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k-FORESTED CHOOSABILITY OF GRAPHS WITH
BOUNDED MAXIMUM AVERAGE DEGREE
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Abstract. A proper vertex coloring of a simple graph is k-forested
if the graph induced by the vertices of any two color classes is a
forest with maximum degree less than k. A graph is k-forested q-
choosable if for a given list of q colors associated with each vertex v,
there exists a k-forested coloring of G such that each vertex receives
a color from its own list. In this paper, we prove that the k-forested
choosability of a graph with maximum degree ∆ ≥ k ≥ 4 is at mostl

∆
k−1

m
+ 1,

l
∆

k−1

m
+ 2 or

l
∆

k−1

m
+ 3 if its maximum average degree

is less than 12
5

, 8
3

or 3, respectively.

1. Introduction

In this paper, all graphs considered are finite, simple and undirected.
We use V (G), E(G), δ(G) and ∆(G) to denote the vertex set, the
edge set, the minimum degree and the maximum degree of a graph
G, respectively. The maximum average degree of G is defined by
mad(G) = max{2|E(H)|/|V (H)|,H ⊆ G}. Any undefined notation
follows that of Bondy and Murty [1].
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A proper vertex coloring of G is called an acyclic coloring of G if
there are no bichromatic cycles in G under this coloring. The small-
est number of colors such that G has an acyclic coloring is called the
acyclic chromatic number of G, denoted by χa(G). This concept was
introduced by Grünbaum [3], and has been extensively studied in many
papers. A coloring such that for every vertex v ∈ V (G) no color appears
more than k − 1 times in the neighborhood of v is called a k-frugal
coloring. The notation of k-frugality was introduced by Hind et al. in
[4].

Yuster mixed these two notions (setting k = 3) in [6] and first in-
troduced the concept of linear coloring, which is a proper coloring of
G such that the graph induced by the vertices of any two color classes
is the union of vertex-disjoint paths. The linear chromatic number
lc(G) of the graph G is the smallest number t such that G has a linear
t-coloring. Linear coloring was also investigated by Esperet, Montassier
and Raspaud in [2], and by Raspaud and Wang in [5]. In [2], the au-
thors introduced a concept of k-forested coloring of a graph G, which
is defined to be a proper vertex coloring of G such that the union of
any two color classes is a forest of maximum degree less than k. So a
linear coloring is equivalent to a 3-forested coloring. The k-forested
chromatic number of a graph G, denoted by Λk(G), is the smallest
number of colors appearing in a k-forested coloring of G. Note that
Λk(G) = χa(G) for k > ∆(G). If L is an assignment of a list L(v)
of colors to each vertex v ∈ V (G), then G is said to be k-forested L-
colorable if it has a k-forested coloring where each vertex is colored with
a color from its own list. We say G is k-forested q-choosable if G is
k-forested L-colorable whenever |L(v)| = q for every vertex v ∈ V (G).
The k-forested choice number Λl

k(G) is the smallest integer q such that
G is k-forested q-choosable. When k = 3, this is just equivalent to the
linear choice number, which has been investigated by Esperet et al. for
the graphs with bounded maximum average degree [2]. Their result is
as follows.

Theorem 1.1. [2] Let G be a graph with maximum degree ∆.
(1) If ∆ ≥ 3 and mad(G) < 16

7 , then Λl
3(G) =

⌈
∆
2

⌉
+ 1.

(2) If mad(G) < 5
2 , then Λl

3(G) ≤
⌈

∆
2

⌉
+ 2.

(3) If mad(G) < 8
3 , then Λl

3(G) ≤
⌈

∆
2

⌉
+ 3.

This paper is devoted to the following extensions of Theorem 1.1.
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Theorem 1.2. Given a positive integer M ≥ k ≥ 4, let G be a graph
with maximum degree ∆ ≤ M .
(1) If mad(G) < 12

5 , then Λl
k(G) ≤

⌈
M

k−1

⌉
+ 1.

