On the Linear Arboricity of 1－Planar Graphs＊

ZHANG Xin ${ }^{1}$ LIU Guizhen ${ }^{1 \dagger}$ WU Jianliang ${ }^{1}$

Abstract

It is proved that the linear arboricity of every 1－planar graph with maxi－ mum degree $\Delta \geqslant 33$ is $\lceil\Delta / 2\rceil$ ．

Keywords 1－planar graph，1－embedded graph，linear arboricity
Chinese Library Classification O157．5
2010 Mathematics Subject Classification 05C10，05C15

1－平面图的线性荫度

$$
\text { 张 欣 }{ }^{1} \text { 刘桂真 }{ }^{1 \dagger} \text { 吴建良 }{ }^{1}
$$

摘要 证明了最大度 $\Delta \geqslant 33$ 的 1 －平面图的线性荫度为 $\lceil ~ \Delta / 2\rceil$
关键词 1－平面图， 1 －嵌入图，线性荫度
中图分类号 O157．5
数学分类号 $05 \mathrm{C} 10,05 \mathrm{C} 15$

0 Introduction

All graphs considered here are finite，simple and undirected．Most of the notions are standard and we refer the readers to［1］．A linear forest is a forest in which every connected component is a path．The linear arboricity $l a(G)$ of a graph G is the minimum number of linear forests in G ，whose union is the set of all edges of G ．Akiyama，Exoo and Harary ${ }^{[2]}$ conjectured that $l a(G)=\lceil(\Delta(G)+1) / 2\rceil$ for any regular graph G ．It is obviously that $l a(G) \geqslant\lceil\Delta(G) / 2\rceil$ for every graph G and $l a(G) \geqslant\lceil(\Delta(G)+1) / 2\rceil$ for every regular graph G ．So this conjecture is equivalent to the following conjecture．

Conjecture 1 For any graph G ，

$$
\left\lceil\frac{\Delta(G)}{2}\right\rceil \leqslant l a(G) \leqslant\left\lceil\frac{\Delta(G)+1}{2}\right\rceil .
$$

Now this conjecture was only proved for several special classes of graphs such as planar graphs ${ }^{[3-4]}$ and is still widely open．Note that if this conjecture is true and G is a graph with even（resp．odd）maximum degree，then the linear arboricity of G is either $\lceil\Delta(G) / 2\rceil$ or $\lceil(\Delta(G)+1) / 2\rceil$（resp．exactly $\lceil\Delta(G) / 2\rceil)$ ．So the determination of $l a(G)$ for a graph G

[^0]seems interesting, although Péroche showed that this is an NP-hard problem ${ }^{[5]}$. In fact, the linear arboricity has been determined for many classes of graphs (see the introduction of [6] for detail) such as series-parallel graphs ${ }^{[7]}$.

In this paper, we focus on 1-planar graphs. Given a surface S we call a graph G 1embedded on S if G can be drawn on S so that each edge is crossed by at most one other edge. In particular, if S is a plane, then such a graph G is called 1-planar graph. The notion of 1-planar graphs was introduced by Ringel ${ }^{[8]}$, who proved that the chromatic number of each 1-planar graph is at most 7 ; this bound was latter improved to 6 (being sharp) by Borodin ${ }^{[9-10]}$. In [11], Albertson and Mohar considered the list vertex coloring of graphs 1 -embedded on a given surface. Wang and Lih proved that each 1-planar graph is list 7colorable ${ }^{[12]}$. It is also known that each 1-planar graph G is acyclically 20 -colorable ${ }^{[13]}$ and is edge $\Delta(G)$-colorable if $\Delta(G) \geqslant 10^{[14]}$ or $\Delta(G) \geqslant 7$ and $g(G) \geqslant 4^{[15]}$. Recently, Zhang et al. investigated the $(p, 1)$-total labelling of 1 -planar graphs ${ }^{[16]}$.

In this paper we aim to investigate the linear arboricity of 1-planar graphs. One of the main results is the following Theorem 2, which implies that the linear arboricity of every 1-planar graph with maximum degree $\Delta \geqslant 33$ is exactly $\lceil\Delta / 2\rceil$. The other result, which dedicates to the linear arboricity of graphs 1-embedded on a given surface, will be shown at the end of the paper.

