
Information Processing Letters 111 (2011) 124–128
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On edge colorings of 1-planar graphs ✩

Xin Zhang, Jian-Liang Wu ∗

School of Mathematics, Shandong University, Jinan 250100, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 February 2010
Received in revised form 3 November 2010
Accepted 3 November 2010
Available online 9 November 2010
Communicated by B. Doerr

Keywords:
1-Planar graph
Edge-coloring
Discharging
Combinatorial problems

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most
one other edge. In this paper, it is shown that every 1-planar graph with maximum degree
� � 10 can be edge-colored with � colors.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

All graphs considered in this paper are finite, simple
and undirected. Any undefined notation follows that of
Bondy and Murty [1]. For a real number x, let �x� be the
greatest integer not larger than x. Let G be a graph. We use
V (G) and E(G) to denote its vertex set and its edge set, re-
spectively. Let v ∈ V (G). If uv ∈ E(G), then the vertex u is
said to be a neighbor of v in G . We denote by NG(v) the
set of neighbors of v in G and by dG(v) the degree of v in
G (dG(v) = |NG(v)|). We use δ(G) and �(G) to denote the
minimum degree and the maximum degree of G , respec-
tively. If G is a planar graph, we assume that G has always
been embedded in the plane. Let G be a planar graph. We
denote by F (G) the face set of G . The degree of a face f in
G , denote by dG( f ), is the number of edges incident with
it, where each cut-edge is counted twice. Throughout this
paper, a k-, k+- and k−-vertex (or face) in a planar graph
is a vertex (or face) of degree k, at least k and at most k,
respectively.

A graph is k edge-colorable if its edges can be col-
ored with k colors in such a way that adjacent edges
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receive different colors. The edge chromatic number (or
chromatic index) of G , denoted by χ ′(G), is the small-
est integer k such that G is k edge-colorable. For edge
coloring, Vizing’s theorem states that for any graph G ,
�(G) � χ ′(G) � �(G) + 1. A graph G is said to be of class
one if χ ′(G) = �(G), and of class two if χ ′(G) = �(G)+ 1.
A graph G is critical if G is a connected graph of class two
and χ ′(G − e) < χ ′(G) for every edge e of G . If a graph G
is critical and its maximum degree is �, we say that G is
�-critical. Edge coloring of planar graphs was investigated
in many papers, such as [6] and [7].

A graph G is 1-planar if it can be drawn on the plane
so that each edge is crossed by at most one other edge.
The notion of 1-planar graphs was introduced by Ringel
[5] in connection with the problem of simultaneous col-
oring of adjacent/incidence vertices and faces of plane
graphs. Compared to the family of planar graphs, 1-planar
graphs have not been extensively studied in the literature.
Ringel conjectured that each 1-planar graph is 6-colorable,
which was confirmed by Borodin [2]. Since there exists a
7-regular 1-planar graph, the bound 6 here is sharp. For 1-
planar graphs with girth at least 5, Fabrici and Madaras [4]
showed that five colors suffices for properly coloring edges.
In [3], Borodin et al. also proved that each 1-planar graph
is acyclically 20-colorable but they did not claim that this
bound is tight. Although it would be natural to consider
other kinds of colorings (and other questions concerning
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standard vertex coloring) of 1-planar graphs, it appears
that no other work on this has been done. This paper is
devoted to prove that every 1-planar graph with maximum
degree at least 10 is of class one.

2. Main results and their proofs

In the following, we always assume that every 1-planar
graph G is drawn on a plane properly and optimally, that
is,

(1) Properly. Every edge is crossed by at most one other
edge;

(2) Optimally. The number of crossings is as small as pos-
sible.

Such a 1-planar drawing of G is called 1-plane graph. So for
each pair x1 y1, x2 y2 of edges in a 1-plane graph G that
cross each other at a crossing point z, their end vertices
are pairwise distinct. Let C(G) be the set of all crossing
points and E0(G) be the non-crossed edges in G . Then the
associated plane graph G× of G is the plane graph such
that V (G×) = V (G) ∪ C(G) and E(G×) = E0(G) ∪ {xz, yz |
xy ∈ E(G)\E0(G) and z is the crossing point on xy}. Thus
in G× , each of the crossing point becomes an actual vertex
of degree four. For convenience, we still call the new ver-
tices in G× crossing vertices, and the edge in E(G) which
contains a crossing vertex is called a crossing edge. The
notion of “associated plane graph” is very useful when we
deal with the coloring problem of 1-planar graphs by using
discharging.