(2) If mad(G) < 8
3 , then Λl

k(G) ≤
⌈

M
k−1

⌉
+ 2.

(3) If mad(G) < 3, then Λl
k(G) ≤

⌈
M

k−1

⌉
+ 3.

By the definition of the k-forested choice number and k-forested chro-
matic number, one can easily say that Λl

k(G) ≥ Λk(G) ≥
⌈

∆
k−1

⌉
+ 1

for every graph G with maximum degree ∆. Now setting M = ∆ in
Theorem 1.2, we have the following theorem as a corollary.

Theorem 1.3. Let G be a graph with maximum degree ∆ ≥ k ≥ 4.
(1) If mad(G) < 12

5 , then Λl
k(G) =

⌈
∆

k−1

⌉
+ 1.

(2) If mad(G) < 8
3 , then Λl

k(G) ≤
⌈

∆
k−1

⌉
+ 2.

(3) If mad(G) < 3, then Λl
k(G) ≤

⌈
∆

k−1

⌉
+ 3.

Since every planar or projective-planar graph G with girth g(G) sat-
isfies mad(G) < 2g(G)

g(G)−2 , we obtain the direct corollary from Theorem
1.3.

Corollary 1.4. Let G be a planar or projective-planar graph with max-
imum degree ∆ ≥ k ≥ 4.

(1) If g(G) ≥ 12, then Λl
k(G) =

⌈
∆

k−1

⌉
+ 1.

(2) If g(G) ≥ 8, then Λl
k(G) ≤

⌈
∆

k−1

⌉
+ 2.

(3) If g(G) ≥ 6, then Λl
k(G) ≤

⌈
∆

k−1

⌉
+ 3.

Remark 1.1. In Theorems 1.2 and 1.3, we always respectively assume
M ≥ k or ∆ ≥ k. That is because if we assume M < k or ∆ < k, then
Λl

k(G) = χl
a(G) holds for any graph G, where χl

a(G) denotes the acyclic
choice number of G.

2. Proof of Theorem 1.2

In Claim 2.1 below, we will use (p) to denote the relevant part of
Theorem 1.2 (p = 1, 2, 3). For brevity we will write Q =

⌈
M

k−1

⌉
and
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q = Q + p, so that in part (p) we wish to prove that Λl
k(G) ≤ q. Note

that, since M ≥ k,

(2.1) Q ≥ 2 and q = Q + p ≥ p + 2.

Suppose that part (p) of Theorem 1.2 is false. Let G be a minimal
counterexample to it; that is, every proper subgraph H of G is k-forested
q-choosable but G itself is not. (Here note that mad(H) ≤ mad(G) if H
is a subgraph of G.) Let L be a list assignment of a list L(v) of q colors
to each vertex v ∈ V (G), such that G has no k-forested L-coloring.

By the minimality of G, every proper subgraph H of G has a k-
forested L-coloring. If c is a k-forested L-coloring of a proper induced
subgraph H of G, and v ∈ V (G), we use c(NG(v)) to denote the set
of colors used by c on neighbors of v, and Ck−1(v) to denote the set of
colors that are each used by c on exactly k−1 neighbors of v. Note that
if v has at least one neighbor that is uncolored, then
(2.2)

|Ck−1(v)| ≤
⌊

dG(v)− 1
k − 1

⌋
≤

⌊
∆− 1
k − 1

⌋
≤

⌊
M − 1
k − 1

⌋
=

⌈
M

k − 1

⌉
−1 = Q−1.

Claim 2.1. G does not contain any of the following configurations:
(C1) a 1-vertex;
(C2) a 2-vertex adjacent to a (≤ p)-vertex;
(C3) if p ≤ k − 2, a 2-vertex adjacent to a (≤ p + 1)-vertex and a
(≤ 2p + 1)-vertex;
(C4) if p = 3, a 4-vertex adjacent to three or more 2-vertices;
(C5) if p = 3, a 5-vertex adjacent to five 2-vertices.

