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Abstract A graph is l-planar if it can be drawn on the plane so that each
edge is crossed by at most one other edge. In this paper, it is proved that each
I-planar graph with maximum degree A is (A + 1)-edge-choosable and (A + 2)-
total-choosable if A > 16, and is A-edge-choosable and (A + 1)-total-choosable
if A > 21. The second conclusion confirms the list coloring conjecture for the
class of 1-planar graphs with large maximum degree.
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1 Introduction

In this paper, all graphs are finite, simple, and undirected. For a graph G,
denote by V(G), E(G), 6(G), and A(G) the vertex set, the edge set, the
minimum degree, and the maximum degree of G, respectively. Let e(G) =
|E(G)| and v(G) = |V (G)|. For plane graphs, we use F'(G) to denote the face
set of G and let f(G) = |F(G)|. A vertex (resp. face) of degree k is called a
k-vertex (resp. k-face) while a vertex (resp. face) of degree at least k is called
a kT-vertex (resp. k- face). For undefined concepts we refer the reader to [2].

A graph G is 1-planar if it can be drawn on the plane so that each edge is
crossed by at most one other edge. The notion of 1-planar graph was introduced
by Ringel [16] while studying the simultaneous vertex-face coloring of plane
graphs. Indeed, once we are given a plane graph G, a l-planar graph G’ can
be constructed as follows. First of all, let V(G’') = V(G) U F(G). For any two
vertices z,y € V(G’), if their corresponding elements are adjacent or incident
in G, then we add an edge zy in G'. For example, the graph G in Fig. 1 is a
plane graph with six vertices and five faces, and the graph G’, which contains
eleven vertices, is a 1-planar graph constructed by the above definition. Note
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Fig. 1 1-planar graph G’ is constructed from plane graph G

that in G the face f; is incident with three vertices v1,v9,vs and adjacent to
two faces fa, f5, so in G’ the vertex f; is of degree five with its neighbors being
v1, V2,03, fo and fs. One can find that the vertex-face coloring of the plane
graph G is just equivalent to the vertex coloring of the 1-planar graph G’.

Ringle [16] proved that seven colors suffice both to simultaneously color
the vertices and faces of each plane graph and thus to color the vertices of
each 1-planar graph, and conjectured that six colors are enough and showed
that this bound is best possible if it is true. This conjecture was confirmed
by Borodin [3,5] and a list analogue of vertex coloring of 1-planar graphs was
investigated by Albertson and Mohar [1], and by Wang and Lih [19]. Borodin
[7] also proved that each 1-planar graph is (list) acyclically 20-colorable. Zhang
et al. showed that each 1-planar graph G with maximum degree A is edge
A-colorable if A > 10 [27], or A > 9 and G contains no chordal 5-cycles [22],
or A > 8 and G contains no chordal 4-cycles [21], or A > 7 and G contains no
3-cycles [23]. Zhang et al. also showed that the (p, 1)-total labelling number of
each 1-planar graph G is at most A(G) 4 2p — 2 if A(G) > 8p+4 [29], and the
linear arboricity of each 1-planar graph G is exactly [A(G)/2] if A(G) > 33
[25]. On the other hand, the local structures (including the girth, the lightness,
and the embedding, etc.) of 1-planar graphs were extensively studied by many
authors including [6,9,12,17,24,26,28]. However, comparing to the family of
planar graphs, the family of 1-planar graphs is still little explored.

Let

f: E(G)UV(G)—N

be a function into positive integers. We say that G is total-f-choosable if,
whenever we are given a list A, of colors with |A,| = f(x) for each x € E(G) U
V(G), we can choose a color from A, for each element = such that no two
adjacent (incident) elements receive the same color. The list total chromatic
index x](G) of G is the smallest integer k such that G is total- f-choosable when
we assign f(x) = k for each z € E(G) UV (G). The list edge chromatic index
X;(G) can be defined similarly. As in [2], we use x'(G) and x”(G) to denote the
ordinary edge and total coloring of a graph G, respectively. Obviously, it holds
that
xi(G) =2 X' (G) 2 A(G), x/(G) 2 X"(G) > A(G) + L.
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As far as list edge and list total coloring are concerned, Vizing, Gupta,
Abertson and Collins, and Bollobds and Harris (see [13] for details)
independently possed part (a) of the conjecture as follows, which is well known
as List Edge Coloring Conjecture. Part (b) of the following conjecture, also
known as List Total Coloring Conjecture, was posed by Borodin et al. [8].