Theorem 2 For every 1-planar graph G with maximum degree $\Delta \leqslant M$ and $M \geqslant 34$, we have

$$
l a(G) \leqslant\left\lceil\frac{M}{2}\right\rceil
$$

From now on, for any 1-planar graph G, we always assume that G has been embedded on a plane such that every edge is crossed by at most one other edge and the number of crossings is as small as possible. We call such an embedding 1-plane graph. The associated plane graph G^{\times}of a 1-plane graph G is the plane graph that is obtained from G by turning all crossings of G into new 4 -vertices. A vertex in G^{\times}is called false if it is not a vertex of G and true otherwise. Note that no two false vertices are adjacent in G^{\times}. By false face, we mean a face f in G^{\times}that is incident with at least one false vertex; otherwise we say that f is true. For a true vertex v in G^{\times}, we use $\alpha(v)$ and $\tau(v)$ to denote the number of false 3 -faces and 3 -faces incident with v in G^{\times}, respectively. Throughout this paper, a $k-, k^{+}$ and k^{-}-vertex (resp. face) is a vertex (resp. face) of degree k, at least k and at most k.

1 Main results and their proofs

First of all, we prove Theorem 2. Let G be a minimum counterexample to Theorem 2. It is easy to see that G is 2 -connected and $\delta(G) \geqslant 2$. Moreover, G also has the following properties.

Claim $1^{[17]}$ For every edge $u v$ of G,

$$
d_{G}(u)+d_{G}(v) \geqslant 2\left\lceil\frac{M}{2}\right\rceil+2 .
$$

Let G_{2} be the subgraph of G induced by the edges incident with 2-vertices. It is proved in [6] that G_{2} is a forest. So it is easy to find a matching M in G saturating all

2-vertices. If $u v \in M$ and $d_{G}(u)=2$, then we call v the 2-master of u. For $3 \leqslant t \leqslant\left\lfloor\frac{\Delta}{2}\right\rfloor$, let $X_{t} \subseteq\left\{v \mid 2 \leqslant d_{G}(v) \leqslant t\right\}, Y_{t}=N\left(X_{t}\right)$ and B_{t} be the induced bipartite subgraph of G with partite sets X_{t} and Y_{t}. It follows from Claim 1 that X_{t} is an independent set of G. If $X_{t} \neq \emptyset$ and there exists a bipartite subgraph M_{t} of B_{t} such that $d_{M_{t}}(x)=1$ for each $x \in X_{t}$ and $d_{M_{t}}(y) \leqslant 2 t-1$ for each $y \in Y_{t}$, then we call y the t-master of x in G for $x y \in M_{t}$ and $x \in X_{t}$. The following claim is due to [6].

Claim $2^{[6]}$ Each i-vertex in G (if exits) has one j-master, where $2 \leqslant i \leqslant j \leqslant 7$, and each M-vertex (if exits) in G can be 2 -master of at most one vertex and each $(M-i)$-vertex (if exits) can be j-masters of at most $2 j-1$ vertices, where $2 \leqslant \max \{i+2,3\} \leqslant j \leqslant 7$.

We call a vertex in G small if it is of degree no more than seven and big otherwise. A false 3 -face in G^{\times}is called unbalanced or balanced according to whether or not it is incident with a small vertex. For a true vertex v in G^{\times}, let $\alpha_{a}(v)$ be the number of unbalanced false 3 -faces that are incident with v in G^{\times}.

Claim $3^{[14]}$ Let v be a vertex in G. If $d_{G}(v)=2$, then $\alpha(v)=0$; if $d_{G}(v)=3$ and $\alpha(v) \geqslant 2$, then v is incident with a 5^{+}-face in G^{\times}; if $d_{G}(v)=4$, then $\alpha(v) \leqslant 3$; and if $d_{G}(v) \geqslant 5$, then $\alpha(v) \leqslant 2\left\lfloor\frac{d_{G}(v)}{2}\right\rfloor$.

Claim 4 Let v be a big vertex in G. If $\tau(v)=d_{G}(v)$, then

$$
\alpha_{a}(v) \leqslant\left\lfloor\frac{\tau(v)}{2}\right\rfloor
$$

and if $\tau(v)=d_{G}(v)-i \geqslant \frac{2}{3} d_{G}(v)$, then

$$
\alpha_{a}(v) \leqslant\left\lceil\frac{\tau(v)}{2}\right\rceil+i-1
$$

Proof If any of the two facts does not hold, then there must be three consecutive unbalanced false 3 -faces that are incident with v in G^{\times}, which implies that two small vertices are adjacent in G, a contradiction to Claim 1

Now we continue the proof of Theorem 2 by the discharging method. Define an initial charge c on $V(G) \cup F\left(G^{\times}\right)$by letting $c(v)=d_{G}(v)-4$ for every $v \in V(G)$ and $c(f)=$ $d_{G \times}(f)-4$ for every $f \in F\left(G^{\times}\right)$. By Euler's formula,

$$
\sum_{x \in V(G) \cup F\left(G^{\times}\right)} c(x)=-8
$$

Now we redistribute the charges by the following rules.
R1. If f is a true or balanced false 3 -face in G^{\times}, then f receives $\frac{1}{2}$ from each of its incident big vertices.

