List (d,1)-Total Labelling of Graphs Embedded in Surfaces^{*}

YU Yong^{1†} ZHANG Xin¹ LIU Guizhen¹

Abstract The (d,1)-total labelling of graphs was introduced by Havet and Yu. In this paper, we consider the list version of (d,1)-total labelling of graphs. Let G be a graph embedded in a surface with Euler characteristic ε whose maximum degree $\Delta(G)$ is sufficiently large. We prove that the list (d,1)-total labelling number $Ch_{d,1}^{T}(G)$ of G is at most $\Delta(G) + 2d$.

Keywords (d,1)-total labelling, list (d,1)-total labelling, list (d,1)-total labelling number, graphs

Chinese Library Classification 0157.5 2010 Mathematics Subject Classification 05C15

关于可嵌入曲面图的列表 (d,1)- 全标号问题

于永1 张 欣1 刘桂真1

摘要 图的 (d,1)- 全标号问题最初是由 Havet 等人提出的. 在本文中,我们考虑了可嵌入曲面图的列表 (d,1)- 全标号问题,并证明了其列表 (d,1)- 全标号数不超过 Δ(G) + 2d.
关键词 (d,1)- 全标号,列表 (d,1)- 全标号,列表 (d,1)- 全标号数,图
中图分类号 O157.5
数学分类号 05C15

0 Introduction

In this paper, graph G is a simple connected graph with a finite vertex set V(G)and a finite edge set E(G). If X is a set, we usually denote the cardinality of X by |X|. Denote the set of vertices adjacent to v by N(v). The degree of a vertex v in G, denoted by $d_G(v)$, is the number of edges incident with v. We sometimes write $V, E, d(v), \Delta, \delta$ instead of $V(G), E(G), d_G(v), \Delta(G), \delta(G)$, respectively. Let G be a plane graph. We always denote by F(G) the face set of G. The degree of a face f, denoted by d(f), is the number of edges incident with it, where cut edge is counted twice. A k-, k⁺- and k-vertex (or face) in graph G is a vertex (or face) of degree k, at least k and at most k, respectively.

收稿日期: 2011年2月3日.

 $[\]ast$ Supported by GIIFSDU (yzc11025), NNSF(61070230, 11026184, 10901097) and RFDP (200804220001, 20100131120017) and SRF for ROCS.

^{1.} School of Mathematics, Shandong University, Jinan 250100, China; 山东大学数学学院, 济南 250100

[†] 通讯作者 Corresponding author

The (d,1)-total labelling of graphs was introduced by Havet and Yu^[1]. A k-(d,1)-total labelling of a graph G is a function c from $V(G) \cup E(G)$ to the color set $\{0, 1, \dots, k\}$ such that $c(u) \neq c(v)$ if $uv \in E(G)$, $c(e) \neq c(e')$ if e and e' are two adjacent edges, and $|c(u) - c(e)| \ge d$ if vertex u is incident to the edge e. The minimum k such that G has a k-(d,1)-total labelling is called the (d,1)-total labelling number and denoted by $\lambda_d^{\mathrm{T}}(G)$. Readers are referred to [2,4-7] for further research.

Suppose that L(x) is a list of colors available to choose for each element $x \in V(G) \cup E(G)$. If G has a (d,1)-total labelling c such that $c(x) \in L(x)$ for all $x \in V(G) \cup E(G)$, then we say that c is an L-(d,1)-total labelling of G, and G is L-(d,1)-total labelable (sometimes we also say G is list (d,1)-total labelable). Furthermore, if G is L-(d,1)-total labelable for any L with |L(x)| = k for each $x \in V(G) \cup E(G)$, we say that G is k-(d,1)-total choosable. The list (d,1)-total labelling number, denoted by $Ch_{d,1}^{T}(G)$, is the minimum k such that G is k-(d,1)-total choosable. Actually, when d = 1, the list (1,1)-total labelling is the well-known list total coloring of graphs. It is known that for list version of total colorings there is a list total coloring conjecture (LTCC). Therefore, it is natural to conjecture that $Ch_{d,1}^{T}(G) = \lambda_{d}^{T}(G) + 1$. Unfortunately, counterexamples that $Ch_{d,1}^{T}(G)$ is strictly greater than $\lambda_{d}^{T}(G) + 1$ can be found in [9]. Although we can not present a conjecture like LTCC, we conjecture that

$$Ch_{d,1}^{\mathrm{T}}(G) \leq \Delta + 2d$$

for any graph G. In [9], we studied the list (d,1)-total labelling of special graphs such as paths, trees, stars and outerplanar graphs which lend positive support to our conjecture.

