Degree conditions for the partition of a graph into triangles and quadrilaterals *

Xin Zhang, Jian-Liang Wu^{\dagger} and Jin Yan
School of Mathematics, Shandong University, Jinan, 250100, China

Abstract

For two positive integers r and s with $r \geq 2 s-2$, if G is a graph of order $3 r+4 s$ such that $d(x)+d(y) \geq 4 r+4 s$ for every $x y \notin E(G)$, then G independently contains r triangles and s quadrilaterals, which partially prove the El-Zahar's Conjecture.

Keywords: degree, partition, triangle, quadrilateral

1 Introduction

In this paper, all graphs are finite, simple and undirected. Let G be a graph. We use $V(G), E(G), \delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G. If $u v \in E(G)$, then u is said to be the neighbor of v. We use $N(v)$ to denote the set of neighbors of a vertex v. The degree $d(v)=|N(v)|$. A k-vertex is a vertex of degree k. For a subgraph(or a subset) H of G, we denote $N(v, H)=N(v) \cap V(H)$ and let $d(v, H)=|N(v, H)|$. The minimum degree sum $\sigma_{2}(G)=\min \{d(x)+d(y) \mid x, y \in V(G), x y \notin E(G)\}$ (When G is a complete graph, we define $\left.\sigma_{2}(G)=\infty\right)$. For a subset U of $V(G)$, $G[U]$ denotes the subgraph of G induced by U. For subsets L and M of $V(G)$, if $L \cap M=\emptyset$, we say that L and M are independent, and let $E(L, M)=\{u v \in E(G): u \in L, v \in M\}$ and $e(L, M)=|E(L, M)|$. The graph P_{k} is a path with k vertices, and C_{k} a cycle with k vertices. We call C_{3} a triangle and C_{4} a quadrilateral. We use $m Q$ to represent m copies of graph Q. Other notations can be found in [3].

Degree conditions which guarantee that disjoint cycles with specified length exist in a graph, especially small cycles, are investigated in lots of paper. El-Zahar [6] gave the following conjecture.

[^0]Conjecture 1.1. Let G be a graph. If $|V(G)|=n_{1}+\cdots+n_{k}$ and $\delta(G) \geq$ $\left\lceil n_{1} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$ where $n_{i} \geq 3(1 \leq i \leq k)$. Then G contains k disjoint cycles of length n_{1}, \cdots, n_{k}, respectively.

He also proved it for $k=2$. The earlier result given by Corrádi and Hajnal [5] states that every graph of order at least $3 k$ and the minimum degree at least $2 k$ contains k disjoint cycles. In fact, this result just proves Conjecture 1 when $n_{1}=\cdots=n_{k}=3$. The case $n_{1}=\cdots=n_{k}=4$ is also called Erdös conjecture [7]. Randerath et al [9] proved that if a graph G has order $4 k$ and $\delta(G) \geq 2 k$, then G contains $k-1$ disjoint quadrilaterals and a subgraph of order 4 with at least four edges such that all the quadrilaterals are disjoint to the subgraph. It is very close to Erdös conjecture. Other corresponding results can be found in [2] and [10].

Here we consider the case $n_{i} \in\{3,4\}$ of Conjecture 1.1. Aigner and Brandt [1] proved that if G is a graph such that $|V(G)|=3 r+4 s$ and $\delta(G) \geq 2 r+\frac{8 s}{3}$, then G contains r triangles and s quadrilaterals, all vertex disjoint. Brandt et al [4] proved that for two positive integers r and s, if G is a graph of order $n \geq 3 r+4 s$ and $\sigma_{2}(G) \geq n+r$, then G contains r triangles and s cycles with length at most 4 which are vertex disjoint. Recently, Yan [11] improved the result and proved that if G is a graph of order $n \geq 3 r+4 s+3$ and $\sigma_{2}(G) \geq n+r$, then G contains r triangles and s quadrilaterals, all vertex disjoint.

In the paper, we prove that for two positive integers r and s, if G is a graph of order $n=3 r+4 s$ and $\sigma_{2}(G) \geq n+r$, then $G \supseteq r C_{3} \cup(s-1) C_{4} \cup D$, where D is a graph of order four with at least four edges; moreover, if $r \geq 2 s-2$, then $G \supseteq r C_{3} \cup s C_{4}$. The result partially proves Conjecture 1.1 under the condition $n_{i} \in\{3,4\}$ and $r \geq 2 s-2$, and at the same time, the corresponding result in [9] as described above is generalized.