Conjecture 1 (List Coloring Conjecture) For any graph G,

(a) xi(G) =X'(G);

(b) X/ (G) =X"(G).

Although list coloring conjecture has been proved for a few special cases
such as outerplanar graphs [18] and planar graphs with maximum degree at
least 12 [8], this conjecture remains open.

Combining the well-known Vizing’s Theorem and Total Coloring Conjecture

as follows with List Coloring Conjecture, Conjecture 3 below is natural but still
interesting.

Conjecture 2 (Total Coloring Conjecture) For any graph G,
AG)+1<X"(G) < AG) +2.

Conjecture 3 For any graph G,

(a) xi(G) < A(G) + 1

(b) x/(G) < A(G) +2.

An earlier result of Harris showed that xj(G) < 2A(G) — 2 if G is a graph
with A(G) > 3 [10]. This result implies (a) of Conjecture 3 for the case A(G) =
3. Juvan et al. settled the case of A(G) = 4 [15]. For planar graphs, Borodin
[4] confirmed (a) of Conjecture 3 for the case A(G) > 9.

Part (b) of Conjecture 3 has been verified for graphs with maximum degree
A(G) < 3 and bipartite graphs [14]. Hou, Liu and Wu [11] also showed that it
holds for planar graphs with A(G) > 9.

Motivated by the above three conjectures, we consider the case when G is
a l-planar graph with large maximum degree in this paper. The next section
is devoted to verify Total Coloring Conjecture and Conjecture 3 for 1-planar
graphs with maximum degree at least 16, and to confirm List Coloring
Conjecture for 1-planar graphs with maximum degree at least 21.

2 Main results and their proofs

In this section, for a l-planar graph G, we always assume that G has been
drawn on a plane so that

(1) every edge is crossed by at most one other edge;
(2) the number of crossings is as small as possible.

The associated plane graph G* of G is the plane graph that is obtained from
G by turning all crossings of G into new 4-vertices. We call the new vertices in
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G* crossing vertices. The original edge of G that contains a crossing vertex is
called crossing edge. One can easily observe that if v is not a crossing vertex,
then

dgx (v) = da(v).
Therefore, in the following, we do not distinguish the two notations dgx (v)
and dg(v) when v is not a crossing vertex, in which case we only use the brief
notation d(v) to represent both dgx (v) and dg(v).

To begin with, we display some basic properties of 1-planar graph G and
its associated plane graph G*, which were proved by Zhang and Wu [27]. For
a vertex v € V(G*), we use fr(v) to denote the number of k-faces that are
incident with it and use n.(v) to denote the number of crossing vertices that
are adjacent to v in G*.

Lemma 1 [27] Let G be a 1-planar graph. Then the following results hold.
(a) For any two crossing vertices u and v in G*, uv ¢ E(G*).

(b) If there is a 3-face uwvwu in G* such that dgx(v) = 2, then u and w
are not crossing vertices.

(c) If a 3-vertex v is incident with two 3-faces and adjacent to two crossing
vertices in G*, then v is also incident with a 5T -face in G*.

(d) There exists no edge uv in G* such that dgx(u) = 3, v is a crossing
vertex, and uv is incident with two 3-faces in G*.

Lemma 2 [27] Let G be a 1-plane graph. Then for every vertex v € V(G),
we have

3, da(v) =3, f3(v) # 2;
4, da(v) =3, f3(v) = 2;

f3(v) +ne(v) < q 5, da(v) = 4;
l?)dC;(v)Ja do(v) > 5

Theorem 1 Let G be a 1-planar graph with mazimum degree A > 16. Then
(G)<A+1, x/(G)<A+2.

Proof Let G be a minimal counterexample to the theorem. Then G has the
following properties.
(a) G is connected.

(b) G contains no edge uv such that
A+1
2
(c) For each integer 3 < k < 5, let

min{d(u),d(v)} < L J, d(u) +d(v) < A+2.

X ={z V(G |da(x) <k}, Yi= ] Na(x).
zeXy
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If X # (0, then there exists a bipartite subgraph M} = (X, Y%) of G such that
du,(z) =1 for any = € X}, and da, (y) < k — 2 for any y € Yj,. We call y the
k-master of x if xy € M}, and x € X}.