Now, we begin to give some basic properties on a
1-plane graph G and its associated plane graph G× . For
a vertex v ∈ V (G), we use fk(v) to denote the number
of k-faces that are incident with it in G× and use nc(v)

to denote the number of crossing vertices that are adja-
cent to it in G× . In the following, one should be clear
that dG(v) = dG× (v) holds for every vertex v ∈ V (G) by
the definition of G× .

Lemma 1. Let G be a 1-plane graph and G× be its associated
plane graph. Then the following results hold.

(a) For any two crossing vertices u and v in G× , uv /∈ E(G×).
(b) If there is a 3-face uv wu in G× such that dG(v) = 2, then

u and w are not crossing vertices.
(c) If dG(u) = 3 and v is a crossing vertex in G× , then either

uv /∈ E(G×) or uv is not incident with two 3-faces.
(d) If a 3-vertex v in G is incident with two 3-faces and ad-

jacent to two crossing vertices in G× , then v must also be
incident with a 5+-face.

Proof. (a) follows from (1).
For (b), if u is a crossing vertex of G× that is crossed

by two edges v v1 and w w1 in G , then we can draw w w1
into the face incident with w, v, w1 such that w w1 is not
crossed by the path w v v1, a contradiction to (2). So u is
not a crossing vertex. Similarly, we can also prove that w
is not a crossing vertex either.

For (c), suppose, to the contrary, that there are two 3-
faces, say uvxu and uv yu sharing a common edge uv such
that dG(u) = 3 and v is a crossing vertex. Then the path
xv y in G× corresponds to the crossing edge xy in G and
v is a crossing point on xy. Now we can draw xy into the
face incident with u, x, y such that xy is not a crossing
edge, which contradicts to (2).

For (d), let x, y and z be the neighbors of v in G× .
Since f3(v) � 2 and nc(v) = 2, without loss of generality,
we assume xy, xz ∈ E(G×). It follows that y and z must be
crossing vertices by (a) and (c). Now we claim that the face
f ∈ F (G×) that contains the edges v y and vz is a 5+-face.
Suppose dG×( f ) = 4 and thus denote f by v yuzv . So by
the definition of G× , both the path xyu and the path xzu
are the crossing edges of G connecting x to u, which im-
plies that there is a multiple edge in G , a contradiction. �
Lemma 2. Let G be a 1-plane graph. Then for every vertex v ∈
V (G), we have

f3(v) + nc(v) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3, if dG(v) = 3 and f3(v) �= 2;
4, if dG(v) = 3 and f3(v) = 2;
5, if dG(v) = 4;
� 3dG (v)

2 �, if dG(v) � 5.

Proof. If dG(v) = 3, let x, y and z be the neighbors of v
in G× (recall that dG×(v) = dG(v) = 3). Suppose f3(v) =
3. That is, xy, yz, zx ∈ E(G×). If x is a crossing vertex,
then there exists two edge joining y and z, which can-
not occur. Similarly, y and z are not crossing vertices. So
nc(v) = 0. Suppose f3(v) = 2. That is, xy, yz ∈ E(G×) but
zx /∈ E(G×) without loss of generality. Then by Lemma 1(a),
nc(v) � 2. Suppose f3(v) = 1. Without loss of generality,
we assume xy ∈ E(G×). Then x and y cannot be crossing
vertices simultaneously by Lemma 1(a). So nc(v) � 2. Sup-
pose f3(v) = 0. Then we have nc(v) � 3 trivially. In each
case we all have f3(v) + nc(v) � 4, and the strict inequal-
ity holds if f3(v) �= 2.

