List（d，1）－Total Labelling of Graphs Embedded in Surfaces＊

YU Yong ${ }^{1 \dagger}$ ZHANG Xin ${ }^{1}$ LIU Guizhen ${ }^{1}$

Abstract

The（ $d, 1$ ）－total labelling of graphs was introduced by Havet and Yu．In this paper，we consider the list version of（ $d, 1$ ）－total labelling of graphs．Let G be a graph embedded in a surface with Euler characteristic ε whose maximum degree $\Delta(G)$ is sufficiently large．We prove that the list $(d, 1)$－total labelling number $C h_{d, 1}^{\mathrm{T}}(G)$ of G is at most $\Delta(G)+2 d$ ．

Keywords（ $d, 1$ ）－total labelling，list（ $d, 1$ ）－total labelling，list（ $d, 1$ ）－total labelling number，graphs

Chinese Library Classification O157．5
2010 Mathematics Subject Classification 05C15

关于可嵌入曲面图的列表 $(d, 1)$－全标号问题

于永 ${ }^{1+}$ 张欣 ${ }^{1}$ 刘桂真 ${ }^{1}$

[^0]
0 Introduction

In this paper，graph G is a simple connected graph with a finite vertex set $V(G)$ and a finite edge set $E(G)$ ．If X is a set，we usually denote the cardinality of X by $|X|$ ． Denote the set of vertices adjacent to v by $N(v)$ ．The degree of a vertex v in G ，denoted by $d_{G}(v)$ ，is the number of edges incident with v ．We sometimes write $V, E, d(v), \Delta, \delta$ instead of $V(G), E(G), d_{G}(v), \Delta(G), \delta(G)$ ，respectively．Let G be a plane graph．We always denote by $F(G)$ the face set of G ．The degree of a face f ，denoted by $d(f)$ ，is the number of edges incident with it，where cut edge is counted twice．A k－，k^{+}－and k^{-}－vertex（or face）in graph G is a vertex（or face）of degree k ，at least k and at most k ，respectively．

[^1]The (d,1)-total labelling of graphs was introduced by Havet and $\mathrm{Yu}^{[1]}$. A k-(d,1)-total labelling of a graph G is a function c from $V(G) \cup E(G)$ to the color set $\{0,1, \cdots, k\}$ such that $c(u) \neq c(v)$ if $u v \in E(G), c(e) \neq c\left(e^{\prime}\right)$ if e and e^{\prime} are two adjacent edges, and $|c(u)-c(e)| \geqslant d$ if vertex u is incident to the edge e. The minimum k such that G has a k - $(d, 1)$-total labelling is called the (d,1)-total labelling number and denoted by $\lambda_{d}^{\mathrm{T}}(G)$. Readers are referred to [2,4-7] for further research.

Suppose that $L(x)$ is a list of colors available to choose for each element $x \in V(G) \cup E(G)$. If G has a $(d, 1)$-total labelling c such that $c(x) \in L(x)$ for all $x \in V(G) \cup E(G)$, then we say that c is an L-(d,1)-total labelling of G, and G is $L-(d, 1)$-total labelable (sometimes we also say G is list ($d, 1$)-total labelable). Furthermore, if G is L-($d, 1$)-total labelable for any L with $|L(x)|=k$ for each $x \in V(G) \cup E(G)$, we say that G is k-($(d, 1)$-total choosable. The list ($d, 1$)-total labelling number, denoted by $C h_{d, 1}^{\mathrm{T}}(G)$, is the minimum k such that G is k - $(d, 1)$-total choosable. Actually, when $d=1$, the list $(1,1)$-total labelling is the well-known list total coloring of graphs. It is known that for list version of total colorings there is a list total coloring conjecture (LTCC). Therefore, it is natural to conjecture that $C h_{d, 1}^{\mathrm{T}}(G)=\lambda_{d}^{\mathrm{T}}(G)+1$. Unfortunately, counterexamples that $C h_{d, 1}^{\mathrm{T}}(G)$ is strictly greater than $\lambda_{d}^{\mathrm{T}}(G)+1$ can be found in [9]. Although we can not present a conjecture like LTCC, we conjecture that

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant \Delta+2 d
$$

for any graph G. In [9], we studied the list ($d, 1$)-total labelling of special graphs such as paths, trees, stars and outerplanar graphs which lend positive support to our conjecture.