In this paper, we prove that, for graphs embedded in a surface with Euler characteristic ε , the conjecture is still true when the maximum degree is sufficiently large. Our main results are the following:

Theorem 0.1 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon \leq 0$ and

$$\Delta(G) \ge \frac{d}{2d-1} \left(10d - 8 + \sqrt{(10d-2)^2 - 24(2d-1)\varepsilon} \right) + 1,$$

where $d \ge 2$. Then

$$Ch_{d,1}^{\mathrm{T}}(G) \leq \Delta(G) + 2d$$

Theorem 0.2 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon > 0$. If $\Delta(G) \ge 5d + 2$ where $d \ge 2$, then

$$Ch_{d,1}^{\mathrm{T}}(G) \leq \Delta(G) + 2d$$

We prove two conclusions which are slightly stronger than the theorems above as follows.

Theorem 0.3 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon \leq 0$ and let positive integer

$$M \ge \frac{d}{2d-1} \left(10d - 8 + \sqrt{(10d-2)^2 - 24(2d-1)\varepsilon} \right) + 1,$$

where $d \ge 2$. If $\Delta(G) \le M$, then

 $Ch_{d,1}^{\mathrm{T}}(G) \leq M + 2d.$

15 卷

In particular,

$$Ch_{d,1}^{\mathrm{T}}(G) \leq \Delta(G) + 2d$$
 if $\Delta(G) = M$

Theorem 0.4 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon > 0$ and let positive integer $M \ge 5d + 2$ where $d \ge 2$. If $\Delta(G) \le M$, then

$$Ch_{d,1}^{\mathrm{T}}(G) \leq M + 2d.$$

In particular,

$$Ch_{d,1}^{\mathrm{T}}(G) \leq \Delta(G) + 2d$$
 if $\Delta(G) = M$.

The interesting cases of Theorem 0.3 and Theorem 0.4 are when $M = \Delta(G)$. Indeed, Theorem 0.3 and Theorem 0.4 are only technical strengthening of Theorem 0.1 and Theorem 0.2, respectively. But without them we would get complications when a subgraph $H \subset G$ such that $\Delta(H) < \Delta(G)$ is considered.

In Section 1, we prove some lemmas. In Section 2, we complete our main proof with discharging method.

1 Structural properties

From now on, we will use without distinction the terms *colors* and *labels*. Let c be a partial list (d,1)-total labelling of G. We denote by A(x) the set of colors which are still available for coloring element x of G with the partial list (d,1)-total labelling c. Let G be a minimal counterexample in terms of |V(G)| + |E(G)| to Theorem 0.3 or Theorem 0.4.

Lemma 1.1 G is connected.

Proof Suppose that G is not connected. Without loss of generality, let G_1 be one component of G and $G_2 = G \setminus G_1$. By the minimality of G, G_1 and G_2 are both (M + 2d)-(d,1)-total choosable which implies G is (M + 2d)-(d,1)-total choosable, a contradiction.

Lemma 1.2 For each $e = uv \in E(G)$,

$$d(u) + d(v) \ge M - 2d + 4.$$

Proof Suppose to the contrary that there exists some edge $e = uv \in E(G)$ such that

$$d(u) + d(v) \leqslant M - 2d + 3.$$

By the minimality of G, G - e is (M + 2d)-(d,1)-total choosable. We denote this coloring by c. Since

$$|A(e)| \ge M + 2d - (d(u) + d(v) - 2) - 2(2d - 1)$$
$$\ge M + 2d - (M - 2d + 1) - 2(2d - 1)$$
$$\ge 1$$

under the coloring c, we can extend c to G, a contradiction.

