may assume that |G| ≥ 5 and the three vertices x, y, z occur on C in a clockwise sequence.

First, we consider the case when dG(y) = 2. If the edge xz already exists in G, then let G′
= G − y and C ′

= C − y;
otherwise, let G′

= (G− y)+ xz and C ′
= (C − y)+ xz. It is easy to see that G′ is a Hamiltonian pseudo-outerplanar diagram

with Hamiltonian boundary C ′. Let x′
≠ z be a vertex such that xx′

∈ E(C ′) (x′ exists because |V (G)| ≥ 5). By induction
on (G′, C ′, x′, x, z) (as (G, C, x, y, z), respectively), there exists a linear forest T ′ in G′ such that E(T ′) ⊆ C(G′), dT ′(x) = 0,
max{dT ′(x′), dT ′(z)} ≤ 1, and G′

− E(T ′) is an outerplanar diagram. Let T = T ′. Since C(G′) = C(G), we have E(T ) ⊆

C(G), dT (x) = dT (y) = 0, and dT (z) ≤ 1. Furthermore, one can easily see that G − E(T ) is an outerplanar diagram.
If dG(y) = 3 and xz ∈ E(G), then the edge xz is crossed by another edge yw. Assume first that V(z, w) = ∅. We

then immediately have zw ∈ E(C). Let G′
= G[V[w, x]] + wx and let C ′ be the cycle consisting of the edge xw and the

clockwise subpath around C from w to x. We assume that NC ′(x) \ {w} ≠ ∅, because otherwise G would have less than
five vertices, a contradiction. Let x′

≠ w be a vertex such that xx′
∈ E(C ′) (see 1st graph of Fig. 3). Note that G′ is a

Hamiltonian pseudo-outerplanar diagram with Hamiltonian boundary C ′. By induction on (G′, C ′, x′, x, w), there exists a
linear forest T ′ in G′ such that E(T ′) ⊆ C(G′), dT ′(x) = 0, max{dT ′(x′), dT ′(w)} ≤ 1, and G′

− E(T ′) is an outerplanar
diagram. Let T = T ′

+ xz. One can easily check that E(T ) ⊆ C(G), dT (y) = 0, dT (x) = dT (z) = 1, and G − E(T ) is an
outerplanar diagram. Thus, a linear forest T as required can be constructed. In the following, we assume that V(z, w) ≠ ∅

and V(w, x) ≠ ∅. Let z ′
≠ y, w be a vertex such that zz ′

∈ E(C1) and let x′
≠ y, w be a vertex such that xx′

∈ E(C)
(see 2nd graph of Fig. 3). Let G1 = G[V[z, w]] + zw and G2 = G[V[w, x]] + wx. By C1 and C2, we respectively denote
the cycle that consists of the edge wz and the clockwise subpath around C from z to w, and that consists of the edge
xw and the clockwise subpath around C from w to x. For i = 1, 2,Gi is a Hamiltonian pseudo-outerplanar diagram with
Hamiltonian boundary Ci. By inductions on (G1, C1, w, z, z ′) and (G2, C2, w, x, x′), there exist a linear forest T1 in G1 with
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E(T1) ∈ C(G1), dT1(z) = 0, max{dT1(w), dT1(z
′)} ≤ 1, and G1 − E(T1) being an outerplanar diagram, and a linear forest

T2 in G2 with E(T2) ∈ C(G2), dT2(x) = 0, max{dT2(w), dT2(x
′)} ≤ 1, and G2 − E(T2) being an outerplanar diagram. Let

T = T1 ∪ T2 ∪ {xz}. One can easily see that E(T ) ⊆ C(G), dT (y) = 0, dT (x) = dT (z) = 1, dT (w) ≤ 2, and G − E(T ) is
an outerplanar diagram. Since T1 and T2 intersect on at most one vertex, w, of degree at most one in each forest and there
is no edge between V (T1) \ {w} and V (T2) \ {w}, T1 ∪ T2 is a linear forest. Furthermore, since x, y and z have degree 0 in
T1 ∪ T2, T1 ∪ T2 ∪ {xz} is the required linear forest.

The last case is when dG(y) ≥ 3 and xz ∉ E(G). We label the neighbors of y by y1, y2, . . . , yk in a clockwise sequence
on C , where y1 = z, yk = x and k ≥ 3. If yy2 is not a crossed chord in G, then let G1 = G[V[y, y2]] and G2 = G[V[y2, y]].
Denote by C1 (resp. C2) the cycle consisting of the edge yy2 and the clockwise subpath around C from y to y2 (resp. from
y2 to y). For i = 1, 2,Gi is a Hamiltonian pseudo-outerplanar diagram with Hamiltonian boundary Ci. By inductions on
(G1, C1, y2, y, z) and (G2, C2, y2, y, x), it is easy to construct a linear forest as required. Hence, we may assume that yy2
is crossed by another edge yL2y

R
2 in G, where yL2, y2, y

R
2 are labeled clockwise. Since there is no edge between V(y, yL2) and

V(yL2, y), or between V(y, yR2) and V(yR2, y), we can add two edges yyL2 and yyR2 to G if they do not really exist so that they
do not generate new crossings in G, and thus the resulting graph is still pseudo-outerplanar (see the 3rd graph of Fig. 3).
By C1, C2 and C3, we respectively denote the cycle that consists of the edge yL2y and the clockwise subpath around C from
y to yL2, and that consists of the path yR2yy

L
2 and the clockwise subpath around C from yL2 to yR2, and that consists of the edge

yyR2 and the clockwise subpath around C from yR2 to y. Let Gi be the subgraph of G contained in the closed disk of Ci for
i = 1, 2, 3. Here one should be careful that if yL2 = y1 (resp. yR2 = yk), then C1 (resp. C3) is not a cycle and G1 (resp. G3)
is defined to be a null graph. However, G1 and G3 cannot simultaneously be null graphs, since y1yk ∉ E(G). Hence any
of Gi for i = 1, 2, 3 is a subgraph of G with smaller order. Moreover, every non-null graph Gi is a Hamiltonian pseudo-
outerplanar diagram with Hamiltonian boundary Ci. Without loss of generality, we assume that none of Gi for i = 1, 2, 3
is a null graph. By inductions on (G1, C1, y1, y, yL2), (G2, C2, yR2, y, y

L
2) and (G3, C3, yk, y, yR2), there exist a linear forest Ti in

Gi for i = 1, 2, 3 such that E(Ti) ∈ C(Gi), dTi(y) = 0, and Gi − E(Ti) is an outerplanar diagram. Meanwhile, we have
max{dT1(y1), dT1(y

