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List (d,1)-Total Labelling of Graphs
Embedded in Surfaces®
YU Yong!T ZHANG Xin' LIU Guizhen'

Abstract The (d,1)-total labelling of graphs was introduced by Havet and Yu. In
this paper, we consider the list version of (d,1)-total labelling of graphs. Let G be a
graph embedded in a surface with Euler characteristic € whose maximum degree A(G) is
sufficiently large. We prove that the list (d,1)-total labelling number Chy,(G) of G is at
most A(G) + 2d.
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0 Introduction

In this paper, graph G is a simple connected graph with a finite vertex set V(G)
and a finite edge set E(G). If X is a set, we usually denote the cardinality of X by |X]|.
Denote the set of vertices adjacent to v by N(v). The degree of a vertex v in G, denoted by
dg(v), is the number of edges incident with v. We sometimes write V, E,d(v), A, ¢ instead
of V(GQ), E(G),d¢(v), A(G),§(G), respectively. Let G be a plane graph. We always denote
by F(G) the face set of G. The degree of a face f, denoted by d(f), is the number of edges
incident with it, where cut edge is counted twice. A k-, k™~ and k~-vertex (or face) in graph
G is a vertex (or face) of degree k, at least k and at most k, respectively.
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The (d,1)-total labelling of graphs was introduced by Havet and Yul'l. A k-(d,1)-total
labelling of a graph G is a function ¢ from V(G) U E(G) to the color set {0,1,---,k}
such that c(u) # c(v) if uv € E(G), c(e) # ¢(e¢’) if e and ¢’ are two adjacent edges, and
le(u) — e(e)| = d if vertex u is incident to the edge e. The minimum k& such that G has
a k-(d,1)-total labelling is called the (d,1)-total labelling number and denoted by A} (G).
Readers are referred to [2,4-7] for further research.

Suppose that L(z) is a list of colors available to choose for each element z € V(G)UE(G).
If G has a (d,1)-total labelling ¢ such that ¢(z) € L(z) for all x € V(G) U E(G), then we
say that ¢ is an L-(d,1)-total labelling of G, and G is L-(d,1)-total labelable (sometimes
we also say G is list (d,1)-total labelable). Furthermore, if G is L-(d,1)-total labelable for
any L with |L(z)| = k for each x € V(G) U E(G), we say that G is k-(d,1)-total choosable.
The list (d,1)-total labelling number, denoted by Ch;l(G), is the minimum & such that
G is k-(d,1)-total choosable. Actually, when d = 1, the list (1,1)-total labelling is the
well-known list total coloring of graphs. It is known that for list version of total colorings
there is a list total coloring conjecture (LTCC). Therefore, it is natural to conjecture that
Chj1(G) = Aj(G) + 1. Unfortunately, counterexamples that Chy,(G) is strictly greater
than AT(G) + 1 can be found in [9]. Although we can not present a conjecture like LTCC,
we conjecture that

Chy,(G) < A+2d

for any graph G. In [9], we studied the list (d,1)-total labelling of special graphs such as
paths, trees, stars and outerplanar graphs which lend positive support to our conjecture.
In this paper, we prove that, for graphs embedded in a surface with Euler characteristic
€, the conjecture is still true when the maximum degree is sufficiently large. Our main
results are the following:
Theorem 0.1 Let G be a graph embedded in a surface of Euler characteristic € < 0
and

d
>
AlG) 2 55—

(10d — 84 1/(10d — 2)? — 24(2d — 1)5) +1,

where d > 2. Then
Chy,(G) < A(G) + 2d.

Theorem 0.2 Let G be a graph embedded in a surface of Euler characteristic € > 0.
If A(G) > 5d + 2 where d > 2, then
Chy,(G) < A(G) + 2d.

We prove two conclusions which are slightly stronger than the theorems above as follows.
Theorem 0.3 Let G be a graph embedded in a surface of Euler characteristic € < 0
and let positive integer

M >
2d —1

(md — 8+ /(10d —2)% — 24(2d — 1)5) +1,
where d > 2. If A(G) < M, then

Chy,(G) < M + 2d.
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In particular,
ChY () < AG) +2d it AG) = M.

Theorem 0.4 Let G be a graph embedded in a surface of Euler characteristic € > 0
and let positive integer M > 5d + 2 where d > 2. If A(G) < M, then

Chy,(G) < M + 2d.

