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On the Linear Arboricity of 1-Planar Graphs∗
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Abstract It is proved that the linear arboricity of every 1-planar graph with maxi-
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0 Introduction

All graphs considered here are finite, simple and undirected. Most of the notions are

standard and we refer the readers to [1]. A linear forest is a forest in which every connected

component is a path. The linear arboricity la(G) of a graph G is the minimum number of

linear forests in G, whose union is the set of all edges of G. Akiyama, Exoo and Harary[2]

conjectured that la(G) = ⌈(∆(G) + 1)/2⌉ for any regular graph G. It is obviously that

la(G) > ⌈∆(G)/2⌉ for every graph G and la(G) > ⌈(∆(G) + 1)/2⌉ for every regular graph

G. So this conjecture is equivalent to the following conjecture.

Conjecture 1 For any graph G,

⌈

∆(G)

2

⌉

6 la(G) 6

⌈

∆(G) + 1

2

⌉

.

Now this conjecture was only proved for several special classes of graphs such as planar

graphs[3−4] and is still widely open. Note that if this conjecture is true and G is a graph

with even (resp. odd) maximum degree, then the linear arboricity of G is either ⌈∆(G)/2⌉
or ⌈(∆(G) + 1)/2⌉ (resp. exactly ⌈∆(G)/2⌉). So the determination of la(G) for a graph G����� 2011 � 8 ) 13 ��
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seems interesting, although Péroche showed that this is an NP-hard problem[5]. In fact, the

linear arboricity has been determined for many classes of graphs (see the introduction of [6]

for detail) such as series-parallel graphs[7].

In this paper, we focus on 1-planar graphs. Given a surface S we call a graph G 1-

embedded on S if G can be drawn on S so that each edge is crossed by at most one other

edge. In particular, if S is a plane, then such a graph G is called 1-planar graph. The notion

of 1-planar graphs was introduced by Ringel[8], who proved that the chromatic number of

each 1-planar graph is at most 7; this bound was latter improved to 6 (being sharp) by

Borodin[9−10]. In [11], Albertson and Mohar considered the list vertex coloring of graphs

1-embedded on a given surface. Wang and Lih proved that each 1-planar graph is list 7-

colorable[12]. It is also known that each 1-planar graph G is acyclically 20-colorable[13] and

is edge ∆(G)-colorable if ∆(G) > 10[14] or ∆(G) > 7 and g(G) > 4[15]. Recently, Zhang et

al. investigated the (p, 1)-total labelling of 1-planar graphs[16].

In this paper we aim to investigate the linear arboricity of 1-planar graphs. One of the

main results is the following Theorem 2, which implies that the linear arboricity of every

1-planar graph with maximum degree ∆ > 33 is exactly ⌈∆/2⌉. The other result, which

dedicates to the linear arboricity of graphs 1-embedded on a given surface, will be shown at

the end of the paper.

Theorem 2 For every 1-planar graph G with maximum degree ∆ 6 M and M > 34,

we have

la(G) 6

⌈

M

2

⌉

.

From now on, for any 1-planar graph G, we always assume that G has been embedded

on a plane such that every edge is crossed by at most one other edge and the number of

crossings is as small as possible. We call such an embedding 1-plane graph. The associated

plane graph G× of a 1-plane graph G is the plane graph that is obtained from G by turning

all crossings of G into new 4-vertices. A vertex in G× is called false if it is not a vertex of

G and true otherwise. Note that no two false vertices are adjacent in G×. By false face, we

mean a face f in G× that is incident with at least one false vertex; otherwise we say that

f is true. For a true vertex v in G×, we use α(v) and τ(v) to denote the number of false

3-faces and 3-faces incident with v in G×, respectively. Throughout this paper, a k-, k+-

and k−-vertex (resp. face) is a vertex (resp. face) of degree k, at least k and at most k.

1 Main results and their proofs

First of all, we prove Theorem 2. Let G be a minimum counterexample to Theorem 2.

It is easy to see that G is 2-connected and δ(G) > 2. Moreover, G also has the following

properties.

Claim 1[17] For every edge uv of G,

dG(u) + dG(v) > 2

⌈

M

2

⌉

+ 2.

Let G2 be the subgraph of G induced by the edges incident with 2-vertices. It is

proved in [6] that G2 is a forest. So it is easy to find a matching M in G saturating all
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2-vertices. If uv ∈ M and dG(u) = 2, then we call v the 2-master of u. For 3 6 t 6 ⌊∆

2 ⌋,
let Xt ⊆ {v | 2 6 dG(v) 6 t}, Yt = N(Xt) and Bt be the induced bipartite subgraph of G

with partite sets Xt and Yt. It follows from Claim 1 that Xt is an independent set of G. If

Xt 6= ∅ and there exists a bipartite subgraph Mt of Bt such that dMt
(x) = 1 for each x ∈ Xt

and dMt
(y) 6 2t − 1 for each y ∈ Yt, then we call y the t-master of x in G for xy ∈ Mt and

x ∈ Xt. The following claim is due to [6].

