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A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at
most one other edge. In this paper, it is proved that every 1-planar graph without adjacent
triangles and with maximum degree � � 8 can be edge-colored with � colors.
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1. Introduction

We consider only finite, simple and undirected graphs
in this paper unless stated otherwise. For a plane graph G ,
which is a particular drawing of a planar graph in the Eu-
clidean plane, we use V (G), E(G), F (G), δ(G) and �(G) to
denote the set of vertices, the set of edges, the set of faces,
the minimum degree and the maximum degree of G , re-
spectively. For an element x ∈ V (G) ∪ F (G), dG(x) denotes
the degree of x in G . Throughout this paper, a k-, � k- and
� k-vertex (resp. face) is a vertex (resp. face) of degree k,
at least k and at most k. For other undefined notations, we
refer the readers to the reference of West [8].

A proper edge coloring of a graph is an assignment of
colors to the edges of the graph so that no two adjacent
edges have the same color. The smallest number of col-
ors needed in a proper edge coloring of a graph G is the
chromatic index, denoted by χ ′(G). The well-known Viz-
ing’s theorem tells us that χ ′(G) equals to either �(G)

or �(G) + 1 for every graph G . This theorem divides
all graphs into two classes: Class 1 graphs have χ ′(G) =
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�(G) and Class 2 graphs have χ ′(G) = �(G) + 1. For pla-
nar graphs, in [6], Vizing presented examples of planar
graphs of Class 2 with maximum degree � for each � ∈
{2,3,4,5}, proved that every planar graph with maximum
degree � � 8 is of Class 1, and conjectured that the con-
clusion holds for the cases � ∈ {6,7}, which is known as
Vizing’s Planar Graph Conjecture. This conjecture was ver-
ified for � = 7 by Sanders and Zhao [5] and Zhang [9],
independently. It remains open for � = 6. However, the
case � = 6 has been settled for some special graphs. For
example, Bu and Wang [1] showed that every planar graph
without adjacent triangles and with maximum degree 6 is
of Class 1.

In this paper, we focus on 1-planar graphs. A graph
is 1-planar if it can be drawn on the plane so that each
edge is crossed by at most one other edge. This notion of
1-planar graphs was introduced by Ringel [4] while try-
ing to simultaneously color the vertices and faces of a
plane graph G such that any pair of adjacent/incident el-
ements receive different colors. The first result concerning
the edge colorings of 1-planar graphs is due to Zhang and
Wu [11], who proved that every 1-planar graph with max-
imum degree � � 10 is of Class 1. Recently, Zhang and Liu
[12] (also in [10]) constructed Class 2 1-planar graphs with
maximum degree 6 or 7. This fact along with Vizing’s re-
sults stated above imply the following proposition.
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Proposition 1. There are 1-planar graphs of Class 2 with maxi-
mum degree � for each � � 7.

In many papers such as [2], it was shown that every
1-planar graph contains a vertex of degree at most 7. This
fact along with Proposition 1 motivate us to do the follow-
ing conjecture.

Conjecture 2. Every 1-planar graphs with maximum degree at
least 8 is of Class 1.

In this paper, we confirm Conjecture 2 for 1-planar
graphs without adjacent triangles.

2. Main results and their proofs

From now on, for any 1-planar graph G , we always as-
sume that G has been embedded on a plane such that
every edge is crossed by at most one other edge and
the number of crossings is as small as possible; thus
we consider G being a 1-plane graph. The associated plane
graph G× of a 1-plane graph G is the plane graph that is
obtained from G by turning all crossings of G into new
4-vertices. A vertex in G× is called false if it is not a ver-
tex of G and true otherwise. We call a 3-face in G× false or
true according to whether it is incident with a false vertex
or not. In [11], the authors showed some basic properties
on a 1-plane graph G and its associated plane graph G× .

Lemma 3. (See [11].) Let G be a 1-plane graph and let G× be its
associated plane graph. Then the following hold:

(1) For any two false vertices u and v in G× , uv /∈ E(G×).
(2) If there is a 3-face uv wu in G× such that dG(v) = 2, then

u and w are both true vertices.
(3) If dG(u) = 3 and v is a false vertex in G× , then either uv /∈

E(G×) or uv is not incident with two 3-faces.
(4) If a 3-vertex v in G is incident with two 3-faces and ad-

jacent to two false vertices in G× , then v must also be
incident with a (� 5)-face.

(5) For any 4-vertex u in G, u is incident with at most three
false 3-faces.

Now we turn our attention to 1-planar graphs without
adjacent triangles and prove the following lemma.