In particular,
ChY(G) <A(G) +2d if A(G) = M.

The interesting cases of Theorem 0.3 and Theorem 0.4 are when M = A(G). Indeed,
Theorem 0.3 and Theorem 0.4 are only technical strengthening of Theorem 0.1 and Theorem
0.2, respectively. But without them we would get complications when a subgraph H C G
such that A(H) < A(G) is considered.

In Section 1, we prove some lemmas. In Section 2, we complete our main proof with
discharging method.

1 Structural properties

From now on, we will use without distinction the terms colors and labels. Let ¢ be a
partial list (d,1)-total labelling of G. We denote by A(z) the set of colors which are still
available for coloring element x of G with the partial list (d,1)-total labelling ¢. Let G be a
minimal counterexample in terms of |V (G)| + |E(G)| to Theorem 0.3 or Theorem 0.4.

Lemma 1.1 G is connected.

Proof Suppose that G is not connected. Without loss of generality, let G; be one
component of G and G = G\G;. By the minimality of G, G1 and G2 are both (M + 2d)-
(d,1)-total choosable which implies G is (M + 2d)-(d,1)-total choosable, a contradiction.

Lemma 1.2 For each e = uv € E(G),

d(u) +d(v) > M —2d+ 4.
Proof Suppose to the contrary that there exists some edge e = uv € E(G) such that
d(u) +d(v) < M —2d+ 3.

By the minimality of G, G — e is (M + 2d)-(d,1)-total choosable. We denote this coloring
by c. Since

|A(e)| > M + 2d — (d(u) + d(v) — 2) — 2(2d — 1)

M
M +2d— (M —2d+1) —2(2d — 1)
1

AV VAR

under the coloring ¢, we can extend ¢ to G, a contradiction.
Lemma 1.3 For any edge e = uv € E(G) with

min{d(u), d(v)} < {%J ,
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we have

d(u) + d(v) > M + 3.
Proof Suppose there is some e = uv € E(G) such that

d(u) < {%J

and
d(u) + d(v) < M + 2.

By the minimality of G, G — e is (M + 2d)-(d,1)-total choosable. Erase the color of vertex
u, and let ¢ be the partial list (d,1)-total labelling with |L| = M + 2d. Then

|A(e)] +2d — (d(u) + d(v) —2) — (2d — 1)

M
M+2d—M—(2d—1)
1

VoV WV

3

which implies that e can be properly colored. Next, for vertex u,

|A(w)] = M +2d — (d(u) + (2d — 1)d(u))

M+2d— (M +2d—1)
1

A\YZRR\VARR\V]

Thus we extend the coloring ¢ to G, a contradiction.

Lemma 1.4 ([2]) A bipartite graph G is edge f-choosable where f(uv) = max{d(u), d(v)}
for any uv € E(G).

A k-alternator for some k (3 < k < |ME2=11) is a bipartite subgraph B(X,Y) of
graph G such that dg(x) = dg(z) < k for each z € V(G) and dg(y) > da(y) +k—M -1
for each y € Y.

The concept of k-alternator was first introduced by Borodin, Kostochka and Woodall
[3] and generalized by Wu and Wang [8].

Lemma 1.5 There is no k-alternator B(X,Y) in G for any integer k with 3 < k <
| A2d-1 )

Proof Suppose that there exits a k-alternator B(X,Y) in G. Obviously, X is an
independent set of vertices in graph G by Lemma 2.3. By the minimality of G, we can color
all elements of subgraph G[V(G)\X] from their lists of size M + 2d. We denote this partial
list (d,1)-total labelling by ¢. Then for each edge e = 2y € B(X,Y),

|A(e)] = M +2d — (da(y) — ds(y) + (2d - 1))
> M +2d— (M —dp(y) + (2d — 1))
> dp(y)

and

[A(e)l 2 M +2d — (da(y) — dp(y) + (2d — 1))
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> M +2d— (M +2d — k)
>k

because B(X,Y) is a k-alternator. Therefore,
|A(e)| = max{dp(y),dp(z)}.