2 Some Useful Lemmas

Lemma 2.1. [8] Let P and Q be two disjoint paths where $P=P_{3}$. If $Q=P_{2}$ and $|E(P, Q)| \geq 3$, then $G[V(P \cup Q)] \supseteq C_{4}$. If $Q=P_{3}$ and $|E(P, Q)| \geq 4$, then $G[V(P \cup Q)] \supseteq C_{4}$.

Lemma 2.2. [9] Let $C=a_{1} a_{2} a_{3} a_{4} a_{1}$ be a quadrilateral of G and u, v be two non-adjacent vertices such that $\{u, v\} \subseteq V(G)-V(C)$. If $d(u, C)+$ $d(v, C) \geq 5$, then $G[V(C) \cup\{u, v\}]$ contains a quadrilateral C^{\prime} and an edge e such that C^{\prime} and e are disjoint and e is incident with exactly one of u and v.

Lemma 2.3. Let $C=a_{1} a_{2} a_{3} a_{1}$ be a triangle of G and u, v be two nonadjacent vertices such that $\{u, v\} \subseteq V(G)-V(C)$. If $d(u, C)+d(v, C) \geq 5$,
then $G[V(C) \cup\{u, v\}]$ contains a triangle C^{\prime} and an edge e such that C^{\prime} and e are disjoint and e is incident with exactly one of u and v.
Proof. Without loss of generality, assume that $N(u, C)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $N(v, C)=\left\{a_{1}, a_{2}\right\}$. Then we choose $C^{\prime}=v a_{1} a_{2} v$ and $e=u a_{3}$.

Lemma 2.4. [9] Let $C=a_{1} a_{2} a_{3} a_{4} a_{1}$ be a quadrilateral of G and M_{1}, M_{2} be two paths in G with order 2 . Suppose C, M_{1}, M_{2} are disjoint and $e\left(C, M_{1} \cup M_{2}\right) \geq 9$. Then $G\left[V\left(C \cup M_{1} \cup M_{2}\right)\right] \supseteq C_{4} \cup P_{4}$.
Lemma 2.5. Let $C=a_{1} a_{2} a_{3} a_{1}$ be a triangle of G and let M_{1}, M_{2} be two paths in G with order 2. Suppose C, M_{1}, M_{2} are disjoint and $e\left(C, M_{1} \cup\right.$ $\left.M_{2}\right) \geq 9$. Then $G\left[V\left(C \cup M_{1} \cup M_{2}\right)\right] \supseteq C_{3} \cup D$ where $|D|=4$ and $|E(D)| \geq 4$.
Proof. Let $M_{1}=u v$ and $M_{2}=x y$. Without loss of generality, we assume that $d(u, C) \geq d(v, C), d(x, C) \geq d(y, C)$ and $d(u, C)+d(v, C) \geq d(x, C)+$ $d(y, C)$. Since $d(u, C)+d(v, C)+d(x, C)+d(y, C)=e\left(C, M_{1} \cup M_{2}\right) \geq 9$, we have that $d(u, C)=3, d(u, C)+d(v, C) \geq 5$ and $d(x, C)+d(y, C) \geq 3$. Suppose $d(x, C)+d(y, C)=3$. Then $d(x, C) \geq 2$ and $d(u, C)=d(v, C)=3$. Without loss of generality, we assume that $a_{1}, a_{2} \in N(x)$. Thus we can choose $C_{3}=u v a_{3} u$ and $F=G\left[\left\{x, y, a_{1}, a_{2}\right\}\right]$. Suppose $d(x, C)+d(y, C) \geq$ 4. Then x and y have the same neighbor in C, say the neighbor is a_{1}. Thus we can choose $C_{3}=x y a_{1} x$ and $D=G\left[\left\{u, v, a_{2}, a_{3}\right\}\right]$.

Lemma 2.6. [9] Let C be a quadrilateral and P a path of order 4 in G such that C and P are independent. $G[V(C \cup P)]$ does not contain a quadrilateral C^{\prime} and a path P^{\prime} of order 4 such that C^{\prime} and P^{\prime} are independent and $e\left(G\left[V\left(C^{\prime}\right)\right]\right)>e(G[V(C)])$. If $e(C, P) \geq 9$, then $G[V(C \cup P)] \supseteq C_{4} \cup D$ where $|D|=4$ and $|E(D)| \geq 4$.