If dG(v) = 4, let x, y, z and w be the neighbors of v in
G× cyclicity. Suppose f3(v) = 4. That is, xy, yz, zw, wx ∈
E(G×). Then by Lemma 1(a), nc(v) � 2. If nc(v) = 2, with-
out loss of generality, we assume x, z are crossing vertices.
But in this case, both the paths wxy and wzy in G× cor-
respond to a crossing edge in G that joins w and y, a
contradiction to the fact that G admits no multiple edge.
So nc(v) � 1. Similarly, we can prove that if f3(v) = i,
then nc(v) � 5 − i for each 0 � i � 3. Thus, we have
f3(v) + nc(v) � 5 if dG(v) = 4.

If dG(v) � 5, then v is incident with (dG(v) − f3(v))

faces having degree 4 or larger. So by Lemma 1, the largest
possible number of crossing vertices that are adjacent to v
is dG(v)− f3(v)+� dG (v)

2 � = � 3dG (v)
2 �− f3(v). Thus, f3(v)+

nc(v) � � 3dG (v)
2 �. �

Let G be a 1-plane graph and G× be its associated plane
graph. A 3-face in G× is special if it is incident with one
crossing vertex. Otherwise we call it a normal 3-face. For
every vertex v ∈ V (G), let s(v) be the number of the spe-
cial 3-faces that are incident with v in G× . By Lemmas 1
and 2, one can easily have the following corollary. Here we
also mark this corollary as a lemma since it will be useful
in the following.
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Lemma 3. Let G be a 1-plane graph and v be a vertex in G.
Then s(v) � 2nc(v). Furthermore, if dG(v) = 3 and f3(v) = 3,
then s(v) = 0; if dG(v) = 3, f3(v) = 2, then s(v) = 2 only if
v is incident with a 5+-face; if dG(v) = 4 and f3(v) = 4, then
s(v) � 2. If dG(v) � 5, then s(v) � 2� dG (v)

2 �.

The following well-known lemma can be found in [8].

Lemma 4 (Vizing’s Adjacency Lemma). Let G be a �-critical
graph and let v, w be adjacent vertices of G with dG(v) = k.
Then

(1) if k < �, then w is adjacent to at least (� − k + 1) �-
vertices;

(2) if k = �, then w is adjacent to at least two �-vertices;
(3) G contains at least (� − δ(G) + 2) �-vertices.

Lemma 5. (See [6].) No �-critical graph G has distinct vertices
x, y, z such that x is adjacent to both y and z, dG(z) < 2� −
dG(x)− dG(y)+ 2, and xz is in at least dG(x)+ dG(y)−� − 2
triangles not containing y.

Let v be a non-crossing 4-vertex in G× with x, y, z and
u being its neighbors in G× cyclically. If x, z are crossing
vertices, xy, yz, zu ∈ E(G×) and v is also incident with a
4-face xvuw where dG(w) < �, then we call such a vertex
v a special 4-vertex. Otherwise we call it a non-special 4-
vertex.

Lemma 6. Let G be a �-critical 1-plane graph. If three 4-
vertices in G are adjacent to a vertex v ∈ V (G) with dG(v) =
f3(v) = � � 10, then none of them is special.

Proof. We prove it by contradiction. By Vizing’s Adjacency
Lemma (VAL for short), v is also adjacent to (� − 3) �-
vertices in G . Choose u to be a special 4-vertex adjacent
to v in G , that is to say, uv ∈ E(G). Suppose uv ∈ E(G×).
Then since dG(v) = f3(v), one can easily observe that uv
is incident with at least two triangles in G , say uvx and
uv y. By VAL, x and y cannot be both 4-vertices. So there
exists another 4-vertex in G , say w , that is a neighbor
of v . Consider the three vertices u, v, w . We have that
dG(u) = 4 < �−2 = 2�−dG(v)−dG(w)+2 and uv is in at
least dG(v)+dG (w)−�− 2 triangles not containing w . By
Lemma 5, such three vertices cannot appear in G , a contra-
diction. So uv /∈ E(G×), that is to say uv is a crossing edge
in G . We assume that uv is crossed by xy at a point z in
G . So z is a crossing vertex in G× . Since dG(v) = f3(v), we
can also deduce that vx, v y ∈ E(G). Suppose ux, uy ∈ E(G).
Then uvxu and uv yu are two triangles in G . By the same
argument as above, this is impossible. Without loss of gen-
erality, we assume that ux /∈ E(G). Denote the face incident
with the two edges xz, uz in G× to be f . We then have
dG×( f ) � 4. Since u is special, we also have dG×( f ) � 4. So
dG×( f ) = 4 and dG(x) < �. Thus we must have dG(x) = 4
(notice that x is not a crossing vertex and does not need to
be a special vertex). Note that vx ∈ E(G×), uv ∈ E(G) and
dG(u) = 4. By the same argument as before, this is again
impossible. This contradiction just completes the proof of
this lemma. �
Theorem 7. Each 1-planar graph with maximum degree � �
10 can be edge-colored with � colors.