In this paper, we prove that, for graphs embedded in a surface with Euler characteristic ε, the conjecture is still true when the maximum degree is sufficiently large. Our main results are the following:

Theorem 0.1 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon \leqslant 0$ and

$$
\Delta(G) \geqslant \frac{d}{2 d-1}\left(10 d-8+\sqrt{(10 d-2)^{2}-24(2 d-1) \varepsilon}\right)+1
$$

where $d \geqslant 2$. Then

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant \Delta(G)+2 d
$$

Theorem 0.2 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon>0$. If $\Delta(G) \geqslant 5 d+2$ where $d \geqslant 2$, then

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant \Delta(G)+2 d
$$

We prove two conclusions which are slightly stronger than the theorems above as follows.
Theorem 0.3 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon \leqslant 0$ and let positive integer

$$
M \geqslant \frac{d}{2 d-1}\left(10 d-8+\sqrt{(10 d-2)^{2}-24(2 d-1) \varepsilon}\right)+1
$$

where $d \geqslant 2$. If $\Delta(G) \leqslant M$, then

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant M+2 d
$$

In particular,

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant \Delta(G)+2 d \quad \text { if } \quad \Delta(G)=M
$$

Theorem 0.4 Let G be a graph embedded in a surface of Euler characteristic $\varepsilon>0$ and let positive integer $M \geqslant 5 d+2$ where $d \geqslant 2$. If $\Delta(G) \leqslant M$, then

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant M+2 d
$$

In particular,

$$
C h_{d, 1}^{\mathrm{T}}(G) \leqslant \Delta(G)+2 d \quad \text { if } \quad \Delta(G)=M
$$

The interesting cases of Theorem 0.3 and Theorem 0.4 are when $M=\Delta(G)$. Indeed, Theorem 0.3 and Theorem 0.4 are only technical strengthening of Theorem 0.1 and Theorem 0.2 , respectively. But without them we would get complications when a subgraph $H \subset G$ such that $\Delta(H)<\Delta(G)$ is considered.

In Section 1, we prove some lemmas. In Section 2, we complete our main proof with discharging method.

1 Structural properties

From now on, we will use without distinction the terms colors and labels. Let c be a partial list $(d, 1)$-total labelling of G. We denote by $A(x)$ the set of colors which are still available for coloring element x of G with the partial list $(d, 1)$-total labelling c. Let G be a minimal counterexample in terms of $|V(G)|+|E(G)|$ to Theorem 0.3 or Theorem 0.4.

Lemma 1.1 G is connected.
Proof Suppose that G is not connected. Without loss of generality, let G_{1} be one component of G and $G_{2}=G \backslash G_{1}$. By the minimality of G, G_{1} and G_{2} are both $(M+2 d)$ $(d, 1)$-total choosable which implies G is $(M+2 d)-(d, 1)$-total choosable, a contradiction.

Lemma 1.2 For each $e=u v \in E(G)$,

$$
d(u)+d(v) \geqslant M-2 d+4
$$

Proof Suppose to the contrary that there exists some edge $e=u v \in E(G)$ such that

$$
d(u)+d(v) \leqslant M-2 d+3
$$

By the minimality of $G, G-e$ is $(M+2 d)-(d, 1)$-total choosable. We denote this coloring by c. Since

$$
\begin{aligned}
|A(e)| & \geqslant M+2 d-(d(u)+d(v)-2)-2(2 d-1) \\
& \geqslant M+2 d-(M-2 d+1)-2(2 d-1) \\
& \geqslant 1
\end{aligned}
$$

under the coloring c, we can extend c to G, a contradiction.
Lemma 1.3 For any edge $e=u v \in E(G)$ with

$$
\min \{d(u), d(v)\} \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor,
$$

we have

$$
d(u)+d(v) \geqslant M+3
$$

Proof Suppose there is some $e=u v \in E(G)$ such that

$$
d(u) \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor
$$

and

$$
d(u)+d(v) \leqslant M+2
$$

By the minimality of $G, G-e$ is $(M+2 d)-(d, 1)$-total choosable. Erase the color of vertex u, and let c be the partial list $(d, 1)$-total labelling with $|L|=M+2 d$. Then

$$
\begin{aligned}
|A(e)| & \geqslant M+2 d-(d(u)+d(v)-2)-(2 d-1) \\
& \geqslant M+2 d-M-(2 d-1) \\
& \geqslant 1
\end{aligned}
$$

which implies that e can be properly colored. Next, for vertex u,

$$
\begin{aligned}
|A(u)| & \geqslant M+2 d-(d(u)+(2 d-1) d(u)) \\
& \geqslant M+2 d-(M+2 d-1) \\
& \geqslant 1
\end{aligned}
$$

Thus we extend the coloring c to G, a contradiction.
Lemma $1.4([2])$ A bipartite graph G is edge f-choosable where $f(u v)=\max \{d(u), d(v)\}$ for any $u v \in E(G)$.