Claim 2[6] Each i-vertex in G (if exits) has one j-master, where 2 6 i 6 j 6 7, and

each M -vertex (if exits) in G can be 2-master of at most one vertex and each (M − i)-vertex

(if exits) can be j-masters of at most 2j − 1 vertices, where 2 6 max{i + 2, 3} 6 j 6 7.

We call a vertex in G small if it is of degree no more than seven and big otherwise. A

false 3-face in G× is called unbalanced or balanced according to whether or not it is incident

with a small vertex. For a true vertex v in G×, let αa(v) be the number of unbalanced false

3-faces that are incident with v in G×.

Claim 3[14] Let v be a vertex in G. If dG(v) = 2, then α(v) = 0; if dG(v) = 3 and

α(v) > 2, then v is incident with a 5+-face in G×; if dG(v) = 4, then α(v) 6 3; and if

dG(v) > 5, then α(v) 6 2⌊dG(v)
2 ⌋.

Claim 4 Let v be a big vertex in G. If τ(v) = dG(v), then

αa(v) 6

⌊

τ(v)

2

⌋

;

and if τ(v) = dG(v) − i >
2
3dG(v), then

αa(v) 6

⌈

τ(v)

2

⌉

+ i − 1.

Proof If any of the two facts does not hold, then there must be three consecutive

unbalanced false 3-faces that are incident with v in G×, which implies that two small vertices

are adjacent in G, a contradiction to Claim 1

Now we continue the proof of Theorem 2 by the discharging method. Define an initial

charge c on V (G) ∪ F (G×) by letting c(v) = dG(v) − 4 for every v ∈ V (G) and c(f) =

dG×(f) − 4 for every f ∈ F (G×). By Euler’s formula,

∑

x∈V (G)∪F (G×)

c(x) = −8.

Now we redistribute the charges by the following rules.

R1. If f is a true or balanced false 3-face in G×, then f receives 1
2 from each of its

incident big vertices.

R2. If f is an unbalanced false 3-face in G×, then f receives 1
4 from its incident small

vertex and 3
4 from its incident big vertex.

R3. If f is a 5+ face in G×, then f sends 1
2 to each of its incident 3-vertices.

R4. If v is 2-vertex in G, then v receives 3
4 , 1

2 and 3
4 from each of its 2-masters,

3-masters and 4-masters, respectively.

R5. If v is 3-vertex in G, then v receives 1
2 and 3

4 from each of its 3-masters and

4-masters, respectively.
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R6. If v is 4-vertex in G, then v receives 3
4 from each of its 4-masters.

We consider the final charge c′ of the vertices in G and faces in G×. Note that if f is

a true or balanced false 3-face in G×, then f is incident with at least two big vertices by

Claim 1, and if f is an unbalanced false 3-face in G×, then f is incident with exactly one

small vertex and one big vertex. So c′(f) = 0 for every 3-face in G× by R1 and R2. Since

4-faces are involved in none of the rules, their final charges remain zero. For a 5+-face f in

G×, f can be incident with at most ⌊d
G×

(f)

2 ⌋ 3-vertices by Claim 1. So by R3,

c′(f) > dG×(f) − 4 − 1

2

⌊

dG×(f)

2

⌋

> 0

for dG×(f) > 5.

Let v be a 2-vertex. Then by Claim 3, v is incident with no false 3-faces and by Claim

2, v has a 2-master, a 3-master and a 4-master. So by R4,

c′(v) = −2 +
3

4
+

1

2
+

3

4
= 0.

Let v be a 3-vertex. Then v has a 3-master and a 4-master. If α(v) 6 1, then

c′(v) > −1 − 1

4
+

1

2
+

3

4
= 0

by R2 and R5, and if α(v) > 2, then by Claim 3, v is also incident with a 5+-face, which

implies that

c′(v) > −1 − 2 × 1

4
+

1

2
+

3

4
+

1

2
> 0

by R2, R3 and R5. Let v be a 3-vertex. Then v has a 4-master by Claim 2 and α(v) 6 3 by

Claim 3. This implies that

c′(v) > 0 − 3 × 1

4
+

3

4
= 0

by R2 and R6. Let v be a vertex of degree between 5 and 7. Then v only sends at most 1
4

to each of its incident false 3-faces by R1 and R2. So

c′(v) > dG(v) − 4 − 1

4
α(v) > dG(v) − 4 − 1

2

⌊

dG(v)

2

⌋

> 0

for dG(v) > 5 by Claim 3. Let v be a vertex of degree between 8 and M −6. Then by Claim

1, v is adjacent to no small vertices and thus v sends out no charges by R2 and R4–R6. This

implies that

c′(v) > dG(v) − 4 − 1

2
dG(v) > 0

by R1 for dG(v) > 8. Let v be a vertex of degree between M −5 and M −3. Then by Claim

1, v is adjacent to no 4−-vertices and thus v sends out no charges by R4–R6. This implies

that

c′(v) > dG(v) − 4 − 3

4
dG(v) > 0

by R2 for dG(v) > M − 5 > 16. Finally, let v be a vertex of degree between M − 2 and M .