By Lemma 1.4, it follows that F(B(X,Y)) can be colored properly from their new color
lists. Next, for each vertex x € X,

|A(z)] +2d — (d(x) + (2d — 1)d(z))

M
M+2d— (M+2d—1)
1

ARV

3

because dg(z) < k < |2E2=1 ] Thus we extend the coloring ¢ to G, a contradiction.
Lemma 1.6 Let

Xy ={z e V(@) |do(z) <k} and Yi= ] N(z)
reXy

for any integer k with 3 < k < L%j‘l] If X; # 0, then there exists a bipartite
subgraph M}, of G with partite sets Xy and Y}, such that dps, (x) = 1 for each z € X},
and d, (y) < k — 2 for each y € Y.
Proof The proof is omitted here as it is similar with the proof of Lemma 2.4 in [8].
We call y the k-master of z if zy € My, and « € X,y € Y;. By Lemma 1.3, if uv € E(G)

satisfies
M+2d—1

d(v)g{ ~ J and  d(u) = M — 1,

then
dv) =2 M+3—-d(u) >i+3.

Together with Lemma 1.6, it follows that each (M — i)-vertex can be a j-master of at most
J — 2 vertices, where 3 <i+3 < j < L%j‘l] Each i-vertex has a j-master by Lemma
1.6, where 3 < i < j < |24

2 Proof of main results

By our Lemmas above, G has structural properties in the following.
C1) G is connected;

(

(C2) for each e = uv € E(GQ), d(u) +d(v) > M — 2d + 4;

(C3) if e = wv € E(G) and min{d(u),d(v)} < [2E24=L] then d(u) + d(v) > M + 3;
(C4) each i-vertex (if exists) has one j-master, where 3 <4 < j < | 4241,

(C5) each (M — i)-vertex (if exists) can be a j-master of at most j — 2 vertices, where

3<i+3< )< M
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Proof of Theorem 0.3 Let G be a minimal counterexample in terms of |V (G)|+|E(G)|
to Theorem 0.3. In this theorem,

> _ —_9)2 _ —_
M/zd_l(lod 8+ 1/(10d — 2)? — 24(2d 1)€)+1

> 10d + 1.

Thus

2d
In the following, we apply the discharging method to complete the proof by a contradiction.

{M+2d—1J > 6.

At the very beginning, we assign an initial charge w(z) = d(z) — 6 for any =z € V(G). By
Euler’s formula
VI—|E[+|F|=¢,

we have

> wle) = Y (dlw) — 6)

zeV zeV
=—6c— > (2d(z) —6)
zeF
< —6e.

The discharging rule is as follows.

(R1) each i-vertex (if exists) receives charge 1 from each of its j-master, where 3 < i <
J<5.
If M > A+ 3, then 6(G) > 6. Otherwise, let uv € E(G) and d(u) < 5. Then

d(u) +d(v) <M —3+5< M+2

and

d(u) < LM+2d—1J s LMﬂde_lJ

2d 2d
which is a contradiction to (C3). This obviously contradicts the fact 6(G) < 5 for any planar
graph. Proof of the theorem is completed. Next, we only consider the case A < M < A+2.
Claim 16> M — A + 3.
Proof If there is some e = wv € E(G) such that d(v) < M — A + 2, then

> 6,

dlu)+dv) <A+ (M —-A+2) < M+2
and

M+2d—-1 M+2d-1
< HsS | —mM8 — -
d(v)\5\{ 5 J as { 5

|56
a contradiction to (C3).

Let v be a k-vertex of G.

(a) If3 <k <5, then

w@)=ww)+ > 1=(k-6)+6-k=0
k<i<5
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by (C4) and rule (Rl);

(b) If 6 < k< M —3, then for all u € N(v), d(u) > 6 by (C3). Therefore, v neither
receives nor gives any charge by our rule, which implies that w'(v) = w(v) =k —6 > 0;

(6) TM—2<k<A.

Case 1 M = A+2. Then § > 5 by Claim 1. For k = A, w'(v) > wv) —3=A—-9 =
M — 11 by (C5) and (R1).

Case 2 M = A+1. Then § > 4 by Claim 1. For k= A—1, w'(v
6—3 = M—11by (C5) and rule (R1). For k = A, w'(v) > w(v)—3-2
by (C5) and rule (R1).