L
2), dT2(y

L
2), dT2(y

R
2), dT3(y

R
2), dT3(yk)} ≤ 1. Let T = T1 ∪ T2 ∪ T3. Since there is no edge whose end points

are belong to different parts of the vertex partition [V(y, yL2), V(yL2, y
R
2), V(yR2, y)] (because otherwise either yy2 or yL2y

R
2 may

be crossed twice), T is a forest. Since dT (yR2) ≤ dT2(y
R
2) + dT3(y

R
2) ≤ 2 and dT (yL2) ≤ dT1(y

L
2) + dT2(y

L
2) ≤ 2, ∆(T ) ≤ 2 and

thus T is a linear forest. Since C(Gi) ⊆ C(G) for i = 1, 2, 3, E(T ) = E(T1) ∪ E(T2) ∪ E(T3) ∈ C(G1) ∪ C(G1) ∪ C(G3) ∈ C(G).
Meanwhile, dT (y) = dT1(y) + dT2(y) + dT3(y) = 0, dT (x) = dT (yk) = dT3(yk) ≤ 1, and dT (z) = dT (y1) = dT1(y1) ≤ 1. Since
G− E(T ) ⊆

3
i=1(Gi − E(Ti)), G− E(T ) is an outerplanar diagram. Hence we construct a linear forest T as required in G and

completes the proof of the theorem. �

A star forest is a graph in which every component is a star. The root of a star is the vertex of maximum degree. Note that
K2 has two roots. The roots of a star forest is the union of the root of each star component. The following Theorem 3.2 is
an analog of Theorem 3.1 (note that the condition max{dT (x), dT (z)} ≤ 1 in Theorem 3.1 is equivalent to that x or z is a
vertex of T if and only if x or z is a leaf of T ), whose proof is almost the same with that of Theorem 3.1. Actually, we can still
proceed by induction on the order of G and split the proofs into three cases: the first is dG(y) = 2, the second is dG(y) = 3
and xz ∈ E(G), and the last is dG(y) ≥ 3 and xz ∉ E(G). In each case we can construct a star forest T as required by the same
way as in the proof of Theorem 3.1. The detailed proof of Theorem 3.2 is left to the readers.

Theorem 3.2. Let G be a Hamiltonian pseudo-outerplanar diagram and let C be the Hamiltonian boundary of this diagram. If
y ∈ V (C) and yx, yz ∈ E(C), then there exists a star forest T in G such that E(T ) ∈ C(G), dT (y) = 0, x or z is a vertex of T if
and only if x or z is a root of T , and G − E(T ) is an outerplanar diagram.

Corollary 3.3. Each pseudo-outerplanar graph can be decomposed into an outerplanar graph and a linear forest, or an
outerplanar graph and a star forest.

Proof. Without loss of generality, let G be a quasi-Hamiltonian pseudo-outerplanar diagram (otherwise we can add some
edges to close the circumferential boundary of each block). In what follows, we proceed by induction on the number of
blocks, ω(G), in G. The base case when ω(G) = 1 follows directly from Theorems 3.1 and 3.2, so we assume that ω(G) ≥ 2.
Choose a block B ofG that contains only one cut vertex y (i.e. B is an end-block). By Theorems3.1 and3.2, B can be decomposed
into an outerplanar graph H1 and a linear forest T1 with dT1(y) = 0, or an outerplanar graph H2 and a star forest T2 with
dT2(y) = 0. Meanwhile, by the induction hypothesis, G − B can also be decomposed into an outerplanar graph H3 and a
linear forest T3, or an outerplanar graph H4 and a star forest T4. Therefore, G can be covered by the linear forest T = T1 ∪ T3
and the outerplanar graph H = H1 ∪ H3, or the star forest T = T2 ∪ T4 and the outerplanar graph H = H2 ∪ H4. �

Theorem 3.4. For every integer n ≥ 12, there exists a 2-connected pseudo-outerplanar graph with order n that cannot be
decomposed into an outerplanar graph and a matching.

Proof. We show the last graph G in Fig. 3 is a graph that cannot be decomposed into an outerplanar graph and a
matching. Otherwise, we may assume that E(G) = E(H) ∪ E(M), where H is an outerplanar and M is matching. Set
Si = {vivi+1, vivi+2, vivi+3, vi+1vi+3, vi+2vi+3} (mod 12) for i = 1, 4, 7, 10. We now prove that there exists an edge set
Si that is contained in E(H).
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If this claim does not hold, then we may meet one of the following two cases. If v1v2 ∈ E(M), then v1vk ∈ E(H) for k =

3, 4, 7, 10, 11, 12 and exactly one of v10v11 and v10v12 should be contained in E(M), say v10v11. It follows that vkv10 ∈ E(H)
for k = 4, 7, 12. However, the five vertices v1, v4, v7, v10, v12 and the three disjoint paths v1v4v10, v1v7v10, v1v12v10 form
a copy of K2,3 in H; this is a contradiction. If v1v4 ∈ E(M), then v1v2, v1v3, v1v7, v2v4, v3v4, v4v7 ∈ E(H) and the graph
induced by {v1, v2, v3, v4, v7} is a K2,3, which is impossible in an outerplanar graph.

Hence in the following, we may assume that S1 ⊆ E(H). If {v1v7, v4v7} ⊆ E(H), then the five vertices v1, v2, v3, v4, v7
and the three disjoint paths v1v2v4, v1v3v4, v1v7v4 form a copy of K2,3 in H , a contradiction. Thus, exactly one of v1v7
and v4v7 shall be contained in E(M), say v1v7. Similarly, we can prove that {v1v10, v4v10} ⊈ E(H). Thus, we have
v1v10 ∈ E(H), v4v10 ∈ E(M), and v7v10 ∈ E(H). Now the six vertices v1, v2, v3, v4, v7, v10 and the three disjoint paths
v1v3v4, v1v2v4, v1v10v7v4 form a K2,3-minor in H . This contradiction completes the proof of this theorem. �

Theorem 3.5. Every maximal pseudo-outerplanar graph G is obtained from a maximal pseudo-outerplanar diagram H by gluing
a K3 or a K4 along a boundary edge of H.

