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Abstract A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most

one other edge. In this paper, it is shown that each 1-planar graph with minimum degree 7 contains a

copy of K2∨(K1∪K2) with all vertices of degree at most 12. In addition, we also prove the existence of

a graph K1 ∨ (K1 ∪ K2) with relatively small degree vertices in 1-planar graphs with minimum degree

at least 6.
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1 Introduction

Throughout this paper, all graphs are finite, simple and undirected. We use the standard graph

terminology by [1]. In particular, by k+-vertex (face), we mean a vertex (face) in a graph G

of degree at least k. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union of them,

defined by G1 ∪ G2, is a graph Gu = (Vu, Eu) with its vertex set Vu = V1 ∪ V2 and its edge set

Eu = E1 ∪ E2; and the join of them, defined by G1 ∨ G2, is a graph Gj = (Vj , Ej) with its

vertex set Vj = V1 ∪ V2 and its edge set Ej = E1 ∪ E2 ∪ {xy|x ∈ V1, y ∈ V2}. For an integer

n ≥ 1, denote nG to be the union of n copies of a graph G. We use Pn and Cn to stand for the

path and cycle of order n. By Sn = nK1 ∨K1 and Wn = K1 ∨Cn, we denote an n-star and an

n-wheel respectively. We say a 3-star (or K1 ∨ (K1 ∪ K2)) is of type (≤ d1;≤ d2,≤ d2,≤ d2)

(or of type (≤ d1;≤ d2;≤ d2,≤ d2)) if its center vertex is of degree at most d1 with the others

being of degree at most d2. Note that the graph K1 ∨ (K1 ∪K2) can be obtained by adding an

extra edge between two vertices of the leaves of a 3-star.

While studying the vertex-face coloring (a simultaneous coloring on both the vertex set and

the face set such that each pair of adjacent/incident elements receive different colorings) of a

planar graph, Ringel [2] introduced the notion of 1-planar graph (namely, a graph that can be

drawn in the plane so that each edge is crossed by at most one other edge). In the mentioned

paper, he proved that each 1-planar graph G is 7-colorable and conjectured that 6 colors are
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enough to properly color the vertices of G. Now, this conjecture was confirmed by Borodin [3, 4]

using the Discharging Method which is frequently used in studying problems on planar graphs.

Note that the bound 6 here is sharp because K6 is a 1-planar graph, but for 1-planar graph with

girth at least 5, the bound of the chromatic number can be improved to 5 [5]. Borodin et al. [6]

also proved that each 1-planar graph is acyclically 20-colorable. In addition, the list analogue

of vertex coloring of 1-planar graphs was investigated by Albertson and Mohar [7]. Wang and

Lih [8] proved that each 1-planar graph is list 7-colorable. Recently, Zhang et al. showed that

each 1-planar graph G with maximum degree Δ is Δ-edge-colorable provided that Δ ≥ 10 [9],

or Δ ≥ 9 and G contains no chordal 5-cycles [10], or Δ ≥ 8 and G contains no chordal 4-

cycles [11], or Δ ≥ 7 and G contains no 3-cycles [12]. The linear arboricity and the (p, 1)-total

labelling of 1-planar graphs were studied in [13] and [14], respectively. Besides the coloring

aspects, the research of the global and local structures of 1-planar graphs can also be found in

many papers, such as [5, 15–23].

In the next, we use the notation P1
δ to denote the family of all 1-planar graphs with degree

at least δ. By the fact that each 1-planar graph is 7-degenerate (the value 7 being sharp) [5],

the parameter δ here should be at most 7. Note that P1
6 and P1

7 have no intersection with the

family of planar graphs since each planar graph has a vertex of degree at most 5.

Let G be a family of graphs and H be a connected graph such that at least one member

of G contains a subgraph isomorphic to H. Denote H(H,G) and W(H,G) respectively to be

the smallest integers with the property that each graph G ∈ G, which contains a subgraph

isomorphic to H, contains also a subgraph K � H such that maxx∈V (K){dG(x)} ≤ h(H,G)

and
∑

x∈V (K){dG(x)} ≤ W(H,G). These two parameters h(H,G) and W(H,G) are called the

height and the weight of H in the family G. If they are finite, then we say that H is light in G,

otherwise we say that H is heavy in G. By L(G), we denote the set of light graphs in the family

G. It seems to be an interesting open problem to determine the set L(P1
δ ), especially for large

δ, since it is proved in [5, 15] that

L(P1
4 ) = {P1, P2, P3} (1.1)

and

{P1, P2, P3, S3} ⊆ L(P1
5 ) ⊆ {P1, P2, P3, P4, S3} (1.2)

for δ = 4, 5. In [5, 18], it is shown that each 1-planar graph with minimum degree 6 contains a

copy of light C3, C4 and S4 while each 1-planar graph with minimum degree 7 contains a copy

of light K4, C5, W5, S6 and 3K1 ∨ K2 (note that if G ∈ L(P1
δ ), then obviously G′ ∈ L(P1

δ ) for

any subgraph G′ ⊆ G. Take S3 for example, since S3 ⊆ S4 ⊆ S6, we also have S3 ∈ L(P1
δ )

for δ = 6, 7 as a corollary). Besides these graphs (and their subgraphs) we list here, until now

there is no other known light subgraphs in the families P1
6 or P1

7 . Regarding the known results,

in particular it is proved in [18] and [5] that

Result A Each 1-planar graph with minimum degree 7 contains a copy of 3K1 ∨ K2 with all

vertices of degree at most 13.
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Result B Each 1-planar graph with minimum degree 7 contains a copy of K4 with all vertices

of degree at most 13.

Result C Each 1-planar graph with minimum degree at least 6 contains a copy of S3 of the

type (6;≤ 15,≤ 15,≤ 15) or (7;≤ 9,≤ 9,≤ 9).

The aim of this paper is not only to improve the above three results but also to generalize

them to larger classes of graphs (hence some new light subgraphs in the families P1
6 or P1

7 are

discovered). Note that 3K1∨K2 ⊂ K2∨(K1∪K2), K4 ⊂ K2∨(K1∪K2) and S3 ⊂ K1∨(K1∪K2).