Proof. Suppose that G is a counterexample to the theorem
with the smallest number of edges. Then G is a �-critical
1-plane graph. By VAL, we have δ(G) � 2. In the following,
we apply the discharging method on the associated planar
graph G× of G and complete the proof by a contradiction.

Since G× is a plane graph, we have
∑

v∈V (G×)

(
dG×(v) − 4

) +
∑

f ∈F (G×)

(
dG×( f ) − 4

) = −8

by Euler’s formula. Note that dG× (v) − 4 = 0 for every v ∈
V (G×) \ V (G) and dG(v) = dG×(v) for every v ∈ V (G). We
can rewrite the above equation in a much more convenient
form:
∑

v∈V (G)

(
dG(v) − 4

) +
∑

f ∈F (G×)

(
dG×( f ) − 4

) = −8.

Now we define ch(x) to be the initial charge of x ∈
V (G) ∪ F (G×). Let ch(v) = dG(v) − 4 for each vertex
v ∈ V (G×) and let ch( f ) = dG×( f ) − 4 for each face
f ∈ F (G×). It follows that

∑
x∈V (G)∪F (G×) ch(x) = −8. We

now redistribute the initial charge ch(x) and form a new
charge ch′(x) for each x ∈ V (G) ∪ F (G×) by discharging
method. Since our rules only move charge around, and
do not affect the sum, we have

∑
x∈V (G)∪F (G×) ch′(x) =∑

x∈V (G)∪F (G×) ch(x) = −8. We use τ (x1 → x2) to denote
the charge move from x1 to x2. Our discharging rules are
defined as follows.

R1. Suppose f = uv w is a normal 3-face in G× .
R1-1. If 2 � dG(u) � 5, then τ (u → f ) = 0 and τ (v →

f ) = τ (w → f ) = 1
2 .

R1-2. If min{dG(u),dG(v),dG(w)} � 6, then τ (u →
f ) = τ (v → f ) = τ (w → f ) = 1

3 .
R2. Suppose f = uv w is a special 3-face in G× and u

is the crossing vertex of f , then τ (u → f ) = 0 and
τ (v → f ) = τ (w → f ) = 1

2 .
R3. Suppose f is a face in G× with dG× ( f ) � 5 and v is a

vertex in G that is incident with f with 3 � dG(v) � 4,
then τ ( f → v) = 1

2 .
R4. Suppose dG(u) = 7 and uv ∈ E(G). If dG(v) = 6, then

τ (u → v) = 1
10 .

R5. Suppose dG(u) = 8 and uv ∈ E(G).
R5-1. If dG(v) = 4, then τ (u → v) = 3

8 .

R5-2. If dG(v) = 5, then τ (u → v) = 1
8 .

R5-3. If dG(v) = 6, then τ (u → v) = 2
15 .

R6. Suppose dG(u) = 9 and uv ∈ E(G).
R6-1. If dG(v) = 3, then τ (u → v) = 1

2 .
R6-2. If dG(v) = 4, then τ (u → v) = 3

8 .

R6-3. If dG(v) = 5, then τ (u → v) = 1
6 .

R6-4. If dG(v) = 6, then τ (u → v) = 3
20 .

R6-5. If dG(v) = 7, then τ (u → v) = 1
30 .

R7. Suppose 10 � dG(u) � � and uv ∈ E(G).
R7-1 If 2 � dG(v) � 9 and v is non-special when

dG(v) = 4, then τ (u → v) = 1
dG (v)−1 .