Proof. Without loss of generality, we assume that G is a 2-connected maximal pseudo-outerplanar diagram. Since G is
maximal, G is Hamiltonian and has at least one chord. Let C be the Hamiltonian boundary of the diagram of Gwith vertices
v1, v2, . . . , v|G|. We split the proof into two cases.
Case 1. There exists a crossed chord in G.

Let vivj be a chord in G that crosses another chord vkvl for 1 ≤ i < k < j < l ≤ |G|. Actually, we can properly choose
i and j such that there is no pair of mutually crossed chords in C[vi, vl] \ {vivj, vkvl}, because otherwise we can change the
value of i or j to meet this condition.

Assume first that there is no non-crossed chord in C[vi, vl] \ {vivl}. In this case, we shall have k = i+ 1. Otherwise, since
vivk ∉ E(G), we can add vivk to G so that G is still pseudo-outerplanar, contradicting the fact that G is maximal. Similarly, by
the maximality of G, we have j = k+ 1, l = j+ 1, and vivl ∈ E(G). Furthermore, d(vk) = d(vj) = 3. Remove the vertices vk
and vj from G and denote the resulting graph byH . Actually,H is amaximal pseudo-outerplanar diagram, because otherwise
we can add an edge e = vavb ∉ E(H), where a, b ≠ k or j, toH so thatH+e is pseudo-outerplanar, and thus G+e is pseudo-
outerplanar, since e ∉ E(G), contradicting the fact that G is maximal. At this stage, one can easily see that G is obtained from
H by gluing a K4 along the boundary edge vivl of H .

Second, assume that there is a non-crossed chord vrvs in C[vi, vl] \ {vivl}. Since there is no crossed chord in C[vr , vs], we
can properly choose r and s such that C[vr , vs] \ {vrvs} = ∅. By the maximality of G, we have s = r + 2, otherwise we can
add an edge vrvr+2 to G so that the resulting graph is still pseudo-outerplanar, a contradiction. Since vrvs is a non-crossed
chord, d(vr+1) = 2. Remove the vertex vr+1 from G and denote the resulting graph by H ′. By a similar argument as above,
one can prove that H ′ is a maximal pseudo-outerplanar diagram. Furthermore, one can easily see that G is obtained from H ′

by gluing a K3 along the boundary edge vrvr+2 of H .
Case 2. There exists a non-crossed chord in G.

Let vivj for 1 ≤ i < j ≤ |G| be a non-crossed chord in G. In this case, we shall assume that there is no crossed chord
in C[vi, vj], because otherwise we are in Case 1. We choose i and j such that C[vi, vj] \ {vivj} = ∅, and then we are in the
second subcase of Case 1, where we can set r := i and s := j. �

Corollary 3.6. Each pseudo-outerplanar graph can be decomposed into two forests and a matching.

Proof. Let G be a pseudo-outerplanar graph. In the following, we proceed by induction on the size of G and assume that
G is a maximal pseudo-outerplanar diagram. By Theorem 3.5, there respectively exists a K3 with vertices x, y and z or a K4
with vertices x, y, u and v contained in G such that H = G − {xz, yz} or H = G − {xu, xv, yu, yv, uv} is a maximal pseudo-
outerplanar graph with xy being its boundary edge. By induction on H , there exists two forests F1, F2 and amatchingM such
that E(H) = E(F1) ∪ E(F2) ∪ E(M). In the former case, let F ′

1 = F1 + xz, F ′

2 = F2 + yz, andM ′
= M; and in the latter case, let

F ′

1 = F1 + {xu, xv}, F ′

2 = F2 + {yu, yv}, andM ′
= M + uv. One can easily check that the two forests F ′

1, F
′

2 and the matching
M ′ is the desired decomposition of G. �

Theorem 3.7. For every integer n ≥ 6, there exists a 2-connected pseudo-outerplanar graph with order n that cannot be
decomposed into two forests.

Proof. Let C be a cycle with n vertices v1, . . . , vn, where n ≥ 6. Add edges v1vi for all 3 ≤ i ≤ n − 1 and edges v2iv2i+2
for all 1 ≤ i ≤ ⌊

n
2⌋ − 1. One can easily check that the resulting graph Gn is a 2-connected pseudo-outerplanar graph

with order n and size ⌊
5
2n⌋ − 4. If Gn can be decomposed into two forests F1 and F2, then |E(Gn)| = |E(F1)| + |E(F2)| ≤

|V (F1)| + |V (F2)| − 2 ≤ 2n − 2. However, for n ≥ 6, |E(Gn)| = ⌊
5
2n⌋ − 4 > 2n − 2. Hence, the graph Gn for n ≥ 6 cannot

be covered by two forests. �

From Corollary 3.6 and Theorem 3.7, we directly have the following two corollaries.

Corollary 3.8. Every pseudo-outerplanar graph is (2, 1)-coverable; and the two parameters given here are best possible.

Corollary 3.9. The arboricity of a pseudo-outerplanar graph is at most 3; and this bound is sharp.
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4. Unavoidable structures

In this section, a vertex set V[vi, vj] is a non-edge if j = i + 1 and vivj ∉ E(G), is a path if vkvk+1 ∈ E(G) for all i ≤ k < j,
and is a subpath if j > i+1 and some edges in the form vkvk+1 for i ≤ k < j aremissing.We say that a chord vkvl is contained
in a chord vivj if i ≤ k ≤ l ≤ j. In any figure of this section, the solid vertices have no edges of G incident with them other
than those shown.

Lemma 4.1 ([12]). If G is a 2-connected outerplanar graph, then

(1) G has two adjacent 2-vertices u and v, or
(2) G has a 3-cycle uwxu such that d(u) = 2 and d(w) = 3, or
(3) G has a 4-vertex w, where N(w) = {u, v, x, y}, such that d(u) = d(v) = 2,N(u) = {w, x} and N(v) = {w, y}.

For the class of pseudo-outerplanar graphs, we have a similar structural theorem as Lemma 4.1.

Theorem 4.2. If G is a pseudo-outerplanar diagram with δ(G) ≥ 2, then G contains one of the following configurations G1–G17.
Moreover,

(a) if G contains some configuration among G6–G17, then the drawing of this configuration in the figure is a part of the diagram
of G with its bending edges corresponding to the chords;

(b) if G contains the configuration G3 and xy ∉ E(G), where x and y are the vertices of G3 as described in the figure, then we can
properly add an edge xy to G so that the resulting diagram is still pseudo-outerplanar.