We prove the following two stronger theorems in the next two sections.

Theorem 1.1 Each 1-planar graph with minimum degree 7 contains a copy of K2∨(K1∪K2)

with all vertices of degree at most 12.

Theorem 1.2 Each 1-planar graph with minimum degree at least 6 contains a copy of K1 ∨
(K1 ∪ K2) of the type (6;≤ 14;≤ 14,≤ 14) or (7;≤ 9;≤ 9,≤ 9).

By Theorem 1.2, we directly have the following corollary.

Corollary 1.3 Each 1-planar graph with minimum degree 7 contains a copy of K1∨(K1∪K2)

with all vertices of degree at most 9.

2 Proof of Theorem 1.1

In the following two sections, we always assume that G is a 1-planar graph (with minimum

degree 6 or 7) that has been drawn in a plane so that every edge is crossed by at most one

another edge and the number of crossings is as small as possible. The associated plane graph

G× of G is the plane graph that is obtained from G by turning all crossings of G into new

4-valent vertices. A vertex in G× is called false if it is of degree 4 and true otherwise. One can

observe that any two false vertices in G× are not adjacent in the drawing of G. By false face

(or edge), we mean a face (or an edge) in G× that is incident with at least one false vertex, and

the face (or edge) in G× incident with no false vertex is called true.

The proof of Theorem 1.1 is carried out by contradiction. Suppose that G is a minimal

counterexample to the theorem. We can assume that G is connected. Consider the associated

plane graph G× of G. Then we have
∑

v∈V (G×)

(d(v) − 4) +
∑

f∈F (G×)

(d(f) − 4) = −8 (2.1)

by combining the Euler polyhedral formula |V (G×)| − |E(G×)| + |F (G×)| = 2 on G× and the

well-known relation
∑

v∈V (G×) d(v) =
∑

f∈F (G×) d(f) = 2|E(G×)|. Define the initial charge w

on V (G×) ∪ F (G×) by

w(x) = d(x) − 4, if x ∈ V (G×) ∪ F (G×). (2.2)

Thus we have the total charge
∑

x∈V (G×)∪F (G×) w(x) = −8 by Equations (2.1) and (2.2).

In order to prove Theorem 1.1, we shall design the following discharging rules so that after

discharging the new charge w′ of each element in V (G×)∪F (G×) is nonnegative. But our rules

only move charge around, and do not affect the total charges, which leads to a contradiction in
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final and completes our proof. In this section, a big vertex denotes a vertex of degree at least 13

and an intermediate vertex denotes a vertex of degree between 7 and 12. By wi(x), we denote

the charge of an element x ∈ V (G×) ∪ F (G×) after application of the following first i rules.

R1 Each intermediate vertex transfers 3
7 to each incident 3-face.

R2 Each big vertex transfers 4
7 to each incident false 3-face.

R3 Let α = [xyz] be a true 3-face of G×. If all of x, y, z are big, then each of them

transfers 1
3 to α; if x is intermediate and y, z are big, then each of y, z transfers 2

7 to α; if x, y

are intermediate and z is big, then z transfers 1
7 to α.

R4 Let α = [xyz] be a 3-face of G× having a common edge xy with a 4+-face β. If v is a

true vertex that is adjacent to x or y in G×, then v transfers 1
7 to α.

R5 Let α = [xyz] and β = [yzv] be two adjacent 3-faces in G× and v be a big vertex. If

both y and z are intermediate, or the edge yz is a false edge, then v transfers 1
7 to α.

R6 Each 3-face with positive charge after application of R1–R5 redistributes this charge

uniformly among its adjacent 3-faces which have negative charge after application of the men-

tioned rules.

R7 Let α be a 4+-face of G× incident with a false vertex x such that vx, ux ∈ E(G×[α]).

Assuming uu′ crosses vv′ in G at the point x, if v is intermediate and u′v′ ∈ E(G), then v

transfers 1
14 to the 3-face β = [xu′v′] in G×.

R8 Each 5+-face transfers its charge equally among all adjacent 3-faces.

In the following, we will check the final charge w′ of vertices and faces after the charge

redistribution and prove that w′(x) = w8(x) ≥ 0 holds for each x ∈ V (G×) ∪ F (G×). Note

that all false vertices and all 4-faces are not involved in the discharging rules, so they must all

have nonnegative final charges. By R8, one can also easily check that w8(f) = 0 holds for all

5+-faces. Therefore, we shall only check the final charge of all 3-faces, intermediate vertices

and big vertices below.

Case 1 Suppose that f = [xyz] is a 3-face. Then it is clear that w′(f) ≥ 0 holds for each

true 3-faces in G× by R1 and R3. In the following, we analyze in a deeper detail the final

charge of the false 3-faces. Without loss of generality, we assume that x is a false vertex at

which yy′ is crossed by zz′ in G. Denote f1, f2, f3 and f4, which are different to f , respectively

to be the faces incident with xy, xz, yz and the path y′xz′ in G×. If at least one of y, z is

big, then one can easily check w′(v) ≥ 0 by R1 and R2. If both y and z are intermediate, then

w3(f) = −1 + 2 × 3
7 = −1

7 . In order to show w8(f) ≥ 0, we will prove that an additional ≥ 1
7

charge will be transferred to f by R4–R8, which yields that w8(f) ≥ w3(f) + 1
7 = 0.

Case 1.1 Let at least one of f1, f2 and f3 be a 4+-face. If f1 is a 4+-face (the case when

d(f2) ≥ 4 can be dealt with similarly), then by R4, z′ shall transfer 1
7 to f since z′ is true. If

f3 is a 5+-face, then by R8, f3 shall transfer at least 5−4
5 = 1

5 > 1
7 to f . If f3 is a 4-face, then

there exists a true vertex on f3 that is adjacent to y or z, from which f shall also receive 1
7 by

R4 (here, note that both y and z are true and no 4-vertices is adjacent in G×).
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Case 1.2 Let all of f1, f2 and f3 be 3-faces. Then f1 = [xyz′] and f2 = [xy′z]. If y′ or z′

is big, then by R5, f shall receive 1
7 from y′ or z′ since xy and xz are both false edges. So in

the following, we assume that y′ and z′ are both intermediate vertices. Denote f3 = [yzv]. By

distinguishing whether v is true or not, we will divide our proof into two subcases.