Remark 2.1. During proving Claim 2.1, we assume only that k ≥ 2 in
(C1), k ≥ p+1 in (C2), k ≥ max{p+2, 4} in (C3), k, p ≥ 3 in (C4), and
k ≥ 4, p ≥ 3 in (C5). These conditions certainly hold if the conditions
given in (C3)–(C5) hold and also p ≤ 3 and k ≥ 4, as stated in Theorem
1.2.

Remark 2.2. In each part of the following proof, we first delete a set
of vertices {x1, . . . , xn} from G to obtain an induced subgraph H that
satisfies Theorem 1.2, and then extend the coloring c of H to each of
x1, . . . , xn one by one. One should be careful here to update the color set
Ck−1(·) each time when c has been extended. For example, the color set
Ck−1(·) in terms of the coloring c of H may be different from the one
in terms of the coloring c of H + v1 after extending c to v1, but we still
use the same notation for simplicity.
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Proof. (C1) Suppose G contains a 1-vertex v. Let c be a k-forested
L-coloring of G − v, which exists by the minimality of G. Denote the
neighbor of v by u, and define

F (v) := {c(u)} ∪ Ck−1(u).

Then |F (v)| ≤ Q by (2.2), and so L(v) \ F (v) 6= ∅ since |L(v)| = q > Q
by (2.1). So we can color v with a color in L(v) \F (v), and the coloring
obtained is a k-forested L-coloring of G, which is a contradiction.

(C2) Suppose G contains a 2-vertex v which is adjacent to a (≤ p)-
vertex u. Let the other neighbor of v be w. In view of (C1) we may
assume that p ≥ 2. Let c be a k-forested L-coloring of G− v. Note that
Ck−1(u) = ∅, since p− 1 < k − 1. Define

F (v) :=
{
{c(u)} ∪ c(NG(u)) ∪ Ck−1(w), if c(u) = c(w);
{c(u), c(w)} ∪ Ck−1(w), if c(u) 6= c(w).

Then, by (2.2), |F (v)| ≤ 1+ (p− 1)+ (Q− 1) < Q+ p = q = |L(v)|, and
so we can color v with a color in L(v) \ F (v). This gives a k-forested
L-coloring of G, which is a contradiction.

(C3) Suppose G contains a 2-vertex v which is adjacent to a (≤ p+1)-
vertex u and a (≤ 2p + 1)-vertex w. Let c be a k-forested L-coloring of
G− v. Note that Ck−1(u) = ∅, since p < k − 1 by hypothesis. Define

F (v) :=
{

{c(u)} ∪ [c(NG(u)) ∩ c(NG(w))] ∪ Ck−1(w), if c(u) = c(w);
{c(u), c(w)} ∪ Ck−1(w), if c(u) 6= c(w).

Let i = |c(NG(u)) ∩ c(NG(w))| ≤ |c(NG(u))| ≤ p. If c(u) = c(w) then

|F (v)| ≤ 1 + i +
⌊

2p− i

k − 1

⌋
≤ 1 + p +

⌊
p

k − 1

⌋
= 1 + p < q = |L(v)|

by (2.1), since p < k − 1. So suppose c(u) 6= c(w). If p = 1 then
|c(NG(w))| ≤ 2 and so Ck−1(w) = ∅, since k − 1 > 2; thus |F (v)| ≤ 2 <
3 ≤ |L(v)| by (2.1). If p ≥ 2, then |F (v)| < |L(v)| by the same argument
as in (C2). In every case we can color v with a color from L(v) \ F (v)
to get a k-forested L-coloring of G, which is a contradiction.