R7-2. If dG(v) = 4 and v is special, τ (u → v) = 3 .
8
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R7-3. If u is incident with a 4-face f = uv wx in G× ,
then τ (u → w) = 1

6 .

Let f be a face of G× . If dG× ( f ) = 3, then ch′( f ) �
ch( f ) + min{2 × 1

2 ,3 × 1
3 } = 3 − 4 + 1 = 0 by R1 and R2. If

dG×( f ) = 4, then ch′( f ) = ch( f ) = 0. Suppose dG× ( f ) � 5.
Since any two 4−-vertices in G are not adjacent by VAL, f

gives out at most 1
2 � dG× ( f )

2 � by R3. So ch′( f ) � dG×( f ) −
4 − 1

2 � dG× ( f )
2 � � 0.

Let v be a vertex of G . If dG(v) = 2, then v is adjacent
to two �-vertices in G by VAL. By Lemma 1(b), v can-
not be incident with a special 3-face in G× . It follows that
ch′(v) = ch(v) + 2 × 1 = 0 by R1-1 and R7-1.

Suppose dG(v) = 3. By R6-1, R7-1 and VAL, v receives 1
2

from each of its neighbors of G . At the same time, v gives
out some charge if and only if v is incident with special
3-faces in G× by R2. If s(v) � 1, then ch′(v) � ch(v) − 1

2 +
3 × 1

2 = 0. Otherwise, by Lemmas 1(c) and 1(d), s(v) = 2
and v is incident with a 5+-face f in G× . So v receives 1

2
from f by R3 and it follows that ch′(v) � ch(v) − 2 × 1

2 +
1
2 + 3 × 1

2 = 0.
Suppose dG(v) = 4. By VAL and R4–R7, v receives at

least 4 × 1
3 from its neighbors in G . At the same time by

R2, v needs to send 1
2 to its incident special 3-faces in

G× (if such special 3-faces exist). Thus if s(v) � 2, then
ch′(v) � ch(v)−2× 1

2 +4× 1
3 = 1

3 > 0. Otherwise s(v) � 3.
By Lemma 2, we must have s(v) = f3(v) = 3 and nc(v) =
2. So v gives out 3 × 1

2 = 3
2 to the special 3-faces that

are incident with v in G× by R2. Denote by f the non-
special face that is incident with v . Then dG×( f ) � 4. If
dG×( f ) � 5, then v receives 1

2 from f by R3 and we have
ch′(v) � ch(v) − 3

2 + 1
2 + 4 × 1

3 = 1
3 > 0. So assume that

dG×( f ) = 4 and thus we denote f = vxyzv . If v is a non-
special vertex, then dG(y) = � and v receives 1

6 from y by

R7-3. So ch′(v) � ch(v)− 3
2 + 1

6 +4× 1
3 = 0. If v is a special

4-vertex, then v is adjacent to at least two �-vertices in
G by VAL. So ch′(v) = ch(v) − 3

2 + 4 × 3
8 = 0 by R5-1, R6-2

and R7-2.
Suppose dG(v) = 5. By Lemma 3, s(v) � 4. So v gives

out at most 4 × 1
2 = 2 by R1-1 and R2. Denote the smallest

degree among all the neighbors of v in G by d. Then by
VAL we have d � 7, since � � 10. If d = 7, then v must
be adjacent to at least four �-vertices in G from which v
receives 4 × 1

4 = 1 by R7-1. So ch′(v) � ch(v) − 2 + 1 =
0. If d = 8, then v must be adjacent to at least three �-
vertices in G from which v receives 3× 1

4 = 3
4 by R7-1 and

adjacent to two 8+-vertices in G from which v receives
at least 2 × 1

8 = 1
4 by R5-2, R6-3 and R7-1. So ch′(v) �

ch(v)− 2 + 3
4 + 1

4 = 0. If d = 9, then v must be adjacent to
at least two �-vertices in G from which v receives 2× 1

4 =
1
2 by R7-1 and adjacent to three 9+-vertices in G from
which v receives at least 3 × 1

6 = 1
2 by R6-3 and R7-1. So

ch′(v) � ch(v) − 2 + 1
2 + 1

2 = 0. If d � 10, then by R7-1 it
is trivial that ch′(v) � ch(v) − 2 + 5 × 1

4 > 0.
Suppose dG(v) = 6. By R1 and R2, v gives out at most

6× 1
2 = 3. Denote the smallest degree among all the neigh-

bors of v in G by d. Then by VAL we have d � 6 since
� � 10. If d = 6, then v must be adjacent to five �-
vertices in G from which v receives 5 × 1
5 = 1 by R7-1.