Case 1.2.1 Let v be a true vertex. If v is big, then by R5, f shall receive 1
7 from v since

y and z are both intermediate. If v is intermediate, then d(f4) ≥ 4 (otherwise y′z′ ∈ E(G×)

and we find a light copy of K2 ∨ (K1 ∪K2) because all of v, y, z, y′ and z′ are intermediate). It

follows that both y′ and z′ shall transfer 1
14 to f by R7. Therefore, f will receive an additional

2 × 1
14 = 1

7 by R4–R8.

Case 1.2.2 Let v be a false vertex. We assume that yy′′ crosses zz′′ in G at the point v

(note that y′′ and z′′ are both true vertices, who are different to y, z, y′ and z′). Denote h1 and

h2 respectively to be the faces incident with the path y′′vz and the path yvz′′ in G×. Suppose

that h1 and h2 are both 4+-faces, then by R4, f3 will totally receive 2 × 1
7 = 2

7 from y′′ and

z′′. It follows that w5(f3) ≥ −1 + 2 × 3
7 + 2

7 = 1
7 . Note that w5(f) = −1 + 2 × 3

7 = − 1
7 < 0

and min{d(h1), d(h2)} ≥ 4. By R6, f3 shall transfer to f a charge w5(f3) = 1
7 . It follows that

w8(f) ≥ w5(f)+ 1
7 = 0. Suppose that only one of h1 and h2, say h1, is a 4+-face. Then d(h2) = 3

and yz′′ ∈ E(G×). If z′′ is big, then by R5, z′′ shall transfer 1
7 to f3 since the edge yv is false.

In addition, y′′ shall also transfer 1
7 to f3 by R4. Therefore, w5(f3) ≥ −1 + 2× 3

7 + 1
7 + 1

7 = 1
7 .

Note that w5(f) = − 1
7 < 0, w5(h2) ≥ −1 + 3

7 + 4
7 = 0 and d(h1) ≥ 4 by R1–R5. Then by

R6, f3 will totally transfer its new charge after application of R1–R5 to f , which also yields

that w8(f) ≥ w5(f) + 1
7 = 0. If z′′ is intermediate, then we must have d(f4) ≥ 4 (for otherwise

the five intermediate vertices y, z, y′, z′ and z′′ would form a light copy of K2 ∨ (K1 ∪ K2) in

G). So the following argument is just the same as the one in Case 1.2.1. Finally, suppose that

h1 and h2 are both 3-faces. It follows that yz′′, y′′z ∈ E(G×). If at least one of y′′ and z′′ is

intermediate, then the following argument is just the same as before. If both y′′ and z′′ are

big vertices, then by R5, each of them shall transfer 1
7 to f3 since both yv and zv are false

edges. Therefore, w5(f3) ≥ −1 + 2 × 3
7 + 1

7 + 1
7 = 1

7 . Again, note that w5(f) = − 1
7 < 0 and

min{w5(h1), w5(h2)} ≥ −1 + 3
7 + 4

7 = 0 by R1–R5. Hence, by R6, f3 shall transfer a charge 1
7

to just one adjacent 3-face f . Thus, it follows that w8(f) ≥ w5(f) + 1
7 = 0.

Case 2 Suppose that v is an intermediate vertex. If v is incident with a 3-face, then v shall

only send out 3
7 by applying R1 at most once. If v is incident with a 4+-face, then v shall send

out at most 2× 1
7 + 2× 1

14 = 3
7 by respectively applying each of R4 and R7 at most twice. We

conclude that the value of the charge transferred from v via each incident face is at most 3
7 ;

therefore, w8(v) ≥ d(v) − 4 − 3
7d(v) = 4

7d(v) − 4 ≥ 0 for d(v) ≥ 7.

Case 3 Suppose that v is a big vertex. If v is incident with a true 3-face f = [uvw] with

both u and w being intermediate, then v shall send out at most 1
7 + 1

7 = 2
7 by applying each

of R3 and R5 at most once. If v is incident with a true 3-face f = [uvw] so that at least

one of u and w is big, then v shall only send out at most max{1
3 , 2

7} = 1
3 by applying R3 at

most once (note that in this case R5 would not be applied since the edge uw is not in the
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form of the mentioned rule). If v is incident with a false 3-face, then v shall send out at most
4
7 + 1

7 = 5
7 by respectively applying R2 and R5 at most once. If v is incident with a 4+-face,

then v shall only send out at most 2 × 1
7 = 2

7 by applying R4 at most twice (note that in

this case R7 would also not be applied). By all these arguments, we obtain the estimation

w8(v) ≥ d(v) − 4 − max{ 2
7 , 1

3 , 5
7} · d(v) = 2

7d(v) − 4 ≥ 0 for d(v) ≥ 14. Finally, if d(v) = 13,

then v can be adjacent to at most twelve false 3-faces because any two false vertices can not be

adjacent. Therefore, w8(v) ≥ 13 − 4 − 12 × 5
7 − max{ 2

7 , 1
3} = 2

21 > 0.

3 Proof of Theorem 1.2

For convenience, we use some specialized notations during our proof in this section. Let v be

a false vertex in G× (the associated plane graph of G) and v1, v2, v3, v4 be its neighbors in

clockwise order. Define fi to be the face incident with vvi and vvi+1, where the subtraction

and addition on subscripts are taken modulo 4. By this definition, one can easily observe that

if d(fi) = 3, then vivi+1 ∈ E(G). In this case, let f ′
i be the other face incident with the edge

vivi+1. If d(f ′
i) = 3, the its third vertex, which is different with vi and vi+1, will be denoted by

v′i. Then v′i is a false vertex if and only if f ′
i is false, in which case we denote the neighbor of vi

(or vi+1) in G, such that the edge connecting them in G contains the crossing point v′i, to be

v′′i (or v′′i+1, respectively). Namely, viv
′′
i and vi+1v

′′
i+1 are two edges in G crossed by each other

at the point v′i. Denote the face that is incident with the path viv
′
iv

′′
i+1 (or vi+1v

′
iv

′′
i ) in G× by

fL
i (or fR

i , respectively).