Let F_{4} be the graph such that $\left|F_{4}\right|=4, e\left(F_{4}\right)=4$ and $F_{4} \nsupseteq C_{4}$. In fact, F_{4} can be got from a claw by adding a new edge. From now on, we always write the only 3 -vertex of F_{4} as u_{0}, the two 2 -vertices as u_{1}, u_{2}, the only 1 -vertex as u_{3}, and $U=\left\{u_{1}, u_{2}, u_{3}\right\}$.

Lemma 2.7. [10] Let Q be a quadrilateral. If $Q \cap F_{4}=\emptyset$ and $e(U, Q) \geq 9$, then $G\left[V\left(Q \cup F_{4}\right)\right] \supseteq 2 C_{4}$.
Lemma 2.8. Let T be a triangle and $T \cap F_{4}=\emptyset$. If $d\left(u_{3}, T\right) \geq 2$, or $e(U, T) \geq 6$ and $d\left(u_{3}, T\right)>0$, then $G\left[V\left(T \cup F_{4}\right)\right] \supseteq C_{3} \cup C_{4}$.
Proof. Write $T=c_{1} c_{2} c_{3} c_{1}$. If $d\left(u_{3}, T\right) \geq 2$, then $G\left[\left\{u_{1}, u_{2}, u_{0}\right\}\right]=C_{3}$ and $G\left[\left\{u_{3}, c_{1}, c_{2}, c_{3}\right\}\right] \supseteq C_{4}$. So we may assume that $d\left(u_{3}, T\right)=1$, without loss of generality, we assume that $u_{3} c_{1} \in E(G)$. Then $d\left(u_{1}, T\right)+d\left(u_{2}, T\right) \geq$ $e(U, T)-d\left(u_{3}, T\right) \geq 5$. By the symmetry of u_{1} and u_{2}, we just consider the case when $d\left(u_{1}, T\right)=3$. If $u_{2} c_{1} \in E(G)$, then we can choose $C_{3}=u_{1} c_{2} c_{3} u_{1}$ and $C_{4}=u_{2} c_{1} u_{3} u_{0} u_{2}$. Otherwise $d\left(u_{2}, T\right)=2, u_{2} c_{2}, u_{2} c_{3} \in E(G)$, and it follows that we choose $C_{3}=u_{2} c_{2} c_{3} u_{2}$ and $C_{4}=c_{1} u_{1} u_{0} u_{3} c_{1}$.

Lemma 2.9. Let T be a triangle. If $T \cap F_{4}=\emptyset$ and $e(U, T) \geq 7$, then $G\left[V\left(T \cup F_{4}\right)\right] \supseteq C_{3} \cup C_{4}$.

Proof. Since $e(U, T) \geq 7, e(U, T) \geq 6$ and $d\left(u_{3}, T\right)>0$. By Lemma 2.8, the lemma is true.

3 Main Results and their Proofs

Lemma 3.1. For two positive integers r and s, if G is a graph of order $n=3 r+4 s$ and $\sigma_{2}(G) \geq n+r$, then $G \supseteq r C_{3} \cup(s-1) C_{4}$.

This lemma follows from Yan's result [11] described in the introduction.
Theorem 3.2. For two positive integers r and s, if G is a graph of order $n=3 r+4 s$ and $\sigma_{2}(G) \geq n+r$, then $G \supseteq r C_{3} \cup(s-1) C_{4} \cup D$, where D is a graph of order four with at least four edges.

Proof. By Lemma 3.1, G independently contains r triangles T_{1}, \cdots, T_{r} and $s-1$ quadrilaterals Q_{1}, \cdots, Q_{s-1}. Let $H_{T}=G\left[\bigcup_{i=1}^{r} V\left(T_{i}\right)\right], H_{Q}=$ $G\left[\bigcup_{i=1}^{s-1} V\left(Q_{i}\right)\right], H=H_{T} \bigcup H_{Q}$ and $D=G-V(H)$. Then $|D|=4$.