(a) and (b) are easy to be proved. The proof of (c) is just similar to the one
in [20], with only quite a little minor changes. Therefore, we omit it here and
refer the reader to [20, Lemma 2.4].

From (b), we deduce that 6(G) > 3. By (c), each i-vertex (3 < i < 5) has a
j-master (i < 7 < 5). The concept of j-master will be used to define discharging
rules in the following proofs.

Now, we apply the discharging method to the associated plane graph G* of
G and complete the proof by a contradiction.

Since G* is a plane graph, Euler’s formula on G* can be rewritten as

Y@=+ D (d(f)—4) =8

VeV (GX) FEF(GX)
Define ch(x) to be the initial charge of x € V(G*) U F(G*). Let
ch(v) =d(v) —4, YoveV(GY)

and let
ch(f) = d(f)—4, ¥ feF(G).

It follows that

Z ch(z) < 0.

2€V(GX)UF(GX)

In the next, we will reassign a new charge, denoted by ch’(z), to each x €
V(G*) U F(G*) according to the following discharging rules. Since our rules
only move charge around, and do not affect the sum, we have

Z ch/(z) = Z ch(z) < 0.

2€V(GX)UF(GX) 2V (GX)UF(G*)

However, we will prove the final charge ch/(x) of every element z € V(G*) U
F(G*) is nonnegative in what follows. This leads to

> @) =0,

2€V(GX)UF(GX)

a contradiction.

A vertex v in G is small if d(v) < 7 and is big if d(v) > 8. A 3-face in G* is
of type one if it is incident with one crossing vertex, one small vertex, and one
big vertex, and is of type two otherwise. Note that if f is a type two 3-face, then
f shall be incident with at least two big vertices because no two small vertices
are adjacent in G by Lemma 1 (b) and no two crossing vertices are adjacent in
G* by Lemma 1 (a). Our discharging rules are defined as follows.
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Rule 1.1 Each 3-vertex in G receives 1/3 from its 3-master, 2/3 from its
4-master, 1/3 from its 5-master, and sends 1/3 to each type one 3-face incident
with it in G*.

Rule 1.2 Each 4-vertex in G receives 2/3 from its 4-master, 1/3 from its
5-master, and sends 1/3 to each type one 3-face incident with it in G*.

Rule 1.3 Each 5-vertex in G receives 1/3 from its 5-master and sends 1/3 to
each type one 3-face incident with it in G*.

Rule 1.4 Each 6-vertex in G sends 1/3 to each type one 3-face incident with
it in G*.

Rule 1.5 Each 7-vertex in G sends 1/2 to each type one 3-face incident with
it in G*.

Rule 1.6 Each d-vertex in G (8 < d < A—4) sends 1/2 to each 3-face incident
with it in G*.

Rule 1.7 Each d-vertex in G (A —3 < d < A) sends 2/3 to each type one
3-face and 1/2 to each type two 3-face incident with it in G*.

Rule 1.8 Each k-face (k > 5) in G* sends (k — 4)/t(f) to each 3-vertex
incident with it, where ¢(f) is the number of 3-vertices incident with face f.

Clearly, if d(f) = 4, then

ch'(f) = ch(f) = d(f) -4 =0,
and if d(f) > 5, then

d(f) — 4
t(f)

by Rule 1.8. Now, we shall consider the initial charges of 3-faces. First, suppose
that f is of type one. Then by (b), if the small vertex v incident with it is of
degree i (3 < i < 7), then f is also incident with one crossing vertex and one
big vertex of degree at least A + 3 — i. Therefore, by Rules 1.1-1.7, f receives
at least 1 from the vertices incident with it and sends out none. Thus,

ch'(f) = ch(f) +1=0.

Suppose that f is of type two, i.e., f is incident with at least two big vertices.
By Rules 1.6 and 1.7, each big vertex sends 1/2 to each type two 3-face incident
with it, and thus, f receives at least 2 x 1/2 = 1. Note that f sends out none.
Therefore,

ch'(f) = ch(f) —t(f) =0

W (f) = ch(f)+1=0.