For a face f in G×, denote c(f) to be the number of false vertices that f is incident with.

Let δ(G) ≥ 6 and v be a vertex in G×. We call v big if d(v) ≥ 15, intermediate if 6 ≤ d(v) ≤ 14,

sub-big if 10 ≤ d(v) ≤ 14, and sub-intermediate if 6 ≤ d(v) ≤ 9. Thus, each true vertex

in G× is either big or intermediate; and each intermediate vertex in G× is either sub-big or

sub-intermediate.

The proof of Theorem 1.2 is also carried out by contradiction. Suppose that G is a minimal

counterexample to the theorem. We can assume that G is connected. Moreover G contains no

copy of K1 ∨ (K1 ∪ K2) either with its center vertex being of degree 6 and the others being

intermediate, or its center vertex being of degree 7 and the others being sub-intermediate. The

main proof follows the similar strategy (by using Discharging Method on the associated plane

graph G× of G) described in Section 2. The only difference is the form of Euler polyhedral

formula we used here which is
∑

v∈V (G×)

(d(v) − 6) +
∑

f∈F (G×)

(2d(f) − 6) = −12 (3.1)

and the initial charge assigned to x ∈ V (G×) ∪ F (G×) being

w(x) =

⎧
⎨

⎩

d(x) − 6, if x ∈ V (G×);

2d(x) − 6, if x ∈ F (G×).
(3.2)

Thus we have the total charge
∑

x∈V (G×)∪F (G×) w(x) = −12 by Equations (3.1) and (3.2).

In the next, we will check that w′(x) ≥ 0 (the new charge after discharging) holds for all



Light Subgraphs in 1-Planar Graphs 1161

x ∈ V (G×)∪F (G×) according to the following discharging rules, which leads to a contradiction.

R1 Each 4+-face transfers 3
4 to each incident false vertex.

R2 Let α be a 4+-face having a common edge xy with a false 3-face β = [xyz]. If z is a

false vertex, then α transfers 1
4 to z through xy.

R3 Let α be a 4+-face having a common edge xy with a false 3-face β = [xyz]. If x is

a false vertex and yz is incident with another false 3-face γ = [yzu], then α transfer 1
8 to u

through xy and yz.

R4 Let α = [xyz] be a true 3-face having a common edge yz with a false 3-face β = [uyz].

Then x transfers to u through yz a charge
⎧
⎪⎨

⎪⎩

1
4
, if x is big;

1
7
, if x is sub-big.

R5 Let α = [xyz] and β = [uyz] be two adjacent false 3-faces and z be a false vertex.

Suppose that yu is incident with another false 3-face γ = [yuw] such that yy′ crosses uu′ in G

at the point w. Then x transfers to w through yz and yu a charge
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8
, if x is big;

1
28

, if x is sub-big, t(w) = 3, d(y) = 7, d(u) ≥ 8, and y′ is sub-intermediate;

1
28

, if x is sub-big, t(w) = 3, d(u) = 7, d(u) ≥ 8, and u′ is sub-intermediate;

1
28

, if x is sub-big, t(w) = 3 and d(u) = d(v) = 7;

1
14

, if x is sub-big, t(w) = 4, d(y) = d(u) = 7 and min{d(y′), d(u′)} = 7,

where the parameter t(w) above denotes the number of 3-faces incident with w in G×.

R6 Let α = [xyz] and β = [uyz] be two adjacent false 3-faces and z be a false vertex.

Then y transfers z a charge ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y is big;

5
7
, if y is sub-big;

1
2
, if 8 ≤ d(y) ≤ 9;

2
7
, if d(y) = 7.

R7 Let α = [xyz] be a false 3-face having a common edge yz with a 4+-face β and z be a

false vertex. Then y transfers z a charge
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
8
, if y is big;

11
28

, if y is sub-big;

3
8
, if 8 ≤ d(y) ≤ 9;

3
14

, if d(y) = 7.
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Since all 3-faces and 6-vertices are not involved in the discharging rules, they have final

nonnegative charges. In the following, we will check in detail the final charge w′ of the 4+-

faces, false vertices and 7+-vertices after the charge redistribution and prove that w′(x) ≥ 0

holds for each of them.

Case 1 Suppose that f is a 4+-face. Since any two false vertices are not adjacent in G×, f is

incident with at most 
d(f)
2 � false vertices. Namely, c(f) ≤ 
d(f)

2 �. On the other hand, by the

definitions of R2 and R3, for f , one can observe that R2 can be applied at most d(f) − 2c(f)

times while R3 can be applied at most 2c(f) times. Therefore, w′(f) ≥ 2d(f) − 6 − 3
4c(f) −

1
4 (d(f) − 2c(f)) − 1

8 × 2c(f) = 7
4d(f) − 1

2c(f) − 6 ≥ 7
4d(f) − 1

2
d(f)
2 � − 6 ≥ 3

2d(f) − 6 ≥ 0 for

d(f) ≥ 4.

Case 2 Suppose that v is a false vertex. Let s(v) be the total charge transferred to v by

R1–R7. Note that w(v) = d(v)− 6 = −2 and v shall not be able to send out any charge by the

mentioned discharging rules, in the following, we just need to prove s(v) ≥ 2.

Case 2.1 Suppose that v is incident with at least three 4+-faces. Then by R1, each of them

shall transfer 3
4 to v. Thus, v shall totally receive a charge at least 3 × 3

4 = 9
4 > 2.

Case 2.2 Suppose that v is incident with just two 4+-faces.