(C4) Suppose p = 3 and G contains a 4-vertex v which is adja-
cent to three 3-vertices x, y, z. Denote the other neighbors of v, x, y, z
by w, x′, y′, z′ respectively. Let c be a k-forested L-coloring of G −
{v, x, y, z}. Clearly Ck−1(v) = ∅. Give z a color c(z) ∈ L(z) \ F (z)
where

F (z) := {c(w), c(z′)} ∪ Ck−1(z′);
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this is possible since |L(z)| ≥ Q+3 by (2.1), while |Ck−1(z′)| ≤ Q−1 by
(2.2). Next, noting that v has colored neighbors z, w where c(z) 6= c(w),
and Ck−1(u) = ∅ for all u ∈ NG(v)\{w}, give v a color c(v) ∈ L(v)\F (v)
where

F (v) := {c(w), c(z), c(x′)} ∪ Ck−1(w).

Then, noting that |Ck−1(v)| =
⌊

1
k−1

⌋
= 0 since c(z) 6= c(w), give y a

color from L(y) \ F (y) where

F (y) :=
{
{c(v), c(w), c(z)} ∪ Ck−1(y′), if c(v) = c(y′);
{c(v), c(y′)} ∪ Ck−1(y′), if c(v) 6= c(y′).

Finally, noting that c(v) 6= c(x′), give x a color from L(x) \ F (x) where

F (x) := {c(v), c(x′)} ∪ Ck−1(v) ∪ Ck−1(x′),

which is possible since now Ck−1(v) ≤
⌊

2
k−1

⌋
≤ 1. This result is a

k-forested coloring of G, a contradiction.
(C5) Suppose p = 3 and G contains a 5-vertex v which is adjacent

to five 2-vertices x1, · · · , x5. Denote the other neighbor of xi by x′i
(i = 1, · · · , 5). Let c be a k-forested L-coloring of G−{v, x1, x2, x3, x4}.
(In fact we do not need d(x5) = 2, only assuming d(x5) < k is enough
so that when we prepare to color v, Ck−1(x5) = ∅.) Give x1 a color
c(x1) ∈ L(x1) \ F (x1) where

F (x1) := {c(x′1), c(x5)} ∪ Ck−1(x′1),

then give v a color c(v) ∈ L(v) \ F (v) where

F (v) := {c(x1), c(x5), c(x′2), c(x
′
3)},

which is possible since |L(v)| ≥ p + 2 = 5 by (2.1). Now, noting that
c(x1) 6= c(x5) so that (even after x2 is colored) |Ck−1(v)| ≤

⌊
2

k−1

⌋
= 0,

and c(v) 6∈ {c(x′2), c(x′3)}, give xi a color from L(xi) \ F (xi) where

F (xi) := {c(v), c(x′i)} ∪ Ck−1(x′i) (i = 2, 3).

Finally, give x4 a color from L(x4) \ F (x4) where

F (x4) :=
{

{c(v), c(x1), c(x5)} ∪ Ck−1(x′4), if c(v) = c(x′4);
{c(v), c(x′4)} ∪ Ck−1(v) ∪ Ck−1(x′4), if c(v) 6= c(x′4),

which is possible since now |Ck−1(v)| ≤
⌊

3
k−1

⌋
≤ 1. This result is a

k-forested L-coloring of G, a contradiction. �
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In the next, we will complete the proof of each part of Theorem 1.2 by
a discharging procedure applying to the minimal counterexample G to
the theorem. We involve the same idea during each of the three proofs
(assign each vertex v ∈ V (G) an initial charge w(v) = d(v)) and the only
differences are the definition of the discharging rules and the estimation
on the final charge w∗(v) of each vertex v in G.

Proof of Theorem 1.2(1). We define discharging rules as follows.
R1.1. Each 3-vertex gives 1

5 to each adjacent 2-vertex;
R1.2. Each ≥ 4-vertex gives 2

5 to each adjacent 2-vertex.
Since the configuration (C1) in Claim 2.1 is forbidden in G, we assume

that d(v) ≥ 2 for any vertex v ∈ V (G). Suppose d(v) = 2. If v is
adjacent to a 2-vertex, then by the forbiddance of configuration (C3)
in G, v receives 2

5 from its another neighbor; if v is not adjacent to
any 2-vertex, then v also receives at least 2

5 from its neighbors. So
w∗(v) ≥ w(v) + 2

5 = 12
5 , since v gives nothing. Assume that d(v) = 3.