Now, we check the initial charge of the vertex v € V(G*) with dgx (v) = d.
Recall that the vertices of G* except the crossing ones are just the vertices of
G. Suppose d = 3. Then v has one 3-master, one 4-master, and one 5-master.
Therefore, v receives totally 4/3 from its masters by Rule 1.1. If n.(v) = 3,
then f3(v) =0 by Lemma 2, and then v sends out none. Therefore,

ch'(v) = ch(v) + g > 0.
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If n.(v) = 2, then by Lemma 1 (a), f3(v) < 2. If f3(v) <1, then

4 1
I =ch —  =0.
ch' (v) = ch(v) + 37 3

If f3(v) = 2, then by Lemma 1 (c), v must be incident with a 5T-face f. It
follows that v receives at least 1/2 from f by Rule 1.8. Therefore,

4 2 1
/ — _
ch(v)fch(v)—i—3 3—i—2>0.

If n.(v) < 1, then by Lemma 1 (d), v is incident with at most one type one
3-face. Thus, by R1.1, we have

4 1
ch'(v) > ch(v) + 3 3= 0.

Suppose d = 4. If v is a crossing vertex, then
ch/(v) = ch(v) = 0.

If not, then by Lemma 2, v is incident with at most three type one 3-faces.
Note that v have a 4-master and a 5-master. Therefore, by Rule 1.2, we have

1 2 1
ch'(v)}ch(v)—3x3+3+3:0.

Suppose d = 5. Then v is incident with at most four type one 3-faces by Lemma
2. Note that v has a 5-master. Therefore, we have

1 1
ch’'(v) = ch(v) — 4 x 3 +.,=0
by Rule 1.3. Suppose d = 6. Then we have
, 1
ch'(v) = ch(v) — 6 x 3 =0

by Rule 1.4. Suppose d = 7. Then v is incident with at most six type one
3-faces by Lemma 2. Therefore, we have

1
ch'(v) = ch(v) — 6 x 5 = 0
by Rule 1.5. Suppose
Then by Rule 1.6, we have

ch'(v) = ch(v) — = > 0.
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Suppose d = A — 3. Then by Rule 1.7, we have

2d A—-15
ch'(v) = ch(v) — (v) = > 0.
3 3
In the following, we will deal with the last three cases when A —2 < d < A
much more carefully since the vertices of such a degree may give out charges as
masters of some vertices. A fan F' = [u;v,v9,...,v,] is a graph with

V(F) = {u,v1,v2,...,0,}, E(F)={uvy,uvs, ..., utn,vivs,..., 0 1V}

We first show two claims.

Claim 1 There is no fan F = [v;x,y, z] in G* such that z, z are small vertices
and y is a crossing vertex.

Proof Suppose, to be contrary, that such a fan F' exists. Since the ordinary
graph G is simple and ¥ is a crossing vertex in G*, £z must be a crossing edge
in G. But both x and z are small vertices, this contradicts the fact that no two
small vertices are adjacent in G.

Claim 2 FEach big vertex v in G* is incident with at most [ fs(v)/2] + 1
type one 3-faces if fs(v) = d(v) — 2, at most [f3(v)/2] type one 3-faces if
f3(v) =d(v) — 1, and at most | f3(v)/2] type one 3-faces if f3(v) = d(v).

Proof Otherwise, there must exist three consecutive type one 3-faces that
are incident with v. Denote those three 3-faces by wvvive, vvous, and vvsvy,
respectively. Then Fy = [v;v1,v9,v3] and Fy = [v;v9,v3,v4] are two fans. By
the definition of type one 3-face and Lemma 1 (a), one of F} and F» must be
the fan described in Claim 1, a contradiction.

Suppose d = A — 2. Then by (b), for any small vertex u such that uv €
E(G*), we have d(u) > 5. Therefore, v can be 5-master of at most three vertices
by (c). Thus, v sends out at most 3 x 1/3 = 1 as masters of some vertices by
Rule 1.3. If f3(v) < d(v) — 2, then we have

2 A—-1
ch'(v) = ch(v) — 3 fa(v) —1> 3 s > 0.

If f3(v) > d(v) — 1, then by Claim 2 and Rule 1.7, we have

ch!(v) = ch(v) — g {fsév)w - ;(fs(v) - {fsév)w) 1> 5A1; & > 0.