Lemma 1.3 For any edge $e = uv \in E(G)$ with

$$\min\{d(u), d(v)\} \leqslant \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor,\,$$

we have

$$d(u) + d(v) \ge M + 3.$$

Proof Suppose there is some $e = uv \in E(G)$ such that

$$d(u) \leqslant \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor$$

and

$$d(u) + d(v) \leqslant M + 2.$$

By the minimality of G, G - e is (M + 2d)-(d,1)-total choosable. Erase the color of vertex u, and let c be the partial list (d,1)-total labelling with |L| = M + 2d. Then

$$\begin{split} |A(e)| &\ge M + 2d - (d(u) + d(v) - 2) - (2d - 1) \\ &\ge M + 2d - M - (2d - 1) \\ &\ge 1, \end{split}$$

which implies that e can be properly colored. Next, for vertex u,

$$\begin{split} |A(u)| &\ge M + 2d - (d(u) + (2d-1)d(u)) \\ &\ge M + 2d - (M+2d-1) \\ &\ge 1. \end{split}$$

Thus we extend the coloring c to G, a contradiction.

Lemma 1.4 ([2]) A bipartite graph G is edge f-choosable where $f(uv) = \max\{d(u), d(v)\}$ for any $uv \in E(G)$.

A k-alternator for some k $(3 \leq k \leq \lfloor \frac{M+2d-1}{2d} \rfloor)$ is a bipartite subgraph B(X,Y) of graph G such that $d_B(x) = d_G(x) \leq k$ for each $x \in V(G)$ and $d_B(y) \geq d_G(y) + k - M - 1$ for each $y \in Y$.

The concept of k-alternator was first introduced by Borodin, Kostochka and Woodall [3] and generalized by Wu and Wang [8].

Lemma 1.5 There is no k-alternator B(X,Y) in G for any integer k with $3 \leq k \leq \left\lfloor \frac{M+2d-1}{2d} \right\rfloor$.

Proof Suppose that there exits a k-alternator B(X, Y) in G. Obviously, X is an independent set of vertices in graph G by Lemma 2.3. By the minimality of G, we can color all elements of subgraph $G[V(G)\backslash X]$ from their lists of size M + 2d. We denote this partial list (d,1)-total labelling by c. Then for each edge $e = xy \in B(X,Y)$,

$$|A(e)| \ge M + 2d - (d_G(y) - d_B(y) + (2d - 1))$$

$$\ge M + 2d - (M - d_B(y) + (2d - 1))$$

$$\ge d_B(y)$$

and

$$|A(e)| \ge M + 2d - (d_G(y) - d_B(y) + (2d - 1))$$

$$\geqslant M + 2d - (M + 2d - k)$$
$$\geqslant k$$

because B(X, Y) is a k-alternator. Therefore,

$$|A(e)| \ge \max\{d_B(y), d_B(x)\}.$$

By Lemma 1.4, it follows that E(B(X,Y)) can be colored properly from their new color lists. Next, for each vertex $x \in X$,

$$|A(x)| \ge M + 2d - (d(x) + (2d - 1)d(x)) \ge M + 2d - (M + 2d - 1) \ge 1,$$

because $d_G(x) \leq k \leq \lfloor \frac{M+2d-1}{2d} \rfloor$. Thus we extend the coloring c to G, a contradiction. Lemma 1.6 Let

$$X_k = \{ x \in V(G) \mid d_G(x) \leqslant k \} \text{ and } Y_k = \bigcup_{x \in X_k} N(x)$$

for any integer k with $3 \leq k \leq \lfloor \frac{M+2d-1}{2d} \rfloor$. If $X_k \neq \emptyset$, then there exists a bipartite subgraph M_k of G with partite sets X_k and Y_k , such that $d_{M_k}(x) = 1$ for each $x \in X_k$ and $d_{M_k}(y) \leq k-2$ for each $y \in Y_k$.

Proof The proof is omitted here as it is similar with the proof of Lemma 2.4 in [8].

We call y the k-master of x if $xy \in M_k$ and $x \in X_k, y \in Y_k$. By Lemma 1.3, if $uv \in E(G)$ satisfies

$$d(v) \leqslant \left\lfloor \frac{M+2d-1}{2d} \right\rfloor$$
 and $d(u) = M-i$,

then

$$d(v) \ge M + 3 - d(u) \ge i + 3.$$

Together with Lemma 1.6, it follows that each (M-i)-vertex can be a *j*-master of at most j-2 vertices, where $3 \leq i+3 \leq j \leq \lfloor \frac{M+2d-1}{2d} \rfloor$. Each *i*-vertex has a *j*-master by Lemma 1.6, where $3 \leq i \leq j \leq \lfloor \frac{M+2d-1}{2d} \rfloor$.