If dG(v) = M , then by Claim 2, v sends at most

3

4
+ 5 × 1

2
+ 7 × 3

4
=

17

2
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to its neighbors by R4–R6. If τ(v) 6 M − 6, then by R1 and R2,

c′(v) > M − 4 − 17

2
− 3

4
(M − 6) =

1

8
(2M − 64) > 0

for M > 34. If M − 5 6 τ(v) 6 M − 1, then by R1, R2 and Claim 4,

c′(c) > M − 4 − 17

2
− 3

4
αa(v) − 1

2
(τ(v) − αa(v))

= M − 25

2
− 1

4
αa(v) − 1

2
τ(v)

> M − 25

2
− 1

4

(⌈

τ(v)

2

⌉

+ M − τ(v) − 1

)

− 1

2
τ(v)

>
1

8
(3M − 96) > 0

for M > 34. If τ(v) = M , then by R1, R2 and Claim 4,

c′(v) > M − 4 − 17

2
− 3

4
αa(v) − 1

2
(τ(v) − αa(v))

= M − 25

2
− 1

4
αa(v) − 1

2
τ(v)

> M − 25

2
− 1

8
τ(v) − 1

2
τ(v)

>
1

8
(3M − 100) > 0

for M > 34. By similar arguments, one can also check that the final charges of the (M − 2)-

vertices and (M − 1)-vertices are nonnegative. Hence, the proof of Theorem 2 completes,

since

−8 =
∑

x∈V (G)∪F (G×)

c(x) =
∑

x∈V (G)∪F (G×)

c′(x) > 0,

a contradiction.

In the following, we focus on graphs 1-embedded on surfaces and prove the following

theorem.

Theorem 3 Let G be graph 1-embedded on a surface with Euler characteristic ε. If

∆(G) > 25 +
√

841 − 72ε,

then

la(G) =

⌈

∆(G)

2

⌉

.

Proof The proof of Theorem 2 implies that the linear arboricity of every graph 1-

embedded on a surface with nonnegative Euler characteristic is ⌈∆(G)
2 ⌉ if ∆(G) > 33. So we

assume ε < 0 below. Similarly, choose a minimum counterexample G to the theorem and

then G is 2-connected with δ(G) > 2. Moreover, Claims 1 and 2 in Section 1 are also valid

for this proof. But we need one additional claim here.

Claim 5[6] There are at least ⌊∆
3 ⌋ + 2 vertices of degree greater than ⌊∆

3 ⌋ in G.
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Now we assign an initial charge c(v) = dG(v) − 8 to every vertex v ∈ V (G). Since

|E(G)| 6 4(|V (G)| − ε) (see Lemma 2.2 of [18]),
∑

v∈V (G)

c(v) = 2|E(G)| − 8|V (G)| 6 −8ε.

In the following, we will redistribute the charges by the following discharging rules.

R̃1. Each i-vertex receives 1 from its j-master, where 2 6 i 6 7 and i 6 j 6 7.

Let c′(v) denote the final charge of a vertex v ∈ V (G). By Claims 1, 2 and R̃1, c′(v) = 0

for each 7−-vertices and c′(v) = c(v) = dG(v) − 8 > 0 for each vertex of degree between 8

and ∆ − 6. Let v be a ∆-vertex. By Claim 2, v may be 7-masters, 6-masters, 5-masters,

4-masters, 3-masters and 2-master of at most thirteen, eleven, nine, seven, five and one

vertices, respectively. This implies that

c′(v) > ∆ − 8 − 13 − 11 − 9 − 7 − 5 − 1 = ∆ − 54

by R̃1. Similarly, we can prove that c′(v) > ∆− 54 for every vertex of degree between ∆− 5

and ∆− 1. Therefore, c′(v) > 0 for every vertex v in G and c′(v) > ∆
3 − 18 for every vertex

of degree greater than ⌊∆
3 ⌋, since

∆(G) > 25 +
√

841 − 72ε > 55.

So by Claim 5,

∑

v∈V (G)

c′(v) >

(⌊

∆

3

⌋

+ 2

) (

∆

3
− 18

)

>

(

∆ + 4

3

)(

∆ − 54

3

)

>
1

9

(√
841 − 72ε + 29

)(√
841 − 72ε − 29

)

= −8ε

=
∑

v∈V (G)

c(v),

a contradiction.
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