Lemma 4. Let G be a 1-plane graph without adjacent triangles
and let G× be its associated plane graph. For every vertex v ∈
V (G), if dG(v) � 5, then v is incident with at most � 4

5 dG(v)�
3-faces in G× .

Proof. If dG(v) = 5 and v is incident with five 3-faces
in G× , then one can easily find two adjacent triangles in G .
So we assume that dG(v) � 6. In the following, we just
need to prove that there are no five consecutive 3-faces
that are incident with v . Otherwise, consider such five
3-faces v vi vi+1 in G× , where 1 � i � 5. We first suppose
that v1 is a true vertex in G× . If v2 is true now, then
v3 shall be false since otherwise v v1 v2 and v v2 v3 are
two adjacent triangles in G . But by (1) of Lemma 3, v4

would be true once v3 is false. This implies that v v1 v2
and v v2 v4 are two adjacent triangles in G , a contradiction.
So v2 must be false and then v3 shall be true. By a same
argument as above, this is also impossible. So we have to
assume that v1 is false. Similarly we can show that v2 is a
false vertex too. However, since v1 v2 ∈ E(G×), v2 must be
true by (1) of Lemma 3. This contradiction completes the
proof. �

Before proving our main result, we introduce some lem-
mas on �-critical graphs. Recall that G is �-critical if G is
a graph with maximum degree � and G is of Class 2, but
G −e is of Class 1 for every edge e ∈ E(G). In the following,
we use NG(x) to denote the set of all neighbors of x in G .
For x, y ∈ V (G), NG(x, y) = NG(x) ∪ NG(y) and in general,
for any set S ⊆ V (G), let NG(S) = ⋃

v∈S NG(v).

Lemma 5 (Vizing’s Adjacency Lemma). (See [7].) Let G be a
�-critical graph and let v, w be adjacent vertices of G with
dG(v) = k. Then

(1) If k < �, then w is adjacent to at least (� − k + 1)
�-vertices.

(2) If k = �, then w is adjacent to at least two �-vertices.

Lemma 6. (See [5,9].) Let G be a �-critical graph and let xy be
an edge in G with dG(x) + dG(y) = � + 2. Then the following
hold:

(1) Every vertex of NG(x, y)\{x, y} is a �-vertex.
(2) Every vertex of NG(NG(x, y))\{x, y} is of degree at least

� − 1.
(3) If max{dG(x),dG(y)} < �, then every vertex of NG ×

(NG(x, y))\{x, y} is a �-vertex.

Lemma 7. (See [3].) Let G be a �-critical graph with � � 6 and
let x be a 4-vertex. Then the following hold:

(1) If x is adjacent to a (�− 2)-vertex, say y, then every vertex
of NG(NG(x))\{x, y} is a �-vertex.

(2) If x is not adjacent to any (� − 2)-vertex and if one of the
neighbors y of x is adjacent to dG(y)− (�−3) � (�−2)-
vertices, then each of the other three neighbors of x is adja-
cent to only one � (� − 2)-vertex, which is x.

(3) If x is adjacent to a (� − 1)-vertex, then there are at least
two �-vertices in NG(x) which are adjacent to at most
two � (� − 2)-vertices. Moreover, if x is adjacent to two
(� − 1)-vertices, then each of the two �-neighbors of ad-
jacent to exactly one � (� − 2)-vertex, which is x.

Theorem 8. Let G be a 1-planar graph without adjacent trian-
gles. If �(G) � 8, then χ ′(G) = �(G).

Proof. Since every 1-planar graph with maximum degree
� � 10 has chromatic index � (see Theorem 7 of [11]),
we assume that 8 � �(G) � 9 in the following proof. Sup-
pose that G is a counterexample to the theorem with the
smallest number of edges. Then G is a �(G)-critical 1-
plane graph. By Vizing’s Adjacency Lemma (VAL for short),
we have δ(G) � 2. Now we assign an initial charge c
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on V (G) ∪ F (G×) by letting c(v) = dG(v) − 4 for every
v ∈ V (G) and c( f ) = dG×( f )− 4 for every f ∈ F (G×). Note
that G× is a planar graph, by Euler’s formula, we can easily
deduce that

∑

x∈V (G)∪F (G×)

c(x)

=
∑

v∈V (G)

(
dG(v) − 4

) +
∑

f ∈F (G×)

(
dG×( f ) − 4

)

=
∑

v∈V (G×)

(
dG×(v) − 4

) +
∑

f ∈F (G×)

(
dG×( f ) − 4

)