Suppose d = A — 1. Then by (b), for any small vertex u such that uv € E(G*),
we have d(u) > 4. Therefore, v can be 4-master of at most two vertices and
5-master of at most three vertices by (c). Thus, v sends out at most

9 17
9 3x =
XgtoX g =g
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as masters of some vertices by Rules 1.2 and 1.3. By Claim 2 and Rule 1.7, if
fs(v) < d(v) = 2, then

o (0) > eh() = 2 o)~ 1> 210 20,

if f3(v) = d(v) — 1, then

ch'(v) = ch(v) — g {fgé@)" ! (fg(U) — {f?’ U)D T > PA T > 0;

and if f3(v) = d(v), we still have

e (v) > ch(v) — ifsév)J B ;<f3(v) N Lfsév)D 7

>3A—UA;1VM—41
>0

since A > 16. Suppose d = A. Then by (b), for any small vertex u such that
uwv € E(G*), we have d(u) > 3. Therefore, v can be 3-master of at most one
vertex, 4-master of at most two vertices, and 5-master of at most three vertices
by (c¢). Thus, v sends out at most

1 9 1 8
9 3x - —
g TEN g TN g T g

as masters of some vertices by Rules 1.2 and 1.3. If f3(v) < d(v) — 2, then we
have

2 8 A-16
— >
3 fg(’U) 3 = 3
if f3(v) = d(v) — 1, then by Claim 2, we have
/ 2 fg(’U) 1 fg(’U) 8 5A — 74
> - - — - >
o (0) = chv) = o[ 77 =, (01 = [y ]) =g =7y, T >0
by Rule 1.7; if f3(v) = d(v), then we still have
’ 2 fg(v) 1 fg(v) 8 5A — 80
> — — — 7> >
ot (0) > ch(w) = | 77 | = 5 (A = [ 757 ]) =g 27T 20
by Claim 2 and R1.7, since A > 16. O

ch'(v) = ch(v) — > 0;

Theorem 2 Let G be a 1-planar graph with mazimum degree A > 21. Then
X((G) =4, x(G)=A+1

Proof Let G be a minimal counterexample to the theorem. Then G has the
following properties.
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(a) G is connected.

(b) G contains no edge uv such that

A
2

(c) For each integer 2 < k < 5, let

min{d(u), d(v)} < { J d(u) +d(v) < A+ 1.

X ={z V(G |da(x) <k}, Yi= ] Na(x).
zeXy

If X # (0, then there exists a bipartite subgraph My = (X, Y;) of G such that
dy, (xz) =1 for any = € X, and dp, (y) < k— 1 for any y € Yj,. We also call y
the k-master of x if xy € M} and z € X}.

(a) and (b) are easy to be proved. The proof of (c) can be found in [20].

It is also easy to see from (b) that §(G) > 2. By (c), each i-vertex (2 < i < 5)
has one j-master (i < j < 5).

Now, we also apply the discharging method to the associated plane graph
G* of G and complete the proof by a contradiction.

Since G* is a plane graph, by Euler’s formula, we have

Yo @) =4+ Y (d(f) —4) =8

vEV(GX) FEF(GX)

Here, we define the initial charge of z € V(G*) U F(G*), small vertex, big
vertex, type one 3-face, and type two 3-face just as the same as we defined in
the proof of Theorem 1, respectively. Our discharging rules are redefined as
follows.

Rule 2.1 Each 2-vertex in G receives 2/3 from its 2-master, 1/3 from its
3-master, 2/3 from its 4-master, and 1/3 from its 5-master.

Rule 2.2 Each 3-vertex in G receives 1/3 from its 3-master, 2/3 from its
4-master, 1/3 from its 5-master, and sends 1/3 to each type one 3-face incident
with it in G*.

Rule 2.3 Each 4-vertex in G receives 2/3 from its 4-master, 1/3 from its
5-master, and sends 1/3 to each type one 3-face incident with it in G*.

Rule 2.4 Each 5-vertex in G receives 1/3 from its 5-master and sends 1/3 to
each type one 3-face incident with it in G*.

Rule 2.5 Each 6-vertex in G sends 1/3 to each type one 3-face incident with
it in G*.

Rule 2.6 Each 7-vertex in G sends 1/2 to each type one 3-face incident with
it in G*.

Rule 2.7 Each d-vertex in G (8 < d < A—5) sends 1/2 to each 3-face incident
with it in G*.

Rule 2.8 Each d-vertex in G (A —4 < d < A) sends 2/3 to each type one
3-face and 1/2 to each type two 3-face incident with it in G*.
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Rule 2.9 Each k-face in G* (k > 5) sends (k—4)/t(f) to each 3-vertex
incident with it, where ¢(f) is the number of 3-vertices incident with face f.