Proof. We first consider the case when G is a 2-connected pseudo-outerplanar diagram. Let v1, v2, . . . , v|G| be the vertices
of the diagram lying in a clockwise sequence. If there is no crossing in G, then G is an outerplanar graph, and thus G satisfies
this claim by Lemma 4.1. Otherwise, we can properly choose one chord vivj such that

(1) vivj crosses vkvl in G;
(2) vi, vk, vj and vl are lying in a clockwise sequence;
(3) besides vivj and vkvl, there is no crossed chord in C[vi, vl].

The condition (3) can be easily fulfilled, because otherwise we could change the values of i and j to meet this condition
(note that the values of k and l are determined by i and j). Without loss of generality, assume that 1 ≤ i < k < j < l ≤ |G|,
because otherwise we can adjust the labellings of the vertices in G to meet it.

Claim 1. V[vi, vk] is either non-edge or path, and so do V[vk, vj] and V[vj, vl].

We only need to prove that V[vi, vk] cannot be subpath. Otherwise, there exists two vertices vm and vm+1, where
i ≤ m ≤ k − 1, such that vmvm+1 ∉ E(G). If there are chords in the form vavm+1 such that i ≤ a ≤ m − 1, then we
choose one among them such that a is maximum. One can see that va is a vertex cut of G, because there is no edge between
V[va+1, vm] andV[vm+1, va−1], by the choice of a and by (3). This contradicts the fact that G is 2-connected. Thus, there is no
chord in the form vavm+1 such that i ≤ a ≤ m−1. Similarly, there is no chord in the form vmvb such thatm+2 ≤ b ≤ k. Let
p = max{n|vm+1vn ∈ E(G),m + 1 < n ≤ k} and q = min{n|vnvm ∈ E(G), i ≤ n < m}. Since V[vi, vk] is neither non-edge
nor path, we have k − i ≥ 2, and thus at least one of the integers p and q exists. Without loss of generality, suppose that p
exists. In this case, vp is a vertex cut of G, because there is no edge between V[vm+1, vp−1] and V[vp+1, vm], by the choices
ofm, p and by (3). This contradiction completes the proof of Claim 1.

Claim 2. If V[vi, vk] is a path and k − i ≥ 3, then G has a subgraph isomorphic to one of the configurations G1,G2 and G4. This
result also holds for V[vk, vj] or V[vj, vl] when j − k ≥ 3 or l − j ≥ 3, respectively.
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If there is no other chord except vivk (if exists) in V[vi, vk], then the configuration G1 occurs in G, since k − i ≥ 3. Hence
we may assume that S := C[vi, vk] \ {vivk} ≠ ∅.

We now prove that there exists at least one chord in S that contains at least one other chord. If such a chord does not
exist, then we first choose a chord vmvn ∈ S for m < n. Without loss of generality, assume that n ≠ k. If n − m ≥ 3, then
we can easily find a copy of G1 in G, since vmvn contains no other chord by our assumption. If n − m = 2, then it is trivial to
see that d(vm+1) = 2. In this case, if min{d(vm), d(vn)} ≤ 3, then a copy of G2 would be found in G. Hence we may assume
that min{d(vm), d(vn)} ≥ 4. Since vmvn cannot be contained in a chord in the form vqvn for q < n by the assumption, there
exists another chord vnvp for n < p in S. If p − n ≠ 2 or d(vn+1) ≠ 2, then the configuration G1 would be found in G. If
p − n = 2 and d(vn+1) = 2, then d(vn) = 4, because otherwise there would be chord in S that contains either vmvn or vnvp,
a contradiction. At this stage, one can see that the graph induced by V[vm, vp] contains the configuration G4.

By the above arguments, we can choose one chord vavb ∈ S for a < b such that vavb contains at least one chord, and
moreover, every chord contained in vavb contains no other chords (this condition can be easily fulfilled by properly changing
the values of a and b if necessary). Let vmvn for m < n be the chord contained in vavb. By a similar argument as above, we
only need to consider the case when n − m = 2, d(vm+1) = 2, and min{d(vm), d(vn)} ≥ 4. Without loss of generality,
assume that n ≠ b. Since d(vn) ≥ 4 and vmvn cannot be contained in a chord in the form vqvn for q < n by the choices
of a and b, there is a chord vnvp for n < p ≤ b in S. If G contains no copies of G1 or G2, then p − n = 2 and d(vn+1) = 2.
Furthermore, by the choices of a and b, one can similarly prove that d(vn) = 4. Thus, wewould find a copy of G4 in the graph
induced by V[vm, vp].

Claim 3. At most one of V[vi, vk], V[vk, vj] and V[vj, vl] can be non-edge.

If V[vi, vk] and V[vk, vj] are non-edge, then vl is a vertex cut of G, contradicting the fact that G is 2-connected. IfV[vi, vk]

and V[vj, vl] are non-edge, then we can adjust the drawing of G by replacing the vertices order vi, vk, vk+1, . . . , vj−1, vj, vl
with vi, vj, vj−1, . . . , vk+1, vk, vl. This operation can reduce the number of crossings in the drawing ofG by one, contradicting
the assumption that this diagram minimizes the number of crossings.

Claim 4. If one of V[vi, vk], V[vk, vj] and V[vj, vl] is non-edge, then G has a subgraph isomorphic to one of the configurations
G1,G2 and G3.

Suppose first that V[vi, vk] is a non-edge. By Claims 1–3, both V[vk, vj] and V[vj, vl] are paths with 1 ≤ j − k ≤ 2 and
1 ≤ l − j ≤ 2. If j − k = 2 and vkvj ∈ E(G), then it is clear that d(vk) = 3 and d(vk+1) = 2, implying that the configuration
G2 occurs in G. If j− k = 2 and vkvj ∉ E(G), then d(vk) = d(vk+1) = 2, implying that the configuration G1 occurs in G. Hence
we may assume that j = k + 1. If l = j + 2, then d(vj+1) = 2 whenever vjvl is a chord or not. In this case, the configuration
G3 occurs in G, since d(vk) = 2, and moreover, G+ vjvl is still pseudo-outerplanar if vjvl ∉ E(G). Thus, we shall assume that
l = j + 1. Since vk, vj, vl form a triangle satisfying d(vk) = 2 and d(vj) = 3, the configuration G2 occurs in G. The case when
V[vj, vl] is a non-edge can be dealt with similarly, so we omit it here.