2 Proof of main results

By our Lemmas above, G has structural properties in the following.

- (C1) G is connected;
- (C2) for each $e = uv \in E(G)$, $d(u) + d(v) \ge M 2d + 4$;
- (C3) if $e = uv \in E(G)$ and $\min\{d(u), d(v)\} \leq \lfloor \frac{M+2d-1}{2d} \rfloor$, then $d(u) + d(v) \geq M + 3$;
- (C4) each *i*-vertex (if exists) has one *j*-master, where $3 \leq i \leq j \leq \lfloor \frac{M+2d-1}{2d} \rfloor$;
- (C5) each (M-i)-vertex (if exists) can be a *j*-master of at most j-2 vertices, where $3 \leq i+3 \leq j \leq \lfloor \frac{M+2d-1}{2d} \rfloor$.

$$M \ge \frac{d}{2d-1} \left(10d - 8 + \sqrt{(10d-2)^2 - 24(2d-1)\varepsilon} \right) + 1$$

$$\ge 10d + 1.$$

Thus

$$\left\lfloor \frac{M+2d-1}{2d} \right\rfloor \geqslant 6.$$

In the following, we apply the discharging method to complete the proof by a contradiction. At the very beginning, we assign an initial charge w(x) = d(x) - 6 for any $x \in V(G)$. By Euler's formula

$$|V| - |E| + |F| = \varepsilon,$$

we have

$$\sum_{x \in V} w(x) = \sum_{x \in V} (d(x) - 6)$$
$$= -6\varepsilon - \sum_{x \in F} (2d(x) - 6)$$
$$\leqslant -6\varepsilon.$$

The discharging rule is as follows.

(R1) each *i*-vertex (if exists) receives charge 1 from each of its *j*-master, where $3 \le i \le j \le 5$.

If $M \ge \Delta + 3$, then $\delta(G) \ge 6$. Otherwise, let $uv \in E(G)$ and $d(u) \le 5$. Then

$$d(u) + d(v) \leqslant M - 3 + 5 \leqslant M + 2$$

and

$$d(u) \leq \left\lfloor \frac{M+2d-1}{2d} \right\rfloor$$
 as $\left\lfloor \frac{M+2d-1}{2d} \right\rfloor \geq 6$.

which is a contradiction to (C3). This obviously contradicts the fact $\delta(G) \leq 5$ for any planar graph. Proof of the theorem is completed. Next, we only consider the case $\Delta \leq M \leq \Delta + 2$.

Claim 1 $\delta \ge M - \Delta + 3$.

Proof If there is some $e = uv \in E(G)$ such that $d(v) \leq M - \Delta + 2$, then

$$d(u) + d(v) \leq \Delta + (M - \Delta + 2) \leq M + 2$$

and

$$d(v) \leqslant 5 \leqslant \left\lfloor \frac{M+2d-1}{2d} \right\rfloor$$
 as $\left\lfloor \frac{M+2d-1}{2d} \right\rfloor \ge 6$,

a contradiction to (C3).

Let v be a k-vertex of G.

(a) If $3 \leq k \leq 5$, then

$$w'(v) = w(v) + \sum_{k \le i \le 5} 1 = (k-6) + (6-k) = 0$$

by (C4) and rule (R1);

(b) If $6 \le k \le M - 3$, then for all $u \in N(v)$, $d(u) \ge 6$ by (C3). Therefore, v neither receives nor gives any charge by our rule, which implies that $w'(v) = w(v) = k - 6 \ge 0$;

(c) If $M - 2 \leq k \leq \Delta$.

Case 1 $M = \Delta + 2$. Then $\delta \ge 5$ by Claim 1. For $k = \Delta$, $w'(v) \ge w(v) - 3 = \Delta - 9 = M - 11$ by (C5) and (R1).