R2. If f is an unbalanced false 3 -face in G^{\times}, then f receives $\frac{1}{4}$ from its incident small vertex and $\frac{3}{4}$ from its incident big vertex.

R3. If f is a 5^{+}face in G^{\times}, then f sends $\frac{1}{2}$ to each of its incident 3-vertices.
$\mathbf{R 4}$. If v is 2 -vertex in G, then v receives $\frac{3}{4}, \frac{1}{2}$ and $\frac{3}{4}$ from each of its 2 -masters, 3 -masters and 4-masters, respectively.

R5. If v is 3 -vertex in G, then v receives $\frac{1}{2}$ and $\frac{3}{4}$ from each of its 3 -masters and 4-masters, respectively.

R6. If v is 4 -vertex in G, then v receives $\frac{3}{4}$ from each of its 4 -masters.
We consider the final charge c^{\prime} of the vertices in G and faces in G^{\times}. Note that if f is a true or balanced false 3 -face in G^{\times}, then f is incident with at least two big vertices by Claim 1, and if f is an unbalanced false 3 -face in G^{\times}, then f is incident with exactly one small vertex and one big vertex. So $c^{\prime}(f)=0$ for every 3 -face in G^{\times}by R1 and R2. Since 4 -faces are involved in none of the rules, their final charges remain zero. For a 5^{+}-face f in G^{\times}, f can be incident with at most $\left\lfloor\frac{\left.d_{G \times} \times f\right)}{2}\right\rfloor 3$-vertices by Claim 1. So by R3,

$$
c^{\prime}(f) \geqslant d_{G^{\times}}(f)-4-\frac{1}{2}\left\lfloor\frac{d_{G^{\times}}(f)}{2}\right\rfloor \geqslant 0
$$

for $d_{G \times}(f) \geqslant 5$.
Let v be a 2 -vertex. Then by Claim $3, v$ is incident with no false 3 -faces and by Claim $2, v$ has a 2 -master, a 3 -master and a 4 -master. So by R4,

$$
c^{\prime}(v)=-2+\frac{3}{4}+\frac{1}{2}+\frac{3}{4}=0
$$

Let v be a 3 -vertex. Then v has a 3 -master and a 4 -master. If $\alpha(v) \leqslant 1$, then

$$
c^{\prime}(v) \geqslant-1-\frac{1}{4}+\frac{1}{2}+\frac{3}{4}=0
$$

by R 2 and R 5 , and if $\alpha(v) \geqslant 2$, then by Claim $3, v$ is also incident with a 5^{+}-face, which implies that

$$
c^{\prime}(v) \geqslant-1-2 \times \frac{1}{4}+\frac{1}{2}+\frac{3}{4}+\frac{1}{2}>0
$$

by R2, R 3 and R5. Let v be a 3 -vertex. Then v has a 4 -master by Claim 2 and $\alpha(v) \leqslant 3$ by Claim 3. This implies that

$$
c^{\prime}(v) \geqslant 0-3 \times \frac{1}{4}+\frac{3}{4}=0
$$

by R2 and R6. Let v be a vertex of degree between 5 and 7 . Then v only sends at most $\frac{1}{4}$ to each of its incident false 3 -faces by R1 and R2. So

$$
c^{\prime}(v) \geqslant d_{G}(v)-4-\frac{1}{4} \alpha(v) \geqslant d_{G}(v)-4-\frac{1}{2}\left\lfloor\frac{d_{G}(v)}{2}\right\rfloor \geqslant 0
$$

for $d_{G}(v) \geqslant 5$ by Claim 3. Let v be a vertex of degree between 8 and $M-6$. Then by Claim $1, v$ is adjacent to no small vertices and thus v sends out no charges by R 2 and $\mathrm{R} 4-\mathrm{R} 6$. This implies that

$$
c^{\prime}(v) \geqslant d_{G}(v)-4-\frac{1}{2} d_{G}(v) \geqslant 0
$$

by R1 for $d_{G}(v) \geqslant 8$. Let v be a vertex of degree between $M-5$ and $M-3$. Then by Claim $1, v$ is adjacent to no 4^{-}-vertices and thus v sends out no charges by R4-R6. This implies that