Case 2.2.1 Suppose d(f1) = d(f2) = 3. Then by R1, v shall receive 2 × 3
4 = 3

2 from both

f3 and f4. Furthermore, if one of v1, v2 or v3 is big, then v can receive an additional 1 or 5
8

via R6 or R7. Therefore, s(v) ≥ 3
2 + 5

8 = 17
8 > 2. So suppose that each of vi, i = 1, 2, 3, is

intermediate. If min{d(v1), d(v2), d(v3)} ≥ 7, then by R6 and R7, v shall receive, in addition,

at least 2
7 +2× 3

14 = 5
7 from v1, v2 and v3, which also implies s(v) ≥ 3

2 + 5
7 > 2. Hence, suppose

that at least one of v1, v2 and v3 is a 6-vertex.

Case 2.2.1.1 Suppose that at least two of v1, v2 and v3 are 6-vertices. Without loss of

generality, we assume d(v1) = d(v2) = d(v3) = 6 (the case when only two of them are 6-vertices

can be dealt with similarly). Now consider the face f ′
1. If it is a 4+-face, then it will transfer 1

4

to v through v1v2 by R2. If f ′
1 is a 3-face, denoted by v1v2v

′
1 (note that v′1 �= v3, v4), then v′1

must be a big vertex while f ′
1 is true to avoid a light copy of K1 ∨ (K1 ∪ K2) = [v1; v′1; v2, v3]

with its center vertex v1 being 6-vertex. In such a case, v′1 will transfer 1
4 to v through v1v2 by

R4. If f ′
1 is false, then v′1 is a false vertex. Now consider the faces fL

1 and fR
2 . If fL

1 is a 4+-face,

then it will transfer 1
8 to v through v1v2 by R3. Otherwise fL

1 must be a false 3-face, denoted

by v1v
′
1v

′′
2 (note that v′′2 �= v3, v4). Note that [v1; v′′2 ; v2, v3] is a copy of K1 ∨ (K1 ∪ K2) with

its center vertex v1 being 6-vertex and v2, v3 being intermediate, which yields that v′′2 must be

big. Then by R5, v′′2 would transfer 1
8 to v through v1v2. By a similar discussion on fR

1 , v

will receive another 1
8 from fR

1 or v′′1 through v1v2 (here, note that v′′1 �= v3, and if v′′1 = v4,

then fR
1 must be a 4+-face). Consequently, using the transfers through v1v2, v receives totally

2× 1
8 = 1

4 . Similarly, we can also prove that v shall also receive another 1
4 by using the transfers

through v2v3. Therefore, s(v) ≥ 3
2 + 1

4 + 1
4 = 2.

Case 2.2.1.2 Suppose that only one of v1, v2 and v3 is 6-vertex. Without loss of generality,
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we assume d(v2) = 6 (other cases can be dealt with similarly). By R6 and R7, v1 and v3 would

respectively transfer at least 3
14 to v. Moreover, by a similar argument as in Case 2.2.1.1, a

total charge 2 × 1
4 = 1

2 shall be also transferred to v through v1v2 and v2v3. It follows that

s(v) ≥ 3
2 + 2 × 3

14 + 1
2 > 2.

Case 2.2.2 Suppose that d(f1) = d(f3) = 3. Then by R1, each of f2 and f4 shall transfer 3
4

to v. In addition, if one of vi, i = 1, 2, 3, 4, is big, then by R7, it shall transfer an additional 5
8

to v; in this case, s(v) ≥ 2 × 3
4 + 5

8 = 17
8 > 2. So assume that all the neighbors of v in G× are

intermediate. Then by a similar argument as in Case 2.2.1.1, one can also observe that if v1 or v2

(v3 or v4, resp.) is 6-vertex, then v shall receive a charge 1
4 by using the transfers through v1v2

(v3v4, resp.). Hence, if at least three of vi, i = 1, 2, 3, 4, are 6-vertices, then s(v) ≥ 3
2 +2× 1

4 = 2;

and if one or two of them are 6-vertices (namely, three or two of them are 7+-vertices, from

whom v shall totally receive at least 2× 3
14 = 3

7 by R7), then s(v) ≥ 3
2 + 1

4 + 3
7 > 2; and if none

of them are 6-vertices, then by R7, each of them shall transfer 3
14 to v, which also follows that

s(v) ≥ 3
2 + 4 × 3

14 > 2.

Case 2.3 Suppose that v is incident with only one 4+-face, say f4. Then by R1, f4 shall

transfer 3
4 to v. If at least two of vi, i = 1, 2, 3, 4, are big, then by R6 and R7, v shall receive

at least 2 × 5
8 = 5

4 from its big neighbors in G×. It follows that s(v) ≥ 3
4 + 5

4 = 2. So

we assume that at most one of vi, i = 1, 2, 3, 4, is big. Firstly, suppose that v2 is big (the

case when v3 is big can be dealt with by symmetry), from whom v shall receive 1 by R6. If

d(v3) ≥ 7, then also by R6, v3 shall transfer 2
7 to v, which yields that s(v) ≥ 3

4 + 1 + 2
7 > 2.

If d(v3) = 6, then by a similar argument as in Case 2.2.1.1 (note that both v1 and v4 are

intermediate here), v shall receive a charge 1
4 by using the transfers through v3v4. So we still

have s(v) ≥ 3
4 +1+ 1

4 = 2. Secondly, suppose that v1 is big (the case when v4 is big can also be

dealt with by symmetry), from whom v shall receive 5
8 by R7. If both v2 and v3 are 6-vertices,

then by using the transfers through v1v2, v2v3 and v3v4, v shall receive in total 3 × 1
4 = 3

4 . It

implies that s(v) ≥ 3
4 + 5

8 + 3
4 > 2. If one of v2 and v3 is 6-vertex and the other is 7+-vertex,

then one can also obtain s(v) ≥ 3
4 + 5

8 + 2
7 + 2 × 1

4 > 2 (note that this 7+-vertex shall transfer
2
7 to v by R6 and this 6-vertex implies the existence of a double transfers of 1

4 through its

incident edges). So we assume that both v2 and v3 are 7+-vertices. In this case, by a similar

argument as above, we can also deduce that s(v) ≥ 3
4 + 5

8 + 2 × 2
7 + 3

14 > 2 if d(v4) ≥ 7, and

s(v) ≥ 3
4 + 5

8 + 2 × 2
7 + 1

4 > 2 if d(v4) = 6. So in the following, we assume that all of vi,

i = 1, 2, 3, 4, are intermediate vertices. Now, we must have min{d(v2), d(v3)} ≥ 7, for otherwise

a light copy of K1∨ (K1∪K2) with the mentioned property in Theorem 1.2 would appear in G.