= −8 (2.1)

Using Lemmas from 3 to 7, we redistribute the charges
of vertices in G and faces in G× according to Rules 1–9 be-
low and also check that the final charge c′ on each vertex
and each face is nonnegative. Since our rules only move
charge around and do not affect the total charges, this
leads to a contradiction to (2.1) in final and completes our
proof. Let ci denote the charge after applying Rules 1–i. So
we have c′(x) = c9(x) for every element x ∈ V (G) ∪ F (G×).
If x ∈ V (G), we denote the degree of the neighbors of x in
G as δ1(x) � δ2(x) � · · · � δdG (x)(x). By V i , we denote the
set of all i-vertices in G . In the following, we use � in-
stead of �(G) for simplicity and say u is a k-neighbor of v
if uv ∈ E(G) and dG(u) = k.

2.1. Final charges of faces and vertices v ∈ ⋃7
i=2 V i

Rule 1. Let f be a false 3-face in G× . Then f receives 1
2

from each of its incident true vertices.

Rule 2. Let f be a true 3-face in G× . Then f receives 1
2

from each of its incident (� 5)-vertices.

Rule 3. Let f be a (� 5)-face in G× and let t the number
of 3-vertices incident with f . Then each 3-vertex incident

with f receives
dG× ( f )−4

t from f .

Note that 4-faces are not involved in the above rules, so
c3( f ) = c( f ) = 0 for every 4-face in G× . By (1) of Lemma 3
and VAL, every false 3-face in G× is incident with two
true vertices and every true 3-face in G× is incident with
at least two � 5-vertices. So by Rules 1 and 2, we have
c2( f ) � 0 for every 3-face f in G× . By Rule 3, one can eas-
ily see that c3( f ) = 0 for every � 5-face. Since faces in G×
participate only in Rules 1–3 (the readers can make them-
selves sure of that), c′( f ) � 0 for every face f ∈ F (G×).

Rule 4. Let v be a 2-vertex in G . Then v receives 1 from
each of its neighbors in G .

By (2) of Lemma 3, v is incident with no false 3-faces
in G× . So v sends out none by Rules 1–4 and thus c4(v) =
−2 + 2 × 1 = 0. Since 2-vertices participate only in Rule 4,
c′(v) = c4(v) = 0 for every vertex v ∈ V 2.

Rule 5. Let v be a 3-vertex in G . Then v receives 1
2 from

each of its neighbors in G .

By (3) and (4) of Lemma 3, if v is incident with two
false 3-faces in G× , then v shall also be incident with
a � 5-face f , from which v receives at least

dG× ( f )−4
t �

dG× ( f )−4
�dG× ( f )/2� � 1

2 by Rule 3, because no two 3-vertices are

adjacent in G by VAL. So we have c5(v) � −1 − max{ 1
2 ,

2 × 1
2 − 1

2 } + 3 × 1
2 = 0. Since 3-vertices participate only in

Rules 1, 3 and 5, c′(v) = c5(v) � 0 for every vertex v ∈ V 3.

Rule 6. Let v be a 4-vertex in G . Then we divide this rule
into six independent parts.

Rule 6.1. If δ1(v) = � − 2, then v receives 1
2 from each of

its �-neighbors in G .

By (5) of Lemma 3, v is incident with at most three
false 3-faces. Since v has a (� − 2)-neighbor here, an-
other three neighbors of v must be �-vertices by (1) of
Lemma 6. So we have c6(v) � 0 − 3 × 1

2 + 3 × 1
2 = 0 by

Rules 1 and 6.1.

Rule 6.2. If δ1(v) = �−1 and v is adjacent to two (�−1)-
vertices, then v receives 2

3 from each of its �-neighbors

and 1
12 from each of its (� − 1)-neighbors in G .

If this rule is called, then by VAL, v has exactly two
(� − 1)-neighbors and two �-neighbors in G . So c6(v) �
0 − 3 × 1

2 + 2 × 2
3 + 2 × 1

12 = 0.

Rule 6.3. If δ1(v) = � − 1, v is adjacent to exactly one
(� − 1)-vertex and some �-neighbor y of v is adjacent
to three � (� − 2)-vertices, then v receives 1

3 from y and
2
3 from each of its another two �-neighbors in G .

If this rule is called, then by (2) of Lemma 7, each �-
neighbor of v except y is adjacent to only one � (� − 2)-
vertex, which is v . So this rule is defined properly and thus
we have c6(v) � 0 − 3 × 1

2 + 1
3 + 2 × 2

3 > 0.