$$
c^{\prime}(v) \geqslant d_{G}(v)-4-\frac{3}{4} d_{G}(v) \geqslant 0
$$

by R2 for $d_{G}(v) \geqslant M-5>16$. Finally, let v be a vertex of degree between $M-2$ and M. If $d_{G}(v)=M$, then by Claim 2, v sends at most

$$
\frac{3}{4}+5 \times \frac{1}{2}+7 \times \frac{3}{4}=\frac{17}{2}
$$

to its neighbors by R4-R6. If $\tau(v) \leqslant M-6$, then by R1 and R2,

$$
c^{\prime}(v) \geqslant M-4-\frac{17}{2}-\frac{3}{4}(M-6)=\frac{1}{8}(2 M-64)>0
$$

for $M \geqslant 34$. If $M-5 \leqslant \tau(v) \leqslant M-1$, then by R1, R2 and Claim 4,

$$
\begin{aligned}
c^{\prime}(c) & \geqslant M-4-\frac{17}{2}-\frac{3}{4} \alpha_{a}(v)-\frac{1}{2}\left(\tau(v)-\alpha_{a}(v)\right) \\
& =M-\frac{25}{2}-\frac{1}{4} \alpha_{a}(v)-\frac{1}{2} \tau(v) \\
& \geqslant M-\frac{25}{2}-\frac{1}{4}\left(\left\lceil\frac{\tau(v)}{2}\right\rceil+M-\tau(v)-1\right)-\frac{1}{2} \tau(v) \\
& \geqslant \frac{1}{8}(3 M-96)>0
\end{aligned}
$$

for $M \geqslant 34$. If $\tau(v)=M$, then by R1, R2 and Claim 4,

$$
\begin{aligned}
c^{\prime}(v) & \geqslant M-4-\frac{17}{2}-\frac{3}{4} \alpha_{a}(v)-\frac{1}{2}\left(\tau(v)-\alpha_{a}(v)\right) \\
& =M-\frac{25}{2}-\frac{1}{4} \alpha_{a}(v)-\frac{1}{2} \tau(v) \\
& \geqslant M-\frac{25}{2}-\frac{1}{8} \tau(v)-\frac{1}{2} \tau(v) \\
& \geqslant \frac{1}{8}(3 M-100)>0
\end{aligned}
$$

for $M \geqslant 34$. By similar arguments, one can also check that the final charges of the ($M-2$)vertices and $(M-1)$-vertices are nonnegative. Hence, the proof of Theorem 2 completes, since

$$
-8=\sum_{x \in V(G) \cup F\left(G^{\times}\right)} c(x)=\sum_{x \in V(G) \cup F\left(G^{\times}\right)} c^{\prime}(x)>0,
$$

a contradiction.
In the following, we focus on graphs 1-embedded on surfaces and prove the following theorem.

Theorem 3 Let G be graph 1-embedded on a surface with Euler characteristic ε. If

$$
\Delta(G) \geqslant 25+\sqrt{841-72 \varepsilon}
$$

then

$$
l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil
$$

Proof The proof of Theorem 2 implies that the linear arboricity of every graph 1embedded on a surface with nonnegative Euler characteristic is $\left\lceil\frac{\Delta(G)}{2}\right\rceil$ if $\Delta(G) \geqslant 33$. So we assume $\varepsilon<0$ below. Similarly, choose a minimum counterexample G to the theorem and then G is 2-connected with $\delta(G) \geqslant 2$. Moreover, Claims 1 and 2 in Section 1 are also valid for this proof. But we need one additional claim here.

Claim $5^{[6]}$ There are at least $\left\lfloor\frac{\Delta}{3}\right\rfloor+2$ vertices of degree greater than $\left\lfloor\frac{\Delta}{3}\right\rfloor$ in G.

Now we assign an initial charge $c(v)=d_{G}(v)-8$ to every vertex $v \in V(G)$. Since $|E(G)| \leqslant 4(|V(G)|-\varepsilon)$ (see Lemma 2.2 of [18]),

$$
\sum_{v \in V(G)} c(v)=2|E(G)|-8|V(G)| \leqslant-8 \varepsilon .
$$

In the following, we will redistribute the charges by the following discharging rules.
$\tilde{\mathbf{R}} 1$. Each i-vertex receives 1 from its j-master, where $2 \leqslant i \leqslant 7$ and $i \leqslant j \leqslant 7$.
Let $c^{\prime}(v)$ denote the final charge of a vertex $v \in V(G)$. By Claims 1,2 and $\tilde{\mathrm{R}} 1, c^{\prime}(v)=0$ for each 7^{-}-vertices and $c^{\prime}(v)=c(v)=d_{G}(v)-8 \geqslant 0$ for each vertex of degree between 8 and $\Delta-6$. Let v be a Δ-vertex. By Claim $2, v$ may be 7 -masters, 6 -masters, 5 -masters, 4 -masters, 3 -masters and 2 -master of at most thirteen, eleven, nine, seven, five and one vertices, respectively. This implies that