Case 3 M = A. Then §(G) > 3 by Claim 1. For k= A—-2,w'(v) > wv)—-3=A—-2—
6—3 = M—11by (C5) and rule (R1). For k = A—1, w'(v) > w(v)—3—2
M —12by (C5) and rule (R1). For k = A, w'(v) > w(v)—3—-2—-1=A—6—
by (C5) and rule (R1).

For all cases above, w'(v) > M — 12 > 0 for any d(v) > A —2as M > 10d+ 1 > 21.

Let X = {z € V(G)|dg(z) < |2E24=1]}. By (C3), X is an independent set of vertices.

Claim 2 The number of (L%J + 1)+—Vertex of G is at least M — L%J + 3.
That is,

—2-1=M-12

V(G\X)| > M — {MJ +3.

2d

Proof Otherwise, let Y = N,ex(x) and B = B(X,Y) be the induced bipartite sub-
graph. Forally € Y,

M+2d—1
dovx(y) <|Y|-1< M- {7J Y

2d
Therefore,

M+2d—-1

dp(y) = d(y) — da\x (v) = day) + { 2d

J VY
which implies B is a L%J—alternator of G, a contradiction to Lemma 2.5.
Since M > 10d + 1, it follows that

M+2d—-1
M —12 — | — 5.
- | -

Thus,

w'(v) >

M+2d—-1 5
2d

when dg(v) > [#£24=1| + 1. Then

(P (22

2(2d—1)( 5 )2—(1Od—8) —15
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> —6¢

as

M > (10d—8+ /(10d — 2)2 — 24(2d — 1)5) +1

2d -1

Then this contradiction completes the proof.
Proof of Theorem 0.4 Let G be a minimal counterexample in terms of |V (G)|+|E(G)|
to Theorem 0.4. In this theorem, M > 5d + 2. We define the initial charge function
w(x) :=d(x) — 4 for all element € V' UF. By Euler’s formula |V| — |E| + |F| = €, we have

> wl) =) (dv) —4)+ Y _(d(f) - 4) = —4e < 0.

zEVUF vEV fer

The transition rules are defined as follows.

(R1) Each 3-vertex (if exists) receives charge 1 from its 3-master.

(R2) Each k-vertex with 5 < k < 7 transfer charge £22 to each 3-face that incident
with it.

(R3) Each 8*-vertex transfer charge + to each 3-face that incident with it.

Analogous with Claim 1 in the proof of Theorem 0.3, it is easy to prove that §(G) > 3
when A = M and 6(G) > 4 otherwise. Let v be a k-vertex of G.

For k = 3, then w'(v) = w(v) + 1 =3 — 44 1 = 0 since it receives 1 from its 3-master;

For k = 4, then w’(v) = w(v) = 0 since we never change the charge by our rules;

For 5 < k < 7, then w'(v) > w(v) — k52 = 0 by (R2);

For 8 < k < M — 1, then w'(v) > w(v) — k4 > 0 by (R3);

If M > A, then M —1 > A. Thus w(v) 2 0 for all v € V(G). Otherwise, A = M.
Then for k = A, w'(v) > w(v) — M —1 = & — 5 by (C5) and rules (R1), (R3). Since
M > 5d+2 > 12, we have w'(v) > %—5>0.

Let f be a k-face of G.

If & > 4, then w/(f) = w(f) > 0 since we never change the charge of them by our rules;

If £ = 3, assume that f = [v1,v2,v3] with d(v1) < d(v2) < d(vs). It is easy to see
w(f) = —1. Consider the subcases as follows.

(a) Suppose d(v1) = 3. Then M = A and d(v2) = d(v3) = A by (C3). Thus, w'(f) =
w(f) + 5 x 2 = 0 by (R3);

(b) Suppose d(v1) = 4. Then d(vs) > d(va) 2 M —2d+4—d(v1) > 3d+2 > 8 by (C2).
Therefore, w'(f) = w(f) + 5 x 2 =0 by (R3);

(¢) Suppose d(v1) = 5. Then d(vg) dve) 2 M —2d+4—d(v1) > 3d+1>T7Dby (C2).
Therefore, w'(f) = w(f) + 2 x 2+ 1 > 0 by (R2).

(d) Suppose d(v1) =m = 6. Then d(v3) = d(v2) = 6. Therefore, w'(f) > w(f) + 3 x
min{ 24,1} = 0 by (R2) and (R3).

Thus, we have Y. w'(x) > 0 which is a contradiction with
z€VUF
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