Rule 6.4. If δ1(v) = � − 1, v is adjacent to exactly one
(� − 1)-vertex and every �-neighbor of v is adjacent to
at most two � (� − 2)-vertices, then v receives 5

12 from
each of its �-neighbors and 1

4 from each of its (� − 1)-
neighbors in G .

In this case, v has three �-neighbors and one (� − 1)-
neighbor. So c6(v) � 0 − 3 × 1

2 + 3 × 5
12 + 1

4 = 0.

Rule 6.5. If δ1(v) = � and some �-neighbor y of v is ad-
jacent to three � (� − 2)-vertices, then v receives 2

3 from
each of its �-neighbors in G except y.

By a similar argument as in Rule 6.3, there is only one
�-neighbor of v which has three � (� − 2)-neighbors. So
the definition of this rule is also proper and thus c6(v) �
0 − 3 × 1

2 + 3 × 2
3 > 0.

Rule 6.6. If δ1(v) = � and every �-neighbor of v is adja-
cent to at most two � (� − 2)-vertices, then v receives 5

12
from each of its �-neighbors in G .
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In this case, it is clear that c6(v) � 0 − 3 × 1
2 + 4 × 5

12 >

0. By VAL, one can easily find that every 4-vertex in G
would satisfy (only) one of the conditions among those
stated in the above six subrules. Note that 4-vertices par-
ticipate only in Rules 1 and 6, we have c′(v) = c6(v) � 0
for every vertex v ∈ V 4.

Rule 7. Let v be a 5-vertex in G . Then v receives 1
4 from

each of its � (� − 2)-neighbors in G .

By Lemma 4 and VAL, v is incident with at most four
3-faces in G× and is adjacent to at least four � (� − 2)-
vertices in G . So by Rules 1, 2 and 7, c7(v) � 1 − 4 × 1

2 +
4 × 1

4 = 0. Since 5-vertices participate only in above three
rules, we have c′(v) = c7(v) � 0 for every vertex v ∈ V 5.

Rule 8. Let v be a 6-vertex in G . Then v receives 1
8 from

each of its �-neighbors in G .

By Lemma 4, v is incident with at most four 3-faces
in G× . Note that v may send charges to its adjacent ver-
tices in G only by Rule 7. If δ1(v) � 5, then by VAL, v is
adjacent to at most two 5-vertices and is adjacent to at
least four �-vertices in G , which implies that c8(v) �
2 − 4 × 1

2 − 2 × 1
4 + 4 × 1

8 = 0 by Rules 1, 2, 7 and 8. If

δ1(v) � 6, then it is trivial that c8(v) � 2 − 4 × 1
2 = 0 by

Rules 1 and 2. Since 6-vertices will not participate in the
following Rule 9, c′(v) = c8(v) � 0 for every vertex v ∈ V 6.

Rule 9. Let v be a 7-vertex in G . Then v receives 1
6 from

each of its �-neighbors in G .

By Rules 5, 6 and 7, v may send at most 1
2 , 1

4 and 1
4

to each of its adjacent 3-vertices, 4-vertices and 5-vertices,
respectively. By Lemma 4 and VAL, v is incident with at
most five 3-faces in G× and is adjacent to at most i (� 5)-
vertices in G if δ1(v) = i +2, where 1 � i � 3. On the other
hand, v is also adjacent to at least two �-vertices in G by
VAL, from which v receives at least 2 × 1

6 = 1
3 by Rule 9.

So by Rules 1, 2, 5, 6 and 7, c′(v) = c9(v) � 3 − 5 × 1
2 −

max{ 1
2 ,2 × 1

4 ,3 × 1
4 } + 1

3 > 0. This implies that c′(v) � 0
for every vertex v ∈ V 7.

2.2. Final charges of vertices v ∈ ⋃�
i=8 V i

Claim. The final charge of every 8-vertex is nonnegative.

Proof. Note that a 8-vertex v may be �-vertex here. So v
may participate in all of the above nine discharging rules.
Without loss of generality, we just assume that � = 8 here,
because the case � = 9 can be dealt with much more eas-
ily. By Lemma 4, v is incident with at most six 3-faces
in G× . So we have c3(v) � 4 − 6 × 1

2 = 1. If δ1(v) = 2,
then by VAL, v is adjacent to seven �-vertices in G . So v
participates just in Rule 4 among the last six rules. This
implies that c′(v) = c3(v) − 1 � 0. If δ1(v) � 5, then by
VAL, Rules 7, 8 and 9 we can also obtain c′(v) � c3(v) −
max{4 × 1

4 , 1
8 + 4 × 1

6 ,6 × 1
6 } � 0. So we leave only two

cases here: one is δ1(v) = 3 and the other is δ1(v) = 4.