So ch′(v) � ch(v) − 3 + 1 = 0. If d = 7, then v must be
adjacent to at least four �-vertices in G from which v re-
ceives 4 × 1

5 = 4
5 by R7-1 and adjacent to two 7+-vertex

in G from which v receives 2 × 1
10 = 1

5 by R5-3, R6-4

and R7-1. So ch′(v) � ch(v) − 3 + 4
5 + 1

5 = 0. If d = 8,
then v must be adjacent to at least three �-vertices in
G from which v receives 3 × 1

5 = 3
5 by R7-1 and adja-

cent to three 8+-vertices in G from which v receives at
least 3 × 2

15 = 2
5 by R5-3, R6-4 and R7-1. So ch′(v) �

ch(v) − 3 + 3
5 + 2

5 = 0. If d = 9, then v must be adja-
cent to at least two �-vertices in G from which v receives
2 × 1

5 = 2
5 by (R7-1) and adjacent to four 9+-vertices in

G from which v receives at least 4 × 3
20 = 3

5 by R6-4. So

ch′(v) � ch(v) − 3 + 2
5 + 3

5 = 0. If d � 10, then by R7-1 it

is trivial that ch′(v) � ch(v) − 3 + 6 × 1
5 > 0.

Suppose dG(v) = 7. By R1 and R2, v gives out at most
7 × 1

2 = 7
2 to the 3-faces incident with it. Denote the

smallest degree among all the neighbors of v in G by d.
If d � 6, then by VAL v is adjacent to at least five �-
vertices in G from which v receives 5 × 1

6 = 5
6 by R7-1.

Meanwhile, v may be adjacent to two 6+-vertices in G ,
in which case v must give out at most 2 × 1

10 = 1
5 by

R4. So ch′(v) � ch(v) − 7
2 + 5

6 − 1
5 = 2

15 > 0. If 7 � d � 8,
then by VAL v is adjacent to at least three �-vertices in
G from which v receives 3 × 1

6 = 1
2 by R7-1. So ch′(v) �

ch(v) − 7
2 + 1

2 = 0. If d = 9, then v must be adjacent
to at least two �-vertices in G from which v receives
2 × 1

6 = 1
3 by R7-1 and adjacent to five 9+-vertices in G

from which v receives at least 5 × 1
30 = 1

6 by R6-5 and

R7-1. So ch′(v) � ch(v) − 7
2 + 1

3 + 1
6 = 0. If d � 10, then by

R7-1, ch′(v) � ch(v) − 7
2 + 7 × 1

6 > 0.
Suppose dG(v) = 8. By R1 and R2, v gives out at most

8× 1
2 = 4 to the 3-faces incident with it. Denote the small-

est degree among all the neighbors of v in G by d. By VAL
we have d � 4. If d � 7, then by R5 v does not give out
any charge to its neighbors in G . So ch′(v) � ch(v)− 4 = 0.
If d = 6, then by VAL v is adjacent to at least five �-
vertices in G from which v receives 5 × 1

7 = 5
7 by R7-1.

Meanwhile v may be adjacent to three 6+-vertices in G
to which v may give out at most 3 × 2

15 = 2
5 by R5-3. So

ch′(v) � ch(v) − 4 + 5
7 − 2

5 > 0. If d = 5, then by VAL v is
adjacent to at least six �-vertices in G from which v re-
ceives 6 × 1

7 = 6
7 by R7-1. Meanwhile v may be adjacent

to two 5+-vertices in G to which v may give out at most
2× 1

8 = 1
4 by R5-2. So ch′(v) � ch(v)−4+ 6

7 − 1
4 > 0. If d =

4, then by VAL v is adjacent to at least seven �-vertices
in G from which v receives 7 × 1

7 = 1 by R7-1. Meanwhile
v may be adjacent to one 4+-vertex in G to which v may
give out at most 3

8 . So ch′(v) � ch(v) − 4 + 1 − 3
8 > 0.