Case 2.3.1 Suppose that at least three of vi, i = 1, 2, 3, 4, are sub-big vertices. Then by R6

and R7, we have s(v) ≥ 3
4 + 2 × 11

28 + 5
7 > 2.

Case 2.3.2 Suppose that only two of vi, i = 1, 2, 3, 4, are sub-big vertices. If v2 and v3

are both sub-big vertices, then by R6, they transfer in total 2 × 5
7 = 10

7 to v, which implies

s(v) ≥ 3
4 + 10

7 > 2. If v1 and v4 are both sub-big vertices, then by R7, they contribute in total

2 × 11
28 = 11

14 to v. On the other hand, each of v2 and v3 shall transfer at least 2
7 to v by R6
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(recall that min{d(v2), d(v3)} ≥ 7). Therefore, s(v) ≥ 3
4 + 11

14 + 2× 2
7 > 2. If only one of v2 and

v3 is sub-big, then by R6 and R7, a total charge 5
7 + 11

28 = 31
28 would be transferred to v. Note

that min{d(v2), d(v3)} ≥ 7, then by R6, we still have s(v) ≥ 3
4 + 31

28 + 2
7 > 2.

Case 2.3.3 Suppose that v1 is sub-big but v2, v3, v4 are sub-intermediate (the case when

v4 is sub-big can be dealt with by symmetry). Then v1 shall transfer 11
28 to v by R7 while v2

(or v3) shall transfer 2
7 to v if d(v2) = 7 (or d(v3) = 7) and at least 1

2 to v if d(v2) ≥ 8 (or

d(v2) ≥ 8). Firstly, we suppose d(v4) = 6, then v shall also receive another 1
4 via the transfer

through v3v4 by a similar argument as in Case 2.2.1.1. Therefore, s(v) ≥ 3
4 + 11

28 + 1
2 + 2

7 + 1
4 > 2

when at least one of v2 and v3 is a 8+-vertex. So we assume d(v2) = d(v3) = 7. Now consider

f ′
i (or fL

i and fR
i ), i = 1, 2, by R2–R5, we can also prove that v can respectively receive at

least min{ 1
4 , 2 × 1

8 , 1
7 , 2 × 1

28 , 1
8 + 1

28} = 1
14 through the edges v1v2 and v2v3 by using a similar

discussion as in Case 2.2.1.1 (note that the essential principle we use here is to avoid a light

copy of K1 ∨ (K1 ∪ K2) with its center vertex being of degree 7 and the others being sub-

intermediate). Therefore, we also have s(v) ≥ 3
4 + 11

28 + 2 × 2
7 + 2 × 1

14 + 1
4 > 2. Secondly, we

suppose d(v4) ≥ 7 . If at least one of v2, v3 and v4 is 8+-vertex, then by R6 and R7, we have

s(v) ≥ 3
4 + 11

28 + 2× 2
7 + 3

8 > 2. So we shall assume d(v2) = d(v3) = d(v4) = 7. In such a case at

least 3× 1
14 = 3

14 would be transferred to v through v1v2, v2v3 and v3v4 by the same argument

as above. Hence, by R6 and R7, we still have s(v) ≥ 3
4 + 11

28 + 2 × 2
7 + 3

14 + 3
14 > 2.

Case 2.3.4 Suppose that v2 is sub-big but v1, v3, v4 are sub-intermediate (the case when v3

is sub-big can be dealt with by symmetry). Then by R6, v2 shall transfer 5
7 to v. Suppose

that at least one of v1 and v4, say v1, is a 6-vertex. Then, using the transfer through v1v2, v

shall receive 1
4 . Consequently, s(v) ≥ 3

4 + 5
7 + 2

7 + 1
4 = 2 (recall that d(v3) ≥ 7). So we assume

min{d(v1), d(v4)} ≥ 7. In such a case, by R6 and R7, we still have s(v) ≥ 3
4 + 5

7 + 2
7 +2× 3

14 > 2.

Case 2.3.5 Suppose that none of vi, i = 1, 2, 3, 4, is sub-big. Namely, all of them are sub-

intermediate, which implies that min{d(v2), d(v3)} ≥ 8 (for otherwise we would find a copy

of K1 ∨ (K1 ∪ K2) in G with its center vertex being of degree 7 and the others being sub-

intermediate). Then by R6, both v2 and v3 shall respectively transfer at least 1
2 to v. Similarly

as in the proof in Case 2.3.4, we can also show that s(v) ≥ 3
4 + 2 × 1

2 + 1
4 = 2 if at least one of

v1 and v4 is a 6-vertex and s(v) ≥ 3
4 + 2 × 1

2 + 2 × 3
14 > 2 if v1 and v4 are both 7+-vertices.