By R1.1, it gives out at most 3
5 . So w∗(v) ≥ w(v) − 3

5 = 3 − 3
5 = 12

5 .
Assume that d(v) = d ≥ 4. By R1.2, it gives out at most 2d

5 . So
w∗(v) ≥ w(v)− 2d

5 = d− 2d
5 = 3d

5 ≥ 12
5 . Thus w∗(v) ≥ 12

5 for each vertex
v ∈ V (G), proving that

mad(G) ≥ 2|E(G)|
|V (G)|

=

∑
v∈V (G) d(v)

|V (G)|
=

∑
v∈V (G) w(v)

|V (G)|

=

∑
v∈V (G) w∗(v)

|V (G)|
≥ 12|V (G)|/5

|V (G)|
=

12
5

.

This contradiction proves Theorem 1.2(1). �

Proof of Theorem 1.2(2). We define discharging rules as follows.
R2.1. Each 3-vertex gives 1

9 to each adjacent 2-vertex;
R2.2. Each d-vertex(4 ≤ d ≤ 5) gives 1

3 to each adjacent 2-vertex;
R2.3. Each ≥ 6-vertex gives 5

9 to each adjacent 2-vertex.
Similarly as above, we assume that d(v) ≥ 2 for any vertex v ∈ V (G).

Suppose d(v) = 2. Then v cannot be adjacent to any 2-vertex since
(C2) can not appear in G by Claim 2.1. If v is adjacent to a 3-vertex,
then by the forbiddance of configuration (C3) in G, another neighbor
of v must be a (≥ 6)-vertex, so v receives totally 1

9 + 5
9 = 2

3 by R2.1
and R2.3. If v is not adjacent to any 3-vertex, then by R2.2 and R2.3,
v receives at least 1

3 + 1
3 = 2

3 . So w∗(v) ≥ w(v) + 2
3 = 8

3 , since v gives
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nothing. Suppose d(v) = 3. Then v gives out at most 1
3 by R2.1, so

w∗(v) ≥ w(v) − 1
3 = 8

3 . Similarly, we can prove that w∗(v) ≥ 8
3 for

any (≥ 4)-vertex. Thus w∗(v) ≥ 8
3 for each vertex v ∈ V (G), proving

that mad(G) ≥ 8
3 . This contradiction completes the proof of Theorem

1.2(2). �

Proof of Theorem 1.2(3). We define discharging rules as follows.
R3. Each ≥ 4-vertex gives 1

2 to each adjacent 2-vertex.
Similarly we first assume d(v) ≥ 2 for any v ∈ V (G). Suppose

d(v) = 2. Then the two neighbors of v must be (≥ 4)-vertices since
the configuration (C2) in Claim 2.1 is forbidden in G. Thus, v receives
together 1 from its neighbors but gives nothing by R3, which implies
that w∗(v) ≥ w(v) + 1 ≥ 3. Suppose d(v) = 3. Note that v receives and
gives nothing by R3, so w∗(v) = w(v) = 3. Suppose d(v) = 4. By the
forbiddance of configuration (C4) in G, v can be adjacent to at most
two 2-vertices, so it gives out at most 2 × 1

2 = 1 by R3. This implies
w∗(v) ≥ w(v)− 1 = 3. Suppose d(v) = 5. Noting that the configuration
(C5) can not occur in G, v can be adjacent to at most four 2-vertices, so
it gives out at most 4× 1

2 = 2 by R3. This implies w∗(v) ≥ w(v)−2 = 3.
Suppose d(v) = t ≥ 6. We have w∗(v) ≥ w(v) − 1

2 t = 1
2 t ≥ 3 by R3.

Thus w∗(v) ≥ 3 for each vertex v ∈ V (G), proving that mad(G) ≥ 3.
This contradiction completes the proof of Theorem 1.2. �
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