By the similar means as we applied in the proof of Theorem 1, we can check
that ch/(f) = 0 for every face f € F(G*) (here we shall in particular note that
each 2-vertex is not incident with any type one face in G* by Lemma 1 (b)) and
ch!(v) = 0 for every vertex v € V(G*) with 3 < d(v) < A—5. Note that Claims
1 and 2 in the proof of Theorem 1 are also available here. In the following, we
just need to check that ch’(v) > 0 for each vertex v with

dv) € {2,A—4,A—3,A—2,A—1,A}.

Let v be a 2-vertex. By (c), v has a j-master, where 2 < j < 5. Then we

have 5 1 9 1
h, :h =
ch’ (v) c(v)+3+3+3+3 0

by Rule 2.1. Let v be a (A — 4)-vertex. Then by (b), for any small vertex u
such that wv € E(G*), we have d(u) > 6. Therefore, v cannot send out charges
as masters of some vertices by Rules 2.1-2.4. Therefore,
2 A —16
ch'(v) > ch(v) — 3 f3(v) = g3 7 0

by Rule 2.8. Let v be a (A — 3)-vertex. Then by (b), for any small vertex u
such that uv € E(G*), we have d(u) > 5. Therefore, v can be 5-master of at
most four vertices by (c). Thus, v sends out at most 4 x 1/3 = 4/3 as masters
of some vertices by Rules 2.1-2.4. Therefore,

4  A-19
>

3 3

by Rule 2.8. Let v be a (A — 2)-vertex. Then by (b), for any small vertex u

such that uv € E(G*), we have d(u) > 4. Therefore, v can be 4-master of at

most three vertices and 5-master of at most four vertices by (c). Thus, v sends
out at most

ch'(v) > ch(v) — g fa(v) — >0

2 1 10
3 x 4x =
3+ 3 3

as masters of some vertices by Rules 2.1-2.4. If f3(v) < d(v) — 2, then we have

10 . A—=20
Z
3 3
if f3(v) = d(v) — 1, then by Claim 2 in the proof of Theorem 1, we have
, 21 fs(v)7 1 fs(0)7y 10 _ 5A — 89
Z - - — - >
eh(0) 2 che) = o[ 77 = (B0) = [F70]) = =TT >0

by Rule 2.8. Let v be a (A — 1)-vertex. Then by (b), for any small vertex u
such that uv € E(G*), we have d(u) > 3. Therefore, v can be 3-master of at

ch'(v) = ch(v) — gfg(ﬂ) - > 0;
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most two vertices, 4-master of at most three vertices, and 5-master of at most
four vertices by (c). Thus, v sends out at most

1 2 1
2 x 3 x 4x =4
3+ 3+ 3

as masters of some vertices by Rules 2.1-2.4. If f3(v) < d(v) — 2, then we have

A—-21
3

if f3(v) = d(v) — 1, then by Claim 2 in the proof of Theorem 1, we also have

ch'(v) = ch(v) — g{fsév)w - ;(f?,(v) = {fséﬂ)D —4> 5A1; oo

ch/(v) = ch(v) — g fa(v) —4 > > 0;

by Rule 2.8. Let v be a A-vertex. Then by (b), for any small vertex u such
that uv € E(G*), we have d(u) > 2. Therefore, v can be 2-master of at most
one vertex, 3-master of at most two vertices, 4-master of at most three vertices,
and 5-master of at most four vertices by (c). Thus, v sends out at most

9 1 9 1 14
9 3 IV
g TeXgtoxgtaxy

3
as masters of some vertices by Rules 2.1-2.4. If f3(v) < d(v) — 3, then we have

14 _A-20
>

ch'(v)>ch(v)—§f3(v)— N

if
d(v) — 2 < f5(v) < d(v) — 1,
then by Claim 2 in the proof of Theorem 1, we have

o> e - 2([ P 1) =y s~ [247] 1) -

5A — 100
>
12

>0

by Rule 2.8; if f3(v) = d(v), then we still have

CHQO}Ch@)_g[ﬁSOJ—;(ﬁOO—[ﬁng)— ?;>5AI;04>o

by Rule 2.8. Therefore,

Z ch(z) = Z ch'(z) > 0.

2€V(GX)UF(GX) 2V (GX)UF(GX)

This contradiction completes the proof of the theorem. O
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