Second, suppose that V[vk, vj] is a non-edge. By Claims 1–3, both V[vi, vk] and V[vj, vl] are paths with 1 ≤ k − i ≤ 2
and 1 ≤ l − j ≤ 2. If k − i = 2 or j − l = 2, then by a similar argument as before, we either have d(vk−1) = d(vk) = 2 or
d(vj) = d(vj+1) = 2, implying that the configuration G1 occurs in G. If k − i = l − j = 1, then the four vertices vi, vj, vl and
vk form a quadrilateral with d(vi) = d(vk) = 2, which implies that the configuration G3 occurs in G, and moreover, G + vivl
is still pseudo-outerplanar if vivl ∉ E(G).

In the following, we assume that V[vi, vk], V[vk, vj] and V[vj, vl] are all paths, where max{k − i, j − k, l − j} ≤ 2. Set
X = C[vi, vl] \ {vivj, vkvl} and let x = |X |. It is clear that x ≤ 3.

Claim 5. If x = 0, then G has a subgraph isomorphic to one of the configurations G6–G11; if x = 1, then G has a subgraph
isomorphic one of the configurations G5,G12,G13 and G14; if x = 2, then G has a subgraph isomorphic to one of the configurations
G5,G15 and G16; and if x = 3, then G has a subgraph isomorphic to the configuration G17.

We prove for the case when x = 2 and vkvj, vjvl ∈ X for example, and leave the discussions on other cases to the readers,
since they are quite similar. In fact, if k − i = 1 (resp. k − i = 2), then the configuration G15 (resp. G5) would occurs in G,
since d(vk) = 4 and d(vi+1) = d(vk+1) = d(vj+1) = 2, and moreover, the drawing of the configuration G15 (resp. G5) in the
figure is just a part of the diagram of G with its bending edges corresponding to the chords.

Claims 1–5 complete the proof of this theorem for the case when G is 2-connected. We now suppose that G is a
counterexample that has at least two blocks. Let B be an end block and let v1, v2, . . . , v|B| be the vertices of B that lies
in a clockwise sequence. Without loss of generality, let v1 be the unique cut vertex of B.

Claim 6. B is an outerplanar graph.

We prove that there is no crossing in B. Suppose, to the contrary, that there is a chord vivj that crosses another chord
vkvl, where 1 ≤ i < k < j < l. Note that the chord vivj satisfies (1) and (2) now. If it does not fulfill (3) at this stage, then
there must be at least one pair of mutually crossed chords contained in either C[vi, vk], or C[vk, vj], or C[vj, vl]. We choose
one pair vavb and vcvd among them, where a < c < b < d, such that there is no other crossed chord in C[va, vd] besides
vavb and vcvd, and then set i := a, j := b, k := c and l := d. In any case, we can find a pair of mutually crossed chords
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vivj and vkvl, where 1 ≤ i < k < j < l, such that the three conditions at the beginning of the proof are fulfilled. Since B is
a 2-connected pseudo-outerplanar diagram, we can set vi, vj, vk, vl as we did in the 2-connected case. Recall the proofs
of Claims 1–5, every time we find a copy of some configuration the vertices vi and vl cannot be the solid vertices (i.e. the
degrees of them in the configuration shall not necessarily to be confirmed). For a vertex v ∈ V (B) \ {v1}, its degree in B is
equal to its degree in G, since B is an end block and v1 is the unique cut vertex of the B. Among the vertices in V[vi, vl], only
vi may be the cut vertex, since 1 ≤ i < k < j < l. Therefore, the proofs of Claims 1–5 are also valid for this claim, and then
the same results would be obtained.

Claim 7. B has a subgraph isomorphic to one of the configurations G1,G2 and G4 in such a way that v1 is not a solid vertex.

Since B is a 2-connected outerplanar graph, B is Hamiltonian and V[v1, v|B|] is a path. The proof of Claim 2 implies that
if V[vi, vk], where k − i ≥ 3, is a path such that there is no crossed edge in C[vi, vk] and no edge between V(vi, vk) and
V(vk, vi), then G contains one of G1,G2 and G4 in such a way that vi and vk are not the solid vertices. In this claim, if |B| ≥ 4,
then we set i := 1, k := |B| and come back to the proof of Claim 2. If |B| ≤ 3, then it is trivial to see that G1 would appear
in G. This contradiction completes the proof of the theorem for the case when G has cut vertices. �

The following is a straightforward corollary of Theorem 4.2.

Corollary 4.3. Each pseudo-outerplanar graph contains a vertex of degree at most 3.

5. Edge chromatic number and linear arboricity

In this section, we consider the problems of covering a pseudo-outerplanar graph G with matchings or linear forests.
A graph G is χ ′-critical if χ ′(G) = ∆(G) + 1 and χ ′(H) ≤ ∆(G) for any proper subgraph H ⊂ G, and is la-critical if
la(G) > ⌈

∆(G)

2 ⌉ and la(H) ≤ ⌈
∆(G)

2 ⌉ for any proper subgraph H ⊂ G.

Lemma 5.1. If G is χ ′-critical and uv ∈ E(G), then d(u) + d(v) ≥ ∆(G) + 2.

Lemma 5.2. If G is la-critical and uv ∈ E(G), then d(u) + d(v) ≥ 2⌈∆(G)

2 ⌉ + 2.

The above two lemmas are very classic and useful; their proofs can be found in [3,14], respectively. Given a coloring ϕ
of G, cj(v) denotes the number of edges incident with v colored by j. Let C i

ϕ(v) = {j|cj(v) = i} for i = 0, 1, 2. If ϕ is a proper
edge k-coloring, then C0

ϕ(v) ∪ C1
ϕ(v) = {1, 2, . . . , k}; if ϕ is a tree k-coloring, then C0

ϕ(v) ∪ C1
ϕ(v) ∪ C2

ϕ(v) = {1, 2, . . . , k}.
For brevity, we use the notion k-coloring to replace the statements of proper edge k-coloring or tree k-coloring, and use the
notion PO-graph to replace the statement of pseudo-outerplanar graph. For a graph G and two distinct vertices u, v ∈ V (G),
denote by G + xy the graph obtained from G by adding an new edge xy if xy ∉ E(G), or G itself if xy ∈ E(G).

Theorem 5.3. Let G be a pseudo-outerplanar graph. If ∆(G) ≥ 4, then χ ′(G) = ∆(G).

Proof. Suppose, for a contradiction, that there exists a minimal (in terms of the size) pseudo-outerplanar diagram G with
∆(G) ≥ 4 that has no ∆(G)-colorings. One can easily see that G is 2-connected and χ ′-critical. By Theorem 4.2 and
Lemma 5.1, G contains at least one of the configurations G3,G4,G5,G6,G12,G13,G16 and G17. Set S = {1, 2, . . . , ∆(G)}.