Case 2 $M = \Delta + 1$. Then $\delta \ge 4$ by Claim 1. For $k = \Delta - 1$, $w'(v) \ge w(v) - 3 = \Delta - 1 - 6 - 3 = M - 11$ by (C5) and rule (R1). For $k = \Delta$, $w'(v) \ge w(v) - 3 - 2 = \Delta - 6 - 3 - 2 = M - 12$ by (C5) and rule (R1).

Case 3 $M = \Delta$. Then $\delta(G) \ge 3$ by Claim 1. For $k = \Delta - 2$, $w'(v) \ge w(v) - 3 = \Delta - 2 - 6 - 3 = M - 11$ by (C5) and rule (R1). For $k = \Delta - 1$, $w'(v) \ge w(v) - 3 - 2 = \Delta - 1 - 6 - 3 - 2 = M - 12$ by (C5) and rule (R1). For $k = \Delta$, $w'(v) \ge w(v) - 3 - 2 - 1 = \Delta - 6 - 3 - 2 - 1 = M - 12$ by (C5) and rule (R1).

For all cases above, $w'(v) \ge M - 12 > 0$ for any $d(v) \ge \Delta - 2$ as $M \ge 10d + 1 \ge 21$.

Let $X = \{x \in V(G) | d_G(x) \leq \lfloor \frac{M+2d-1}{2d} \rfloor\}$. By (C3), X is an independent set of vertices. **Claim 2** The number of $(\lfloor \frac{M+2d-1}{2d} \rfloor + 1)^+$ -vertex of G is at least $M - \lfloor \frac{M+2d-1}{2d} \rfloor + 3$. That is,

$$|V(G\backslash X)| \geqslant M - \left\lfloor \frac{M+2d-1}{2d} \right\rfloor + 3.$$

Proof Otherwise, let $Y = N_{x \in X}(x)$ and B = B(X, Y) be the induced bipartite subgraph. For all $y \in Y$,

$$d_{G \setminus X}(y) \leqslant |Y| - 1 \leqslant M - \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 1.$$

Therefore,

$$d_B(y) = d_G(y) - d_{G\setminus X}(y) \ge d_G(y) + \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - M - 1,$$

which implies B is a $\lfloor \frac{M+2d-1}{2d} \rfloor$ -alternator of G, a contradiction to Lemma 2.5. Since $M \ge 10d + 1$, it follows that

$$M - 12 > \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - 5$$

Thus,

$$w'(v) \ge \left\lfloor \frac{M+2d-1}{2d} \right\rfloor - 5$$

when $d_G(v) \ge \left\lfloor \frac{M+2d-1}{2d} \right\rfloor + 1$. Then

$$\sum_{x \in V} w(x) = \sum_{x \in V} w'(x)$$

$$> \left(M - \left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor + 3\right) \left(\left\lfloor \frac{M + 2d - 1}{2d} \right\rfloor - 5\right)$$

$$\geqslant (2d - 1) \left(\frac{M - 1}{2d}\right)^2 - (10d - 8)\frac{M - 1}{2d} - 15$$

as

$$M \ge \frac{d}{2d-1} \left(10d - 8 + \sqrt{(10d-2)^2 - 24(2d-1)\varepsilon} \right) + 1.$$

Then this contradiction completes the proof.

Proof of Theorem 0.4 Let G be a minimal counterexample in terms of |V(G)| + |E(G)| to Theorem 0.4. In this theorem, $M \ge 5d + 2$. We define the initial charge function w(x) := d(x) - 4 for all element $x \in V \cup F$. By Euler's formula $|V| - |E| + |F| = \varepsilon$, we have

$$\sum_{x \in V \cup F} w(x) = \sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (d(f) - 4) = -4\varepsilon < 0.$$

The transition rules are defined as follows.

(R1) Each 3-vertex (if exists) receives charge 1 from its 3-master.

(R2) Each k-vertex with $5\leqslant k\leqslant 7$ transfer charge $\frac{k-4}{k}$ to each 3-face that incident with it.

(R3) Each 8⁺-vertex transfer charge $\frac{1}{2}$ to each 3-face that incident with it.

Analogous with Claim 1 in the proof of Theorem 0.3, it is easy to prove that $\delta(G) \ge 3$ when $\Delta = M$ and $\delta(G) \ge 4$ otherwise. Let v be a k-vertex of G.