Suppose dG(v) = 9. By R1 and R2, v gives out at most
9 × 1

2 = 9
2 to the 3-faces incident with it. By VAL, v is

adjacent to at least two �-vertices in G from which v re-
ceives 2 × 1

8 = 1
4 by R7-1. Meanwhile, v gives out at most

max{ 1
2 ,2 × 3

8 ,3 × 1
6 ,4 × 3

20 ,5 × 1
30 } = 3

4 to its neighbors in

G by VAL and R6. So ch′(v) � ch(v) − 9
2 + 1

4 − 3
4 = 0.

Suppose 10 � dG(v) � �. If f3(v) � dG(v) − 1, then v
gives out at most dG (v)−1 + 1 by R1 and R7-3. And v gives
2 6
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out at most max{1,2 × 1
2 ,3 × 3

8 ,4 × 1
4 ,5 × 1

5 ,6 × 1
6 ,7 ×

1
7 ,8 × 1

8 } = 9
8 to its neighbors in G by VAL, R7-1 and R7-2.

So ch′(v) � ch(v)− dG (v)−1
2 − 1

6 − 9
8 = 12dG (v)−115

24 > 0 since
dG(v) � 10. Now we assume f3(v) = dG(v) in which case
v gives out at most dG (v)

2 to the faces incident with v by
R1. Denote the smallest degree among all the neighbors of
v in G by d. If d = 2, then by VAL dG(v) = �. Moreover,
v is adjacent to (� − 1) �-vertices and only one 2-vertex
in G . So ch′(v) � ch(v) − �

2 − 1 = �−10
2 � 0 by R7-1 since

� � 10. If d = 3, then by VAL dG(v) � � − 1. Moreover, if
dG(v) = � − i (i = 0,1), then v is adjacent to (� − 2) �-
vertices and (2 − i) 3-vertices in G . In either case we have
ch′(v) � max{� − 1 − 4 − �−1

2 − 1
2 ,� − 4 − �

2 − 2 × 1
2 } =

�−10
2 � 0 by R7-1. If d � 5, then by VAL, v gives out

at most max{4 × 1
4 ,5 × 1

5 ,6 × 1
6 ,7 × 1

7 ,8 × 1
8 } = 1 to its

neighbors in G by R7-1. So ch′(v) � ch(v) − dG (v)
2 − 1 =

dG (v)−10
2 � 0. The last case is when d = 4. In this case,

by VAL we have dG(v) � � − 2. Moreover, if dG(v) =
� − j ( j = 0,1,2), then � � 10 + j and v is adjacent
to (� − 3) �-vertices and (3 − j) 4+-vertices in G . Sup-
pose j = 2, then by R7-1 and R7-2, ch′(v) � � − 2 −
4 − �−2

2 − 3
8 = 2�−23

4 > 0 since � � 10 + 2 = 12 when
this case occurs. Suppose j = 1, then by R7-1 and R7-
2, ch′(v) � � − 1 − 4 − �−1

2 − 2 × 3
8 = 2�−21

4 > 0 since
� � 10 + 1 = 11 when this case occurs. At last suppose
j = 0. Recall that now v is a �-vertex being adjacent to
(�−3) �-vertices and three 4+-vertices in G , say x, y, z. If
max{dG(x),dG (y),dG(z)} � 5, then v totally gives to x, y, z
at most 2× 3

8 + 1
4 = 1 by R7-1 and R7-2. If dG(x) = dG(y) =

dG(z) = 4, then by Lemma 6, none of them can be special.
So v totally gives to x, y, z at most 3 × 1
3 = 1 by R7-1. In

each case we have ch′(v) � ch(v) − �
2 − 1 = �−10

2 � 0 in
final, since � � 10.

Hence the proof is complete since

−8 =
∑

x∈V (G)∪F (G×)

ch(x) =
∑

x∈V (G)∪F (G×)

ch′(x) � 0,

which is a contradiction. �
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