If G ⊇ G3, then the pseudo-outerplanar graph G′
= G \ {u, v} admits a ∆(G)-coloring φ, by the minimality of G

(when ∆(G′) = ∆(G)) or Vizing’s Theorem (when ∆(G′) ≤ ∆(G) − 1). Construct a ∆(G)-coloring ϕ of G as follows. If
C1

φ(x) = C1
φ(y) := L (note that |L| = ∆(G) − 2 by Lemma 5.1), then let ϕ(ux) = ϕ(yv) ∈ S \ L and ϕ(uy) = ϕ(xv) ∈

S \ (L ∪ {ϕ(ux)}). If C1
φ(x) ≠ C1

φ(y), then (S \ C1
φ(x)) ∩ C1

φ(y) ≠ ∅, since d(x) = d(y) = ∆(G) by Lemma 5.1. Let
ϕ(ux) ∈ (S \C1

φ(x))∩C1
φ(y), ϕ(xv) ∈ S \ (C1

φ(x)∪{ϕ(ux)}), ϕ(vy) ∈ S \ (C1
φ(y)∪{ϕ(xv)}), and ϕ(uy) ∈ S \ (C1

φ(y)∪{ϕ(yv)}).
In each case, we color the remaining edges of G by the same colors used in φ. Thus, we have constructed a ∆(G)-coloring ϕ
of G from the ∆(G)-coloring φ of G′. In the discussions of the next seven cases, while constructing a coloring ϕ of G from the
coloring φ of G′, we only give the colorings for the edges in E(G) \ E(G′), since for every edge e ∈ E(G) ∩ E(G′), we always
let ϕ(e) = φ(e).

If G ⊇ G4, then we shall assume that d(v) = d(w) = ∆(G) = 4 because of Lemma 5.1. By the minimality of G, the
PO-graph G′

= G \ {x, y, u} admits a 4-coloring φ. Construct a 4-coloring ϕ of G as follows, where two cases are considered
without loss of generality (wlog. for short). If C1

φ(v) = C1
φ(w) = {1, 2}, then let ϕ(uy) = 1, ϕ(ux) = 2, ϕ(uw) = ϕ(vx) = 3,

andϕ(uv) = ϕ(wy) = 4. If C1
φ(v) = {1, 2}, 1 ∉ C1

φ(w) and 3 ∈ C1
φ(w), then letϕ(uw) = 1,ϕ(ux) = 2, ϕ(xv) = ϕ(uy) = 3,

ϕ(uv) = 4, and ϕ(wy) ∈ {2, 3, 4} \ C1
φ(w).

If G ⊇ G5, then we shall assume that d(v) = ∆(G) = 4 because of Lemma 5.1. By the minimality of G, the PO-graph
G′

= G \ {u} admits a 4-coloring φ. One can easily see that (C1
φ(v) ∩ C1

φ(w)) \ {φ(vw)} ≠ ∅, because otherwise vw would
be incident with four colors under φ. Assume that C1

φ(v) = {1, 2, 3} and φ(vw) = 3 wlog. If C1
φ(w) ≠ C1

φ(v), then assume
that C1

φ(w) = {1, 3, 4} wlog. Whereafter, we extend φ to a 4-coloring of ϕ of G by taking ϕ(uv) = 4 and ϕ(uw) = 2. If
C1

φ(w) = C1
φ(v), then we consider two subcases. If φ(xz) = 4, then construct a 4-coloring of G by recoloringwx andwv with
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3 and 4, and coloring uv and uw with 3 and 2, respectively. If φ(xz) ≠ 4, then construct a 4-coloring of G by recoloring wx
with 4 and coloring uv and uw with 4 and 2, respectively.

If G ⊇ G6, then we shall assume that min{d(x0), d(y0)} ≥ 3 and ∆(G) = 4 by Lemma 5.1. Assume first that
d(x0) = d(y0) = 4. If x0y0 ∉ E(G), then let N(x0) = {u, v, x1, x2} and N(y0) = {u, v, y1, y2}. Let G′

= G \ {u, v} + x0y0.
By Theorem 4.2, the configuration G6 is a part of the pseudo-outerplanar diagram of G, so G′ is a PO-graph that admits
a 4-coloring φ by the minimality of G. Set M = {φ(x0x1), φ(x0x2), φ(y0y1), φ(y0y2)} and let m = |M|. Since the colors
used in φ is at most four and x0y0 ∈ E(G′),m ≤ 3 (otherwise the edge x0y0 cannot be colored under φ, because it is
already incident with four colored edges). If m = 3, then assume that φ(x0x1) = φ(y0y1) = 1, φ(x0x2) = 2 and
φ(y0y2) = 3 wlog. Now we extend φ to a 4-coloring ϕ of G by taking ϕ(uv) = 1, ϕ(vy0) = 2, ϕ(ux0) = 3, and
ϕ(vx0) = ϕ(uy0) = 4. If m ≤ 2, then assume that φ(x0x1) = φ(y0y1) = 1 and φ(x0x2) = φ(y0y2) = 2 wlog.
Now we extend φ to a 4-coloring ϕ of G by taking ϕ(uv) = 1, ϕ(vy0) = ϕ(ux0) = 3, and ϕ(vx0) = ϕ(uy0) = 4.
On the other hand, if x0y0 ∈ E(G), then let N(x0) = {u, v, y0, x1} and N(y) = {u, v, x0, y1}. One can see that x1 ≠ y1,
because otherwise we have G ≃ G[{u, v, x0, y0, x1}], by the 2-connectivity of G, and thus G can be 4-colorable. Consider
the graph G′

= G \ {u, v} − x0y0, which admits a 4-coloring φ by the minimality of G. If φ(x0x1) = φ(y0y1) = 1, then let
ϕ(uv) = 1, ϕ(x0y0) = 2, ϕ(ux0) = ϕ(vy0) = 3, and ϕ(vx0) = ϕ(uy0) = 4. If φ(x0x1) = 1 and φ(y0y1) = 2, then let
ϕ(vy0) = 1, ϕ(ux0) = 2, ϕ(uv) = ϕ(x0y0) = 3, and ϕ(vx0) = ϕ(uy0) = 4. Second, assume that one of x0 and y0 has
degree three. Assume that d(x0) = 3 wlog. Let N(x0) = {u, v, w}. Consider the PO-graph G′

= G − ux0. By the minimality
of G, G′ has a 4-coloring φ. If A := S \ {φ(vx0), φ(wx0), φ(uv), φ(uy0)} ≠ ∅ (recall that S = {1, 2, 3, 4}), then let ϕ(ux0) ∈ A.
Otherwise, assume that φ(vx0) = 1, φ(wx0) = 2, φ(uv) = 3, and φ(uy0) = 4 wlog. Since d(v) = 3, φ(uy0) = 4, and
vy0 ∈ E(G′), v is not incident with the color 4 under φ. Thus, we can extend φ to a 4-coloring of G by recoloring vx0 with 4
and coloring ux0 with 1.