For k = 3, then w'(v) = w(v) + 1 = 3 - 4 + 1 = 0 since it receives 1 from its 3-master; For k = 4, then w'(v) = w(v) = 0 since we never change the charge by our rules;

For $5 \leq k \leq 7$, then $w'(v) \geq w(v) - k\frac{k-4}{k} = 0$ by (R2);

For $8 \leq k \leq M-1$, then $w'(v) \geq w(v) - k\frac{1}{2} \geq 0$ by (R3);

If $M > \Delta$, then $M - 1 \ge \Delta$. Thus $w(v) \ge 0$ for all $v \in V(G)$. Otherwise, $\Delta = M$. Then for $k = \Delta$, $w'(v) \ge w(v) - \frac{1}{2}M - 1 = \frac{M}{2} - 5$ by (C5) and rules (R1), (R3). Since $M \ge 5d + 2 \ge 12$, we have $w'(v) \ge \frac{M}{2} - 5 > 0$.

Let f be a k-face of G.

If $k \ge 4$, then $w'(f) = w(f) \ge 0$ since we never change the charge of them by our rules; If k = 3, assume that $f = [v_1, v_2, v_3]$ with $d(v_1) \le d(v_2) \le d(v_3)$. It is easy to see w(f) = -1. Consider the subcases as follows.

(a) Suppose $d(v_1) = 3$. Then $M = \Delta$ and $d(v_2) = d(v_3) = \Delta$ by (C3). Thus, $w'(f) = w(f) + \frac{1}{2} \times 2 = 0$ by (R3);

(b) Suppose $d(v_1) = 4$. Then $d(v_3) \ge d(v_2) \ge M - 2d + 4 - d(v_1) \ge 3d + 2 \ge 8$ by (C2). Therefore, $w'(f) = w(f) + \frac{1}{2} \times 2 = 0$ by (R3);

(c) Suppose $d(v_1) = 5$. Then $d(v_3) \ge d(v_2) \ge M - 2d + 4 - d(v_1) \ge 3d + 1 \ge 7$ by (C2). Therefore, $w'(f) = w(f) + \frac{3}{7} \times 2 + \frac{1}{5} > 0$ by (R2).

(d) Suppose $d(v_1) = m \ge 6$. Then $d(v_3) \ge d(v_2) \ge 6$. Therefore, $w'(f) \ge w(f) + 3 \times \min\{\frac{m-4}{m}, \frac{1}{2}\} = 0$ by (R2) and (R3).

Thus, we have $\sum_{x \in V \cup F} w'(x) \ge 0$ which is a contradiction with

$$\sum_{x \in V \cup F} w'(x) = \sum_{x \in V \cup F} w(x) < 0.$$

References

- [1] Havet F, Yu M L. (p, 1)-Total labelling of graphs [J]. Discrete Math, 2008, 308: 496-513.
- [2] Bazzaro F, Montassier M, Raspaud A. (d,1)-Total labelling of planar graphs with large girth and high maximum degree [J]. Discrete Math, 2007, 307: 2141-2151.
- Borodin O V, Kostochka A V, Woodall D R. List edge and list total colourings of multigraphs
 J. J Conbin Theory Ser B, 1997, 71: 184-204.
- [4] Chen D, Wang W F. (2,1)-Total labelling of outerplanar graphs [J]. Discrete Appl Math, 2007, 155: 2585-2593.
- [5] Lih K W, Liu D F, Wang W. On (d,1)-total numbers of graphs [J]. Discrete Math,2009, 309: 3767-3773.
- [6] Montassier M, Raspaud A. (d,1)-Total labelling of graphs with a given maximum average degeree [J]. J. Graph Theory, 2006, 51: 93-109.
- [7] Wang W, Chen D. (2,1)-Total labelling of trees [J]. Information Processing Letters, 2009, 109: 805-810.
- [8] Wu J L, Wang P. List edge and list total colorings of graphs embedded on hyperbolic surfaces
 [J]. Discrete Math, 2008, 308: 210-6215.
- [9] Yu Y, Wang G H, Liu G Z. List version of (p,1)-total labellings [C]. submitted to *Proc Japan Acad*.