A k-alternator for some $k\left(3 \leqslant k \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor\right)$ is a bipartite subgraph $B(X, Y)$ of graph G such that $d_{B}(x)=d_{G}(x) \leqslant k$ for each $x \in V(G)$ and $d_{B}(y) \geqslant d_{G}(y)+k-M-1$ for each $y \in Y$.

The concept of k-alternator was first introduced by Borodin, Kostochka and Woodall [3] and generalized by Wu and Wang [8].

Lemma 1.5 There is no k-alternator $B(X, Y)$ in G for any integer k with $3 \leqslant k \leqslant$ $\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$.

Proof Suppose that there exits a k-alternator $B(X, Y)$ in G. Obviously, X is an independent set of vertices in graph G by Lemma 2.3. By the minimality of G, we can color all elements of subgraph $G[V(G) \backslash X]$ from their lists of size $M+2 d$. We denote this partial list $(d, 1)$-total labelling by c. Then for each edge $e=x y \in B(X, Y)$,

$$
\begin{aligned}
|A(e)| & \geqslant M+2 d-\left(d_{G}(y)-d_{B}(y)+(2 d-1)\right) \\
& \geqslant M+2 d-\left(M-d_{B}(y)+(2 d-1)\right) \\
& \geqslant d_{B}(y)
\end{aligned}
$$

and

$$
|A(e)| \geqslant M+2 d-\left(d_{G}(y)-d_{B}(y)+(2 d-1)\right)
$$

$$
\begin{aligned}
& \geqslant M+2 d-(M+2 d-k) \\
& \geqslant k
\end{aligned}
$$

because $B(X, Y)$ is a k-alternator. Therefore,

$$
|A(e)| \geqslant \max \left\{d_{B}(y), d_{B}(x)\right\}
$$

By Lemma 1.4, it follows that $E(B(X, Y))$ can be colored properly from their new color lists. Next, for each vertex $x \in X$,

$$
\begin{aligned}
|A(x)| & \geqslant M+2 d-(d(x)+(2 d-1) d(x)) \\
& \geqslant M+2 d-(M+2 d-1) \\
& \geqslant 1
\end{aligned}
$$

because $d_{G}(x) \leqslant k \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$. Thus we extend the coloring c to G, a contradiction.
Lemma 1.6 Let

$$
X_{k}=\left\{x \in V(G) \mid d_{G}(x) \leqslant k\right\} \quad \text { and } \quad Y_{k}=\bigcup_{x \in X_{k}} N(x)
$$

for any integer k with $3 \leqslant k \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$. If $X_{k} \neq \emptyset$, then there exists a bipartite subgraph M_{k} of G with partite sets X_{k} and Y_{k}, such that $d_{M_{k}}(x)=1$ for each $x \in X_{k}$ and $d_{M_{k}}(y) \leqslant k-2$ for each $y \in Y_{k}$.

Proof The proof is omitted here as it is similar with the proof of Lemma 2.4 in [8].
We call y the k-master of x if $x y \in M_{k}$ and $x \in X_{k}, y \in Y_{k}$. By Lemma 1.3, if $u v \in E(G)$ satisfies

$$
d(v) \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor \quad \text { and } \quad d(u)=M-i
$$

then

$$
d(v) \geqslant M+3-d(u) \geqslant i+3
$$

Together with Lemma 1.6, it follows that each $(M-i)$-vertex can be a j-master of at most $j-2$ vertices, where $3 \leqslant i+3 \leqslant j \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$. Each i-vertex has a j-master by Lemma 1.6 , where $3 \leqslant i \leqslant j \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$.

2 Proof of main results

By our Lemmas above, G has structural properties in the following.
(C1) G is connected;
(C2) for each $e=u v \in E(G), d(u)+d(v) \geqslant M-2 d+4$;
(C3) if $e=u v \in E(G)$ and $\min \{d(u), d(v)\} \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$, then $d(u)+d(v) \geqslant M+3$;
(C4) each i-vertex (if exists) has one j-master, where $3 \leqslant i \leqslant j \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$;
(C5) each $(M-i)$-vertex (if exists) can be a j-master of at most $j-2$ vertices, where $3 \leqslant i+3 \leqslant j \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$.