If G ⊇ G12, then we shall assume that ∆(G) = 4 because of Lemma 5.1. Assume first that d(x) = d(y) = 4. If xy ∉ E(G),
then let N(x) = {v, w, x1, x2} and N(y) = {v, w, y1, y2}. Consider the graph G′

= G \ {v, w} + xy + ux + uy. Since
the configuration G12 is a part of the pseudo-outerplanar diagram of G by Theorem 4.2, we can properly add three edges
xy, ux and uy to G \ {v, w} so that G′ is still a PO-graph. By the minimality of G, G′ admits a 4-coloring φ. One can see that
{φ(xx1), φ(xx2)} ≠ {φ(yy1), φ(yy2)} (otherwise we cannot properly color the triangle uxy under φ) and {φ(xx1), φ(xx2)} ∩

{φ(yy1), φ(yy2)} ≠ ∅ (otherwise we cannot color the edge xy under φ). Assume that φ(xx1) = 1, φ(xx2) = φ(yy1) = 2, and
φ(yy2) = 3 wlog. We now construct a 4-coloring ϕ of G by taking ϕ(uv) = ϕ(wy) = 1, ϕ(vw) = 2, ϕ(uw) = ϕ(vx) = 3,
and ϕ(wx) = ϕ(vy) = 4. If xy ∈ E(G), then let N(x) = {v, w, y, x1} and N(y) = {v, w, x, y1}. We shall also assume that
x1 ≠ y1, because otherwise G ≃ G[{u, v, w, x, y, x1}], by the 2-connectivity of G, and thus G admits a 4-coloring. Now we
remove u, v and w from the diagram of G. Denote by G′′ the resulting diagram. One can see that G′′ is a PO-graph with x
and y being of degree 2 in G′′. Since the diagram of G minimizes the number of crossings, xx1 does not cross yy1 in G (and
thus in G′′). Denote by G′ the graph obtained from G′′ by contracting the edge xy. From the above arguments, one can see
that G′ is a PO-graph with E(G) \ E(G′) = {uv, uw, vw, vx, wx, vy, wy, xy}. Furthermore, by the minimality of G,G′ admits
a 4-coloring φ with φ(xx1) ≠ φ(yy1). Suppose that φ(xx1) = 1 and φ(yy1) = 2. We construct a 4-coloring ϕ of G by taking
ϕ(uw) = ϕ(vy) = 1, ϕ(uv) = ϕ(wx) = 2, ϕ(vw) = ϕ(xy) = 3, and ϕ(vx) = ϕ(wy) = 4. Second, assume that one of x
and y, say xwlog., has degree atmost three. If d(x) ≤ 2, then it is easy to see thatG ≃ G[{u, v, w, x, y}], by the 2-connectivity
of G, and thus G admits a 4-coloring. If d(x) = 3, then let N(x) = {v, w, x1}. Consider the PO-graph G′

= G − uv, which
admits a 4-coloring φ by the minimality of G. If A := S \ {φ(uw), φ(vw), φ(vy), φ(vx)} ≠ ∅ (recall that S = {1, 2, 3, 4}),
then let ϕ(uv) ∈ A. Otherwise, assume that φ(uw) = 1, φ(vw) = 2, φ(vy) = 3, and φ(vx) = 4 wlog. It follows that
φ(wx) = 3 and φ(wy) = 4. If φ(xx1) = 1, then we construct a 4-coloring of G by recoloring vx and uw with 2, recoloring
vw with 1 and coloring uv with 4. If φ(xx1) = 2, then we construct a 4-coloring of G by recoloring vx with 1 and coloring
uv with 4.

If G ⊇ G13, then we shall assume that d(x) = ∆(G) = 4 by Lemma 5.1. Denote the fourth neighbor of x by x1 and
assume that d(y) = 4 and N(y) = {v, w, y1, y2} wlog. By the minimality of G, the PO-graph G′

= G \ {u, v, w} admits a
4-coloring φ. Assume that φ(xx1) = 1 wlog. Construct a 4-coloring ϕ of G as follows. If 1 ∈ C1

φ(y) (suppose φ(yy1) = 1
and φ(yy2) = 2 wlog.), then let ϕ(vw) = 1, ϕ(uv) = ϕ(wx) = 2, ϕ(vx) = ϕ(wy) = 3, and ϕ(ux) = ϕ(vy) = 4. If
1 ∉ C1

φ(y) (suppose φ(yy1) = 2 and φ(yy2) = 3 wlog.), then let ϕ(vy) = 1, ϕ(ux) = ϕ(vw) = 2, ϕ(uv) = ϕ(wx) = 3,
and ϕ(vx) = ϕ(wy) = 4.

If G ⊇ G16, thenwe shall assume that d(x) = d(y) = ∆(G) = 4 by Lemma 5.1. Denote the fourth neighbor of x and y by x1
and y1, respectively. By the minimality of G, the PO-graph G′

= G \ {u, v, w, z} admits a 4-coloring φ. Construct a 4-coloring
ϕ of G as follows. If φ(xx1) = φ(yy1) = 1, then let ϕ(vw) = 1, ϕ(ux) = ϕ(vz) = ϕ(wy) = 2, ϕ(wx) = ϕ(vy) = 3, and
ϕ(uw) = ϕ(vx) = ϕ(yz) = 4. If 1 = φ(xx1) ≠ φ(yy1) = 2, then let ϕ(vz) = ϕ(wy) = 1, ϕ(ux) = ϕ(wy) = ϕ(vz) = 2,
ϕ(wx) = ϕ(vy) = 3, and ϕ(uw) = ϕ(vx) = 4.