$$
c^{\prime}(v) \geqslant \Delta-8-13-11-9-7-5-1=\Delta-54
$$

by R1. Similarly, we can prove that $c^{\prime}(v) \geqslant \Delta-54$ for every vertex of degree between $\Delta-5$ and $\Delta-1$. Therefore, $c^{\prime}(v)>0$ for every vertex v in G and $c^{\prime}(v)>\frac{\Delta}{3}-18$ for every vertex of degree greater than $\left\lfloor\frac{\Delta}{3}\right\rfloor$, since

$$
\Delta(G) \geqslant 25+\sqrt{841-72 \varepsilon}>55 .
$$

So by Claim 5,

$$
\begin{aligned}
\sum_{v \in V(G)} c^{\prime}(v) & >\left(\left\lfloor\frac{\Delta}{3}\right\rfloor+2\right)\left(\frac{\Delta}{3}-18\right) \\
& \geqslant\left(\frac{\Delta+4}{3}\right)\left(\frac{\Delta-54}{3}\right) \\
& \geqslant \frac{1}{9}(\sqrt{841-72 \varepsilon}+29)(\sqrt{841-72 \varepsilon}-29) \\
& =-8 \varepsilon \\
& =\sum_{v \in V(G)} c(v),
\end{aligned}
$$

a contradiction.

References

[1] Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: North-Holland, 1976.
[2] Akiyama J, Exoo G, Harary F. Covering and packing in graphs III: Cyclic and acyclic invariants [J]. Math Slovaca, 1980, 30: 405-417.
[3] Wu J L. On the linear arboricity of planar graphs [J]. J. Graph Theory, 1999, 31: 129-134.
[4] Wu J L, Wu Y. The linear arboricity of planar graphs of maximum degree seven is four [J]. J. Graph Theory, 2008, 58: 210-220.
[5] Péroche B. Complexity of the linear arboricity of a graph [J]. RAIRO Rech. Opér., 1982, 16: 125-129.
[6] Wu J L. The linear arboricity of graphs on surfaces of negative Euler characteristic [J]. SIAM J Discrete Math, 2008, 23(1): 54-58.
[7] Wu J L. The linear arboricity of series-parallel graphs [J]. Graphs Combin, 2000, 16: 367-372.
[8] Ringel G. Ein sechsfarbenproblem auf der kugel [J]. Abh. Math. Semin. Univ. Hamburg, 1965, 29: 107-117.
[9] Borodin O V. Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs [J]. Metody Diskret Analiz, 1984, 41: 12-26.
[10] Borodin O V. A New Proof of the 6-Color Theorem [J]. J Graph Theory, 1995, 19(4): 507-521.
[11] Albertson M O, Mohar B. Coloring vertices and faces of locally planar graphs [J]. Graphs Combin, 2006, 22: 289-295.
[12] Wang W, Lih K W. Coupled choosability of plane graphs [J]. J Graph Theory, 2008, 58: 27-44.
[13] Borodin O V, Kostochka A V, Raspaud A, et al. Acyclic colouring of 1-planar graphs [J]. Discrete Appl Math, 2001, 114: 29-41.
[14] Zhang X, Wu J L. On edge colorings of 1-planar graphs [J]. Inform Process Lett, 2011, 111(3): 124-128.
[15] Zhang X, Liu G, Wu J L. Edge coloring of triangle-free 1-planar graphs [J]. J. Shandong Univ Nat Sci, 2010, 45(6): 15-17.
[16] Zhang X, Yu Y, Liu G. On ($p, 1$)-total labelling of 1-planar graphs [J]. Cent Eur J Math, doi: 10.2478/s11533-011-0092-1.
[17] Cygan M, Hou J, Kowalik L, et al. A planar linear arboricity conjecture [J]. J Graph Theory, doi: 10.1002/jgt. 20592.
[18] Fabrici I, Madaras T. The structure of 1-planar graphs [J]. Discrete Math, 2007, 307: 854-865.

[^0]: 收稿日期：2011年8月13日。
 ＊Supported by National Natural Science Foundation of China（10971121，11101243，61070230），The Research Fund for the Doctoral Program of Higher Education（20100131120017）and Graduate Independent Innovation Foundation of Shandong University（yzc10040）．

 1．School of Mathematics，Shandong University，Jinan 250100，China；山东大学数学学院，济南 250100
 \dagger 通讯作者 Corresponding author