Case 2.4 Suppose that v is incident with four 3-faces. If at least two of vi, i = 1, 2, 3, 4,

are big vertices, then by R6, each of the big neighbor of v shall transfer 1 to v, which implies

s(v) ≥ 2×1 = 2. If only one of the neighbors of v, say v1, is a big vertex, then v1 shall transfer 1

to v by R6. In this case (note that all of v2, v3 and v4 are intermediate), if all of v2, v3 and v4 are

6-vertices, then by a same argument as in Case 2.2.1.1, v shall receive a total charge 4× 1
4 = 1

via using the transfers through v1v2, v2v3, v3v4 and v4v1. It follows that s(v) = 1 + 1 = 2. If

two of v2, v3 and v4 are 6-vertices (without loss of generality, say v2 and v3), then using the

transfers through v1v2, v2v3 and v3v4, v receives 3× 1
4 = 3

4 . On the other hand, by R6, v4 shall

also transfer at least 2
7 to v since d(v4) ≥ 7. Therefore, s(v) ≥ 1 + 3

4 + 2
7 > 2. If only one of

v2, v3 and v4, say v2, is a 6-vertex, then v shall receive a charge 2 × 1
4 = 1

2 through the edges
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v1v2 and v2v3 and another 2× 2
7 = 4

7 from v3 and v4 by R6 since min{d(v3), d(v4)} ≥ 7. Hence,

we also have s(v) ≥ 1 + 1
2 + 4

7 > 2. So we assume min{d(v2), d(v3), d(v4)} ≥ 7. If at least one

of v2, v3 and v4, say v2, is an 8+-vertex, then by R6, v2 shall transfer at least 1
2 while both v3

and v4 shall respectively transfer at least 2
7 to v. It follows that s(v) ≥ 1 + 1

2 + 2 × 2
7 > 2.

So we just need to consider the case when d(v2) = d(v3) = d(v4) = 7 in detail. By a similar

discussion as in Case 2.3.3, we can prove that v shall respectively receive at least 1
14 from each

of the edges v1v2, v2v3, v3v4 and v4v1. On the other hand, by R6, each of v2, v3 and v4 shall

also transfer 2
7 to v. Thus, we again have s(v) ≥ 1 + 4× 1

14 + 3× 2
7 > 2. So in the following, we

assume that all of vi, i = 1, 2, 3, 4, are intermediate vertices. Furthermore, all of them should

also be 7+-vertices, for otherwise a light copy of K1 ∨ (K1 ∪ K2) with the property mentioned

in Theorem 1.2 would appear in G.

Case 2.4.1 Suppose that at least two of vi, i = 1, 2, 3, 4, are sub-big. Then by R6, each

of the sub-big neighbors of v shall transfer 5
7 while each of the remaining neighbors of v shall

transfer at least 2
7 to v. This leads to s(v) ≥ min{4 × 5

7 , 3 × 5
7 + 2

7 , 2 × 5
7 + 2 × 2

7} = 2.

Case 2.4.2 Suppose that only one of vi, i = 1, 2, 3, 4, say v1, is sub-big and the others are

sub-intermediate. If at least two of v2, v3 and v4 are 8+-vertices, then by R6, each 8+-vertex

of them shall transfer at least 1
2 while each 7-vertex of them shall transfer at least 2

7 to v.

Therefore, s(v) ≥ min{3 × 1
2 + 5

7 , 2 × 1
2 + 2

7 + 5
7} = 2 since v1 should also contribute 5

7 to v

by R6. So at least two of v2, v3 and v4 are 7-vertices. Firstly, we suppose that only two of them

are 7-vertices. Without loss of generality, we assume d(v2) = d(v3) = 7 and d(v4) ≥ 8. In such

a case, by R6, v shall receive a total charge 5
7 + 2 × 2

7 + 1
2 = 25

14 from all the neighbors of v.

On the other hand, using the transfers through v1v2, v2v3 and v3v4, v shall also receive another

3× 1
14 = 3

14 by a similar argument as in Case 2.3.3. Therefore, we also have s(v) ≥ 25
14 + 3

14 = 2.

Finally, we suppose that all of v2, v3 and v4 are 7-vertices. Then from the neighbors of v, v

receives at least 5
7 + 3 × 2

7 = 11
7 by R6. By a similar argument as in Case 2.3.3, one can

prove that v shall respectively receive at least min{ 1
4 , 2× 1

8 , 1
7 , 2× 1

14 , 1
8 + 1

14} = 1
7 by using the

transfers through v2v3 and v3v4 (here, note that once when we consider fi, i = 2, 3, if f ′
i and fL

i

(or fR
i ) are both false 3-faces, then v′′i+1 (or v′′i ) should either be sub-big or big. Furthermore,

if v′′i+1 (or v′′i ) is sub-big, then by R5, it shall transfer 1
14 (not 1

28 now) to v because t(v) = 4

and d(v2) = d(v3) = d(v4) = 7). On the other hand, using the transfers through v1v2 and v4v1,

v shall receive another 2 × 1
14 = 1

7 by the same discussion as in Case 2.3.3. Consequently, we

have s(v) ≥ 11
7 + 2 × 1

7 + 1
7 = 2 in final.

Case 2.4.3 Suppose that none of vi, i = 1, 2, 3, 4, is sub-big. Namely, they are all sub-

intermediate, which yields that min{d(v1), d(v2), d(v3), d(v4)} ≥ 8 for otherwise, we would find

a light copy of K1∨(K1∪K2) in G with its center vertex being of degree 7 and the others being

sub-intermediate, a contradiction. Therefore, by R6, each of vi, i = 1, 2, 3, 4, shall transfer at

least 1
2 to v, which yields s(v) ≥ 4 × 1

2 = 2.

Case 3 Suppose that v is a 7+-vertex. Let F (v) denote the subgraph induced by the faces

which are incident with v. Then F (v) can be decomposed into many parts, each of which is one of



1166 Zhang X., et al.

the five clusters in Figure 1, and any two parts of which are adjacent only if they have a common

edge vw such that w is a true vertex. The hollow vertices in Figure 1 are all false and the solid

ones are true, and all the faces are marked by fi are 4+-faces. Denote ni(v) to be the number of

i-clusters contained in F (v) and mi(v) to be the charges sent out from v through an i-cluster.