First, we can choose D such that D contains two independent edges. Suppose that there are two vertices x and y in $V(D)$ such that $x y \notin$ $E(G)$ and $d(x, D)=d(y, D)=0$. Then $d(x, H)+d(y, H) \geq \sigma_{2}(G) \geq$ $4 r+4 s>4(r+s-1)$, and it follows that there exists a cycle $C \in$ $\left\{T_{1}, \cdots, T_{r}, Q_{1}, \cdots, Q_{s-1}\right\}$ in H such that $e(\{x, y\}, C) \geq 5$. By Lemma 2.2 and Lemma 2.3, we have $G[V(C) \cup\{x, y\}] \supseteq C^{\prime} \cup K$ where $\left|C^{\prime}\right|=|C|$ and K is an edge. We replace C by C^{\prime} in H. Thus the new H independently contains r triangles and $s-1$ quadrilaterals and the new D satisfies $|E(D)| \geq 1$. So we assume that $|E(D)| \geq 1$. Let uv $\in E(D)$ and $\{z, w\}=V(D)-\{u, v\}$. If D does not contain two independent edges, then $z w \notin E(D)$ and $e(\{z, w\}, u v) \leq 2$. So $d(z, H)+d(w, H) \geq$ $\sigma_{2}(G)-e(\{z, w\}, u v) \geq 4 r+4 s-2>4(r+s-1)$. By the similar argument as above, we can find a new H and D such that D contains two independent edges.

Next, we can properly choose H such that D contains a path of order 4. Let $x y$ and $z w$ are two independent edges. If $e(x y, z w)>0$, then $D \supseteq P_{4}$. Otherwise $\Sigma_{v \in V(D)} d(v, D)=4$ and it follows that $e(x y \cup z w, H) \geq$ $2 \sigma_{2}(G)-e(x y \cup z w, D) \geq 8 r+8 s-4>8(r+s-1)$. So there exists a cycle $C \in\left\{T_{1}, \cdots, T_{r}, Q_{1}, \cdots, Q_{s-1}\right\}$ in H such that $e(x y \cup z w, C) \geq 9$. Then by Lemma 2.4 and Lemma 2.5, we have $G[x y \cup z w \cup C] \supseteq C^{\prime} \cup P_{4}$ where $\left|C^{\prime}\right|=|C|$. Then we replace C by C^{\prime} in H and then D contains a path of order 4.

Finally, we can properly choose H such that D has at least four edges. Now we choose T_{1}, \cdots, T_{r} and Q_{1}, \cdots, Q_{s-1} such that $M=\sum_{i=1}^{r} e\left(G\left[V\left(T_{i}\right)\right]\right)+$
$\sum_{i=1}^{s-1} e\left(G\left[V\left(Q_{i}\right)\right]\right)$ is maximal and D contains a path of order 4. Suppose $|E(D)|=3$, that is, D is a path of order 4. Then $e(D, H) \geq$ $2 \sigma_{2}(G)-2|E(D)| \geq 8 r+8 s-6>8(r+s-1)$. So there exists a cycle $C \in\left\{T_{1}, \cdots, T_{r}, Q_{1}, \cdots, Q_{s-1}\right\}$ in H such that $e(D, C) \geq 9$. By Lemma 2.6, Lemma 2.5 and the maximality of M, we have $G[V(C \cup D)] \supseteq C^{\prime} \cup D^{\prime}$ where $\left|C^{\prime}\right|=|C|,\left|D^{\prime}\right|=4$ and $e\left(D^{\prime}\right) \geq 4$. Now we replace C by C^{\prime} in H and then D contains a subgraph of order 4 with at least four edges. Hence no matter cases, D has at least four edges. We complete the proof of the theorem.

Theorem 3.3. For two positive integers r and s with $r \geq 2 s-2$, if G is a graph of order $n=3 r+4 s$ and $\sigma_{2}(G) \geq n+r$, then $G \supseteq r C_{3} \cup s C_{4}$.

Proof. By Theorem 3.2, $G \supseteq T_{1} \bigcup \cdots \bigcup T_{r} \bigcup Q_{1} \bigcup \cdots \bigcup Q_{s-1} \bigcup D$ where T_{1}, \cdots, T_{r} are triangles, Q_{1}, \cdots, Q_{s-1} are quadrilaterals, and D is a subgraph of order 4 with at least four edges. Let $H_{T}=G\left[\bigcup_{i=1}^{r} V\left(T_{i}\right)\right]$, $H_{Q}=G\left[\bigcup_{i=1}^{s-1} V\left(Q_{i}\right)\right], H=H_{T} \bigcup H_{Q}$.