Proof of Theorem 0.3 Let G be a minimal counterexample in terms of $|V(G)|+|E(G)|$ to Theorem 0.3. In this theorem,

$$
\begin{aligned}
M & \geqslant \frac{d}{2 d-1}\left(10 d-8+\sqrt{(10 d-2)^{2}-24(2 d-1) \varepsilon}\right)+1 \\
& \geqslant 10 d+1
\end{aligned}
$$

Thus

$$
\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor \geqslant 6 .
$$

In the following, we apply the discharging method to complete the proof by a contradiction. At the very beginning, we assign an initial charge $w(x)=d(x)-6$ for any $x \in V(G)$. By Euler's formula

$$
|V|-|E|+|F|=\varepsilon
$$

we have

$$
\begin{aligned}
\sum_{x \in V} w(x) & =\sum_{x \in V}(d(x)-6) \\
& =-6 \varepsilon-\sum_{x \in F}(2 d(x)-6) \\
& \leqslant-6 \varepsilon
\end{aligned}
$$

The discharging rule is as follows.
(R1) each i-vertex (if exists) receives charge 1 from each of its j-master, where $3 \leqslant i \leqslant$ $j \leqslant 5$.

If $M \geqslant \Delta+3$, then $\delta(G) \geqslant 6$. Otherwise, let $u v \in E(G)$ and $d(u) \leqslant 5$. Then

$$
d(u)+d(v) \leqslant M-3+5 \leqslant M+2
$$

and

$$
d(u) \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor \quad \text { as } \quad\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor \geqslant 6
$$

which is a contradiction to (C3). This obviously contradicts the fact $\delta(G) \leqslant 5$ for any planar graph. Proof of the theorem is completed. Next, we only consider the case $\Delta \leqslant M \leqslant \Delta+2$.

Claim $1 \delta \geqslant M-\Delta+3$.
Proof If there is some $e=u v \in E(G)$ such that $d(v) \leqslant M-\Delta+2$, then

$$
d(u)+d(v) \leqslant \Delta+(M-\Delta+2) \leqslant M+2
$$

and

$$
d(v) \leqslant 5 \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor \quad \text { as } \quad\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor \geqslant 6
$$

a contradiction to (C3).
Let v be a k-vertex of G.
(a) If $3 \leqslant k \leqslant 5$, then

$$
w^{\prime}(v)=w(v)+\sum_{k \leqslant i \leqslant 5} 1=(k-6)+(6-k)=0
$$

by (C4) and rule (R1);
(b) If $6 \leqslant k \leqslant M-3$, then for all $u \in N(v), d(u) \geqslant 6$ by (C3). Therefore, v neither receives nor gives any charge by our rule, which implies that $w^{\prime}(v)=w(v)=k-6 \geqslant 0$;
(c) If $M-2 \leqslant k \leqslant \Delta$.

Case $1 M=\Delta+2$. Then $\delta \geqslant 5$ by Claim 1. For $k=\Delta, w^{\prime}(v) \geqslant w(v)-3=\Delta-9=$ $M-11$ by (C5) and (R1).

Case $2 M=\Delta+1$. Then $\delta \geqslant 4$ by Claim 1. For $k=\Delta-1, w^{\prime}(v) \geqslant w(v)-3=\Delta-1-$ $6-3=M-11$ by (C5) and rule (R1). For $k=\Delta, w^{\prime}(v) \geqslant w(v)-3-2=\Delta-6-3-2=M-12$ by (C5) and rule (R1).

Case $3 M=\Delta$. Then $\delta(G) \geqslant 3$ by Claim 1. For $k=\Delta-2, w^{\prime}(v) \geqslant w(v)-3=\Delta-2-$ $6-3=M-11$ by (C5) and rule (R1). For $k=\Delta-1, w^{\prime}(v) \geqslant w(v)-3-2=\Delta-1-6-3-2=$ $M-12$ by (C5) and rule (R1). For $k=\Delta, w^{\prime}(v) \geqslant w(v)-3-2-1=\Delta-6-3-2-1=M-12$ by (C5) and rule (R1).