Then by their definitions, one can easily observe that 2n1(v)+2n2(v)+n3(v)+3n4(v)+n5(v) ≤
d(v) and w′(v) = d(v) − ∑5

i=1 ni(v)mi(v) − 6.

f 1 f 2 fi- 1 fi
. . .

f1 f 2 f i
. . .

f1 f 2 f i- 1 fi
.. .

f 3

1 - clust er 2 - clu st er  ( i> 0)

4- c lu ste r  ( i>0 )

3 - c lust e r

5 - clust er  ( i> 0)

v

yx z

v v

vv

x y x y

x y u w

v v v

v v

x x x

x

y y y

y wu

z

f

1-cluster 3-cluster 2-cluster (i > 0)

4-cluster (i > 0) 5-cluster (i > 0)

1 f2 f3 fifi-1

fi-1 fi

fi

f2

f2f1

f1

Figure 1 F (v) can be decomposed into the combination of the above five clusters

Case 3.1 Suppose 7 ≤ d(v) ≤ 9. If d(v) = 7, then we have m1(v) = 2
7 by applying R6

once, m2(v) = 3
14 by applying R7 once, m4(v) = 2 × 3

14 = 3
7 by applying R7 twice and

m3(v) = m5(v) = 0. Therefore, w′(v) = d(v)− 2
7n1(v)− 3

14n2(v)− 3
7n4(v)−6 = 1− 1

7 (2n1(v)+

2n2(v)+n3(v)+ 3n4(v)+n5(v))+ 1
14n2(v)+ 1

7n3(v)+ 1
7n5(v) ≥ 1− 1

7 × 7 = 0. If 8 ≤ d(v) ≤ 9,

using a similar argument as above, we also have w′(v) = d(v) − 1
2n1(v) − 3

8n2(v) − 3
4n4(v) − 6

= d(v) − 6 − 1
4 (2n1(v) + 2n2(v) + n3(v) + 3n4(v) + n5(v)) + 1

8n2(v) + 1
4n3(v) + 1

4n5(v) ≥
d(v) − 6 − 1

4d(v) = 3
4d(v) − 6 ≥ 0 by applying the mentioned rules.

Case 3.2 Suppose 10 ≤ d(v) ≤ 14 (namely, v is a sub-big vertex). Note that now, not

only R6 and R7 but also R4 and R5 are involved in the charge transformations of v. If F (v)

contains a 2-cluster, then by R7, v shall transfer 11
28 to y (see Figure 1). Besides, another (at

most) 1
28 should also be sent out from v through xy by applying R5 (note that t(y) ≤ 3). It

follows that m2(v) ≤ 11
28 + 1

28 = 3
7 . If F (v) contains a 3-cluster, then v shall send out at most

1
7 through xy by R4. So m3(v) ≤ 1

7 . Similarly, we can prove that m4(v) ≤ 2× 11
28 + 2× 1

28 = 6
7

by applying R7 twice and R5 at most twice, and m5(v) = 0. The last and most complicated

case is when F (v) contains a copy of 1-cluster. In such a case, v shall firstly transfer a charge
5
7 to y by R6. Secondly, if t(y) ≤ 3, then by applying R5 at most twice, v shall also totally

transfer at most 2 × 1
28 = 1

14 through xy and yz. In the next, we claim that R5 can only be

applied at most once for v when t(y) = 4 (see Figure 1). Denote w to be the fourth neighbor of

y (namely, vw and xz are both false edges in G containing a crossing point y). If now R5 has

been applied twice for v, then by the definition of the mentioned rule, wx, wz ∈ E(G×) and

d(x) = d(z) = d(w) = 7. Furthermore, xw must be contained in a 3-cycle in G, say xww′, such

that w′ �= z and d(w′) = 7. Therefore, the graph [w; z; x, w′] forms a copy of K1 ∨ (K1 ∪K2) in

G with all its incident vertices being of degree 7, a contradiction. So v can only transfer just one
1
14 through either xy or yz by applying R5 at most once. Thus in either case, we uniformly have
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m1(v) ≤ 5
7 + 1

14 = 11
14 . Hence, we have w′(v) ≥ d(v)− 11

14n1(v)− 3
7n2(v)− 1

7n3(v)− 6
7n4(v)−6 =

d(v)−6− 11
28 (2n1(v)+2n2(v)+n3(v)+3n4(v)+n5(v))+ 5

14n2(v)+ 1
4n3(v)+ 9

28n4(v)+ 11
28n5(v) ≥

d(v) − 6 − 11
28d(v) = 17

28d(v) − 6 > 0 for d(v) ≥ 10.

Case 3.3 Suppose d(v) ≥ 15 (namely, v is a big vertex). Then by a similar argument as

in Case 3.2, we can show that m1(v) ≤ 1 + 2 × 1
8 = 5

4 by applying R6 once and R5 at most

twice (note that here v is allowed to transfer two copies of 1
8 through both xy and yz even

when t(y) = 4, which is different to the discussion in Case 3.2); m2(v) ≤ 5
8 + 1

8 = 3
4 by

respectively applying R7 and R5 at most once; m3(v) ≤ 1
4 by applying R4 at most once; and

m4(v) ≤ 2 × 5
8 + 2 × 1

8 = 3
2 by respectively applying R7 and R5 at most twice. For 5-clusters,

it is still trivial that m5(v) = 0. Therefore,

w′(v) ≥ d(v) − 5
4
n1(v) − 3

4
n2(v) − 1

4
n3(v) − 3

2
n4(v) − 6

= d(v) − 6 − 5
8
(2n1(v) + 2n2(v) + n3(v) + 3n4(v) + n5(v)) +

3
8
(n2(v) + n3(v)

+ n4(v) + n5(v)) +
1
8
n2(v) +

1
4
n5(v)

≥ d(v) − 6 − 5
8
d(v) +

3
8
(n2(v) + n3(v) + n4(v) + n5(v))

=
3
8
d(v) − 6 +

3
8
(n2(v) + n3(v) + n4(v) + n5(v)) ≥ 0

for d(v) ≥ 16. Finally, if d(v) = 15, then there is at least one of i-cluster (2 ≤ i ≤ 5) in F (v) since

any two false vertices can not be adjacent in G×. So we have n2(v)+n3(v)+n4(v)+n5(v) ≥ 1,

which yields that

w′(v) ≥ 3
8
d(v) − 6 +

3
8
(n2(v) + n3(v) + n4(v) + n5(v))

≥ 3
8
× 15 − 6 +

3
8

= 0

for d(v) = 15 in final.
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