If G ⊇ G17, then we shall assume that d(x) = d(y) = ∆(G) = 5 by Lemma 5.1. By the minimality of G, the PO-graph
G′

= G \ {u, v, w, z, a} admits a 5-coloring φ. Construct a 5-coloring ϕ of G as follows. If C1
φ(x) = C1

φ(y) = {1, 2}, then let
ϕ(uw) = ϕ(av) = 1, ϕ(wz) = ϕ(uv) = 2, ϕ(xz) = ϕ(vw) = ϕ(ay) = 3, ϕ(wx) = ϕ(vy) = 4, and ϕ(vx) = ϕ(wy) = 5. If
|C1

φ(x)∩ C1
φ(y)| = 1 (suppose C1

φ(x) = {1, 2} and C1
φ(y) = {1, 3} wlog.), then let ϕ(vw) = 1, ϕ(wy) = ϕ(av) = 2, ϕ(wz) =

ϕ(vx) = 3, ϕ(wx) = ϕ(uv) = ϕ(ay) = 4, and ϕ(xz) = ϕ(uw) = ϕ(vy) = 5. If |C1
φ(x)∩C1

φ(y)| = 0 (suppose C1
φ(x) = {1, 2}
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Fig. 4. Special pseudo-outerplanar graphs.

and C1
φ(y) = {3, 4} wlog.), then let ϕ(vw) = ϕ(ay) = 1, ϕ(wz) = ϕ(vy) = 2, ϕ(vx) = ϕ(uw) = 3, ϕ(wx) = ϕ(av) = 4,

and ϕ(xz) = ϕ(uv) = ϕ(wy) = 5. �

Theorem 5.4. For each integer n ≥ 1, there exists a 2-connected pseudo-outerplanar G with order 2n+5 and∆(G) = 3 so that
χ ′(G) = ∆(G) + 1.

Proof. Let x0, . . . , xnwyn, . . . , y0vux0 be a cycle denoted by C . Add edges xiyi for all 1 ≤ i ≤ n and add another two edges x0v
and y0u to C . Denote the resulting graph by Pn (see Fig. 4). One can easily check that Pn is a 2-connected pseudo-outerplanar
graph with |Pn| = 2n+5 and ∆(Pn) = 3. If Pn has a 3-coloring φ, then we shall have φ(x0v) = φ(y0u) and φ(x0u) = φ(y0v)
(otherwise we cannot color uv properly). Thereby we would deduce that φ(xixi+1) = φ(yiyi+1) for all 0 ≤ i ≤ n − 1 and
φ(xnw) = φ(ynw). This contradiction implies that χ ′(Pn) = ∆(Pn) + 1 = 4. �

Theorem 5.5. Let G be a pseudo-outerplanar graph. If ∆(G) = 3 or ∆(G) ≥ 5, then la(G) = ⌈
∆(G)

2 ⌉.

Proof. Since Conjecture 1.1 has already been proved for planar graphs and every PO-graph is planar (cf. Section 1), this claim
holds trivially when ∆(G) is odd. Hence in the following we may assume that ∆(G) is an even not less than 6. For brevity,
we write k =

∆(G)

2 . Suppose, for a contradiction, that there exists a minimal (in terms of the size) pseudo-outerplanar graph
G that has no k-colorings. One can easily observe that G is 2-connected and la-critical. By Theorem 4.2 and Lemma 5.2, G
contains the configuration G3.

If xy ∉ E(G), then by (b) of Theorem 4.2, G′
= G \ {v} + xy is still a PO-graph. By the minimality of G,G′ admits a

k-coloring φ. We now construct a k-coloring ϕ of G by taking ϕ(vx) = ϕ(vy) = φ(xy) and ϕ(e) = φ(e) for every
e ∈ E(G) ∩ E(G′).

If xy ∈ E(G), then consider the PO-graph G′
= G \ {v}, which has a k-coloring φ by the minimality of G. It is easy to see

that |C1
φ(x)| = |C1

φ(y)| = 1, since d(x) = d(y) = ∆(G) = 2k by Lemma 5.2. We now construct a coloring ϕ of G by taking
ϕ(vx) ∈ C1

φ(x), ϕ(vy) ∈ C1
φ(y), and ϕ(e) = φ(e) for every e ∈ E(G) ∩ E(G′). If C1

φ(x) ≠ C1
φ(y), then it is easy to see that ϕ is a

k-coloring. If C1
φ(x) = C1

φ(y), thenϕ(vx) = ϕ(vy) andϕ is also a k-coloring unlessϕ(xy) = ϕ(vx) orϕ(ux) = ϕ(uy) = ϕ(vx).
If ϕ(xy) = ϕ(vx), then ϕ(vx) ∉ {ϕ(ux), ϕ(uy)}, and thus we can exchange the colors on ux and vx. One can easy to check
that the resulting coloring of G is a k-coloring. If ϕ(ux) = ϕ(uy) = ϕ(vx), then we recolor xy with ϕ(vx) and recolor both
vx and uywith ϕ(xy). The resulting coloring of G is also a k-coloring. �

Theorem 5.6. For each integer m ≥ 1, there exists a 2-connected pseudo-outerplanar G with order 10m + 5 and ∆(G) = 4 so
that la(G) = ⌈

∆(G)

2 ⌉ + 1.

Proof. Let z1, . . . , z2nz1 be a cycle denoted by T0 and let uiviwiui be a triangle denoted by Ti for each 1 ≤ i ≤ n. Assume that
any two of T0, . . . , Tn are vertex-disjoint. For each 1 ≤ i ≤ n, add fours edges viz2i−1, viz2i, wiz2i−1 and wiz2i. Denote the
resulting graphs by Qn (see Fig. 4). One can easily check that Qn is a 2-connected pseudo-outerplanar graph with∆(Qn) = 4.
Consider the graph Q2m+1 for m ≥ 1. It is trivial that |Q2m+1| = 10m + 5 and la(Q2m+1) ≤ 3 by Lemma 5.2. If Q2m+1 has
a 2-coloring φ, then we shall have φ(z2i−2z2i−1) ≠ φ(z2iz2i+1) for all 1 ≤ i ≤ 2m + 1, where z0 = z4m+2 and z4m+3 = z1
(otherwise we cannot properly color the set of edges {uivi, viwi, wiui, viz2i−1, viz2i, wiz2i−1, wiz2i} for some i). However, the
size of the set {z2z3, z4z5, . . . , z4m+2z1} is 2m + 1, which is odd, but there are only two colors that can be used in φ. This
contradiction implies that la(Q2m+1) = ⌈

∆(Q2m+1)
2 ⌉ + 1 = 3. �
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