For all cases above, $w^{\prime}(v) \geqslant M-12>0$ for any $d(v) \geqslant \Delta-2$ as $M \geqslant 10 d+1 \geqslant 21$.
Let $X=\left\{x \in V(G) \left\lvert\, d_{G}(x) \leqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor\right.\right\}$. By (C3), X is an independent set of vertices.
Claim 2 The number of $\left(\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor+1\right)^{+}$-vertex of G is at least $M-\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor+3$. That is,

$$
|V(G \backslash X)| \geqslant M-\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor+3 .
$$

Proof Otherwise, let $Y=N_{x \in X}(x)$ and $B=B(X, Y)$ be the induced bipartite subgraph. For all $y \in Y$,

$$
d_{G \backslash X}(y) \leqslant|Y|-1 \leqslant M-\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor+1 .
$$

Therefore,

$$
d_{B}(y)=d_{G}(y)-d_{G \backslash X}(y) \geqslant d_{G}(y)+\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor-M-1
$$

which implies B is a $\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor$-alternator of G, a contradiction to Lemma 2.5.
Since $M \geqslant 10 d+1$, it follows that

$$
M-12>\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor-5
$$

Thus,

$$
w^{\prime}(v) \geqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor-5
$$

when $d_{G}(v) \geqslant\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor+1$. Then

$$
\begin{aligned}
\sum_{x \in V} w(x) & =\sum_{x \in V} w^{\prime}(x) \\
& >\left(M-\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor+3\right)\left(\left\lfloor\frac{M+2 d-1}{2 d}\right\rfloor-5\right) \\
& \geqslant(2 d-1)\left(\frac{M-1}{2 d}\right)^{2}-(10 d-8) \frac{M-1}{2 d}-15
\end{aligned}
$$

$$
\geqslant-6 \varepsilon
$$

as

$$
M \geqslant \frac{d}{2 d-1}\left(10 d-8+\sqrt{(10 d-2)^{2}-24(2 d-1) \varepsilon}\right)+1
$$

Then this contradiction completes the proof.
Proof of Theorem 0.4 Let G be a minimal counterexample in terms of $|V(G)|+|E(G)|$ to Theorem 0.4. In this theorem, $M \geqslant 5 d+2$. We define the initial charge function $w(x):=d(x)-4$ for all element $x \in V \cup F$. By Euler's formula $|V|-|E|+|F|=\varepsilon$, we have

$$
\sum_{x \in V \cup F} w(x)=\sum_{v \in V}(d(v)-4)+\sum_{f \in F}(d(f)-4)=-4 \varepsilon<0
$$

The transition rules are defined as follows.
(R1) Each 3-vertex (if exists) receives charge 1 from its 3-master.
(R2) Each k-vertex with $5 \leqslant k \leqslant 7$ transfer charge $\frac{k-4}{k}$ to each 3 -face that incident with it.
(R3) Each 8^{+}-vertex transfer charge $\frac{1}{2}$ to each 3 -face that incident with it.
Analogous with Claim 1 in the proof of Theorem 0.3 , it is easy to prove that $\delta(G) \geqslant 3$ when $\Delta=M$ and $\delta(G) \geqslant 4$ otherwise. Let v be a k-vertex of G.

For $k=3$, then $w^{\prime}(v)=w(v)+1=3-4+1=0$ since it receives 1 from its 3 -master;
For $k=4$, then $w^{\prime}(v)=w(v)=0$ since we never change the charge by our rules;
For $5 \leqslant k \leqslant 7$, then $w^{\prime}(v) \geqslant w(v)-k \frac{k-4}{k}=0$ by (R2);
For $8 \leqslant k \leqslant M-1$, then $w^{\prime}(v) \geqslant w(v)-k \frac{1}{2} \geqslant 0$ by (R3);
If $M>\Delta$, then $M-1 \geqslant \Delta$. Thus $w(v) \geqslant 0$ for all $v \in V(G)$. Otherwise, $\Delta=M$. Then for $k=\Delta, w^{\prime}(v) \geqslant w(v)-\frac{1}{2} M-1=\frac{M}{2}-5$ by (C5) and rules (R1), (R3). Since $M \geqslant 5 d+2 \geqslant 12$, we have $w^{\prime}(v) \geqslant \frac{M}{2}-5>0$.