Suppose $D \nsupseteq C_{4}$. Then $D=F_{4}$ and $u_{1} u_{3} \notin E(G), u_{2} u_{3} \notin E(G)$. So we have $d\left(u_{1}\right)+d\left(u_{2}\right)+2 d\left(u_{3}\right) \geq 2 \sigma_{2}(G) \geq 8 r+8 s$. If there exists a quadrilateral Q_{i} in H_{Q} such that $e\left(U, Q_{i}\right) \geq 9$, then we have $G[V(U \cup$ $\left.\left.Q_{i}\right)\right] \supseteq 2 C_{4}$ by Lemma 2.7. This implies that $G \supseteq r C_{3} \cup s C_{4}$. So we may assume that $e\left(U, H_{Q}\right) \leq 8(s-1)$. On the other hand, if there exists a triangle T_{i} in H_{T} such that $e\left(U, T_{i}\right) \geq 7$, then we have $G\left[V\left(U \cup T_{i}\right)\right] \supseteq$ $C_{3} \cup C_{4}$ by Lemma 2.9. This also implies that $G \supseteq r C_{3} \cup s C_{4}$. So we may assume that $e\left(U, T_{i}\right) \leq 6$ for every triangle T_{i} in H_{T}. Suppose there are r_{1} triangles satisfying $e\left(U, T_{i}\right) \leq 5$ and r_{2} triangles satisfying $e\left(U, T_{i}\right)=6$. Then $r_{1}+r_{2}=r, e\left(U, H_{T}\right) \leq 5 r_{1}+6 r_{2}$. If there are some $T_{i}(1 \leq i \leq r)$ such that $d\left(u_{3}, T_{i}\right)>1$, or $d\left(u_{3}, T_{i}\right)>0$ and $e\left(U, T_{i}\right)=6$, then $G\left[V\left(T_{i} \cup F_{4}\right)\right] \supseteq$ $C_{3} \cup C_{4}$ by Lemma 2.8 and it follows that $G \supseteq r C_{3} \cup s C_{4}$. So we can assume $d\left(u_{3}, H_{T}\right) \leq r_{1}$. Here $d\left(u_{3}\right)=e\left(U, H_{Q}\right)+e\left(U, H_{T}\right)-\left(d\left(u_{1}\right)-2\right)-$ $\left(d\left(u_{2}\right)-2\right)+1=e\left(U, H_{Q}\right)+e\left(U, H_{T}\right)-\left(d\left(u_{1}\right)+d\left(u_{2}\right)+2 d\left(u_{3}\right)\right)+2 d\left(u_{3}\right)+5$. $d\left(u_{3}\right) \geq(8 r+8 s)-8(s-1)-\left(5 r_{1}+6 r_{2}\right)-5=8 r-5 r_{1}-6 r_{2}+3$. So we have $d\left(u_{3}, H_{Q}\right)=d\left(u_{3}\right)-d\left(u_{3}, H_{T}\right)-1 \geq\left(8 r-5 r_{1}-6 r_{2}+3\right)-\left(r_{1}+1\right)=2 r+2 \geq$ $4 s-2>4(s-1)$ which contradicts to the fact $d\left(u_{3}, H_{Q}\right) \leq\left|H_{Q}\right|=4(s-1)$. Hence $D \supseteq C_{4}$.

References

[1] M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London. Math. Soc., (2), 48, (1993), 39-51.
[2] N. Alon, R. Yuster, H-factors in dense graph, J. combin. Theory Ser. B, 66, (1996), 269-282.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[4] S. Brandt, G. Chen, R. Faudree, R. J. Could, L. Lesniak, Degree conditions for 2-factors, J. Graph Theory, 24, (1997), 165-173.
[5] K. Corrádi, Hajnal, On the maximal number of independent circuits in a graph, Acad. Sci. Hungar, 14, (1963), 423-439.
[6] M. El-Zahar, On circuits in graph, Discrete Math, 50, (1984), 227-230.
[7] P. Erdös, R. Faudree, Some recent combinatorial problems, Technical Report, University of Bielefeld, November 1990.
[8] R. Johansson, On the bipartite case of El-Zahar's conjecture, Discrete Math, 219, (2000), 123-134.
[9] B. Randerath, I. Schiermeyer, H. Wang, On quadrilaterals in a graph, Discrete Math, 203, (1999), 229-237.
[10] H. Wang, Vertex-disjoint quadrilaterals in graphs, Discrete Math, 288, (2004), 149-166.
[11] J. Yan, Disjoint triangles and quadrilaterals in a graph, Discrete Math. (2007), doi:10.1016/j.disc. 2007.07.098.

[^0]: *This work is supported by NNSF (10631070, 10871119, 60673059) and RSDP (200804220001) of China.
 \dagger Corresponding author. E-mail: jlwu@sdu.edu.cn.