Case 1. δ1(v) = 3.

By VAL, v is adjacent to at least six �-vertices now. If
δ2(v) = 3 or δ2(v) � 5, then by Rules 5, 7, 8 and 9, we
still have c′(v) � c3(v) − 2 × 1

2 � 0. So we shall assume
that δ2(v) = 4 here. Let u and w be the 3-vertex and
the 4-vertex adjacent to v in G , respectively. If v sends
some charge to w by Rule 6.1 or Rule 6.2, then by (3)
of Lemma 6 or (3) of Lemma 7, all neighbors of v ex-
cept w shall be of degree at least � − 1, a contradiction
to dG(u) = 3 and uv ∈ E(G). If v sends some charge to w
by Rule 6.3 (note that v is adjacent to only two � (�− 2)-
vertices in G), then by (2) of Lemma 7, v is adjacent to
only one � (� − 2)-vertex in G , which is w , a contradic-
tion. Similarly, if v sends some charge to w by Rule 6.5,
then we would also obtain a same contradiction. Thus v
may only send at most 5

12 to w by Rule 6.4 or Rule 6.6.
This implies that c′(v) � c3(v) − 1

2 − 5
12 > 0 by Rule 5.

Case 2. δ1(v) = 4.

By VAL, v is adjacent to at least five �-vertices now. Let
u be a 4-vertex that is adjacent to v in G . If v sends some
charge to u by Rule 6.1, then by (3) of Lemma 6, v is adja-
cent to seven �-vertices in G , which implies that c′(v) �
c3(v) − 1

2 > 0. If v sends some charge to u by Rule 6.2,
then by (3) of Lemma 7, we have δ2(v) � � − 1 = 7. So
by Rule 9, we have c′(v) � c3(v) − 2

3 − 2 × 1
6 � 0. If v

sends some charge to u by Rule 6.3, then we will consider
two subcases. First, suppose that v is adjacent to three
� (� − 2)-vertices in G . Then v will send 1

3 to u. If now v
is also adjacent to another 4-vertex w in G , then by a same
argument as in Case 1, v will not send any charge to w by
one of Rules 6.1, 6.2, 6.3 and 6.5. However, since v is adja-
cent to three � (� − 2)-vertices in G , v will also not send
any charge to w by Rule 6.4 or Rule 6.6. That is to say, v
sends no charges to its 4-neighbors except u. So by Rules 7,
8 and 9, we have c′(v) � c3(v) − 1

3 − 2 × 1
4 > 0. Second,

suppose that v is adjacent to at most two � (� − 2)-
vertices in G . Then v will send 2

3 to u and by (2) of
Lemma 7 we shall also assume that δ2(v) � � − 1 = 7.
This implies that c′(v) � c3(v) − 2

3 − 2 × 1
6 � 0 by Rule 9.

If v sends some charge to u by Rule 6.4, then by the con-
dition of that rule, v is adjacent to at most two � (�− 2)-
vertices in G . Suppose v is adjacent to another 4-vertex w
in G . Then by a same argument as in Case 1, v can send
at most 5

12 to w only by Rule 6.4 or Rule 6.6. This im-
plies that c′(v) � c3(v) − 2 × 5

12 − 1
6 � 0 by Rule 9. On the

other hand, we still have c′(v) � c3(v)− 5
12 − 1

4 − 1
6 > 0 by

Rules 7, 8 and 9 if δ2(v) � 5. If v sends some charge to u
by Rule 6.5, then by (2) of Lemma 7, v is adjacent to only
one � (� − 2)-vertex in G , which is u. This implies that
c′(v) � c3(v)− 2

3 −2× 1
6 � 0 by Rules 6.5 and 9. If v sends

some charge to u by Rule 6.6, then by a same argument as
in the case that v sends some charge to u by Rule 6.4, we
can also obtain c′(v) � 0. So at last we assume that v will
not send any charge to its adjacent 4-vertices. This easiest
case implies that c′(v) � c3(v) − 2 × 1

4 > 0 by Rules 7, 8
and 9 in final. �

Note that we have already completed the proof of the
theorem for the case � = 8. In fact, if � = 9, then we can
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prove that c′(v) � 0 for every v ∈ V 9 by a same argument
as in the above claim. Much more easily, we can also show
that the final charge of every 8-vertex in G is nonnegative.
Hence the proof of the theorem completes here. �
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