Let f be a k-face of G.
If $k \geqslant 4$, then $w^{\prime}(f)=w(f) \geqslant 0$ since we never change the charge of them by our rules;
If $k=3$, assume that $f=\left[v_{1}, v_{2}, v_{3}\right]$ with $d\left(v_{1}\right) \leqslant d\left(v_{2}\right) \leqslant d\left(v_{3}\right)$. It is easy to see $w(f)=-1$. Consider the subcases as follows.
(a) Suppose $d\left(v_{1}\right)=3$. Then $M=\Delta$ and $d\left(v_{2}\right)=d\left(v_{3}\right)=\Delta$ by (C3). Thus, $w^{\prime}(f)=$ $w(f)+\frac{1}{2} \times 2=0$ by (R3);
(b) Suppose $d\left(v_{1}\right)=4$. Then $d\left(v_{3}\right) \geqslant d\left(v_{2}\right) \geqslant M-2 d+4-d\left(v_{1}\right) \geqslant 3 d+2 \geqslant 8$ by (C2). Therefore, $w^{\prime}(f)=w(f)+\frac{1}{2} \times 2=0$ by (R3);
(c) Suppose $d\left(v_{1}\right)=5$. Then $d\left(v_{3}\right) \geqslant d\left(v_{2}\right) \geqslant M-2 d+4-d\left(v_{1}\right) \geqslant 3 d+1 \geqslant 7$ by (C2). Therefore, $w^{\prime}(f)=w(f)+\frac{3}{7} \times 2+\frac{1}{5}>0$ by (R2).
(d) Suppose $d\left(v_{1}\right)=m \geqslant 6$. Then $d\left(v_{3}\right) \geqslant d\left(v_{2}\right) \geqslant 6$. Therefore, $w^{\prime}(f) \geqslant w(f)+3 \times$ $\min \left\{\frac{m-4}{m}, \frac{1}{2}\right\}=0$ by (R2) and (R3).

Thus, we have $\sum_{x \in V \cup F} w^{\prime}(x) \geqslant 0$ which is a contradiction with

$$
\sum_{x \in V \cup F} w^{\prime}(x)=\sum_{x \in V \cup F} w(x)<0
$$

References

[1] Havet F, Yu M L. ($p, 1$)-Total labelling of graphs [J]. Discrete Math, 2008, 308: 496-513.
[2] Bazzaro F, Montassier M, Raspaud A. (d,1)-Total labelling of planar graphs with large girth and high maximum degree [J]. Discrete Math, 2007, 307: 2141-2151.
[3] Borodin O V, Kostochka A V, Woodall D R. List edge and list total colourings of multigraphs [J]. J Conbin Theory Ser B, 1997, 71: 184-204.
[4] Chen D, Wang W F. (2,1)-Total labelling of outerplanar graphs [J]. Discrete Appl Math, 2007, 155: 2585-2593.
[5] Lih K W, Liu D F, Wang W. On (d,1)-total numbers of graphs [J]. Discrete Math,2009, 309: 3767-3773.
[6] Montassier M, Raspaud A. (d,1)-Total labelling of graphs with a given maximum average degeree [J]. J. Graph Theory, 2006, 51: 93-109.
[7] Wang W, Chen D. (2,1)-Total labelling of trees [J]. Information Processing Letters, 2009, 109: 805-810.
[8] Wu J L, Wang P. List edge and list total colorings of graphs embedded on hyperbolic surfaces [J]. Discrete Math, 2008, 308: 210-6215.
[9] Yu Y, Wang G H, Liu G Z. List version of ($p, 1$)-total labellings [C]. submitted to Proc Japan Acad.

[^0]: 摘要 图的 $(d, 1)$－全标号问题最初是由 Havet 等人提出的．在本文中，我们考虑了可嵌入曲面图的列表 $(d, 1)$－全标号问题，并证明了其列表 $(d, 1)$－全标号数不超过 $\Delta(G)+2 d$ 。

 关键词 $(d, 1)-$ 全标号，列表 $(\mathrm{d}, 1)-$ 全标号，列表 $(\mathrm{d}, 1)-$ 全标号数，图
 中图分类号 O157．5
 数学分类号 05 C 15

[^1]: 收稿日期：2011年2月3日。
 ＊Supported by GIIFSDU（yzc11025），NNSF（61070230，11026184，10901097）and RFDP（200804220001， 20100131120017）and SRF for ROCS．

 1．School of Mathematics，Shandong University，Jinan 250100，China；山东大学数学学院，济南 250100
 \dagger 通讯作者 Corresponding author

