Contents lists available at ScienceDirect

# Information Processing Letters

www.elsevier.com/locate/ipl



# On edge colorings of 1-planar graphs $\stackrel{\text{\tiny{themax}}}{\to}$

# Xin Zhang, Jian-Liang Wu\*

School of Mathematics, Shandong University, Jinan 250100, China

### ARTICLE INFO

# ABSTRACT

Article history: Received 8 February 2010 Received in revised form 3 November 2010 Accepted 3 November 2010 Available online 9 November 2010 Communicated by B. Doerr

#### Keywords: 1-Planar graph Edge-coloring Discharging Combinatorial problems

# 1. Introduction

All graphs considered in this paper are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty [1]. For a real number *x*, let  $\lfloor x \rfloor$  be the greatest integer not larger than x. Let G be a graph. We use V(G) and E(G) to denote its vertex set and its edge set, respectively. Let  $v \in V(G)$ . If  $uv \in E(G)$ , then the vertex u is said to be a *neighbor* of v in G. We denote by  $N_G(v)$  the set of neighbors of v in G and by  $d_G(v)$  the degree of v in *G* ( $d_G(v) = |N_G(v)|$ ). We use  $\delta(G)$  and  $\Delta(G)$  to denote the minimum degree and the maximum degree of G, respectively. If G is a planar graph, we assume that G has always been embedded in the plane. Let *G* be a planar graph. We denote by F(G) the face set of G. The degree of a face f in G, denote by  $d_C(f)$ , is the number of edges incident with it, where each cut-edge is counted twice. Throughout this paper, a k-, k<sup>+</sup>- and k--vertex (or face) in a planar graph is a vertex (or face) of degree k, at least k and at most k, respectively.

A graph is k edge-colorable if its edges can be colored with k colors in such a way that adjacent edges

E-mail addresses: sdu.zhang@yahoo.com.cn (X. Zhang), jlwu@sdu.edu.cn (J.-L. Wu).

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that every 1-planar graph with maximum degree  $\Delta \ge 10$  can be edge-colored with  $\Delta$  colors.

© 2010 Elsevier B.V. All rights reserved.

receive different colors. The *edge chromatic number* (or *chromatic index*) of *G*, denoted by  $\chi'(G)$ , is the smallest integer *k* such that *G* is *k* edge-colorable. For edge coloring, Vizing's theorem states that for any graph *G*,  $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$ . A graph *G* is said to be of class one if  $\chi'(G) = \Delta(G)$ , and of class two if  $\chi'(G) = \Delta(G) + 1$ . A graph *G* is critical if *G* is a connected graph of class two and  $\chi'(G - e) < \chi'(G)$  for every edge *e* of *G*. If a graph *G* is critical. Edge coloring of planar graphs was investigated in many papers, such as [6] and [7].

A graph *G* is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. The notion of 1-planar graphs was introduced by Ringel [5] in connection with the problem of simultaneous coloring of adjacent/incidence vertices and faces of plane graphs. Compared to the family of planar graphs, 1-planar graphs have not been extensively studied in the literature. Ringel conjectured that each 1-planar graph is 6-colorable, which was confirmed by Borodin [2]. Since there exists a 7-regular 1-planar graph, the bound 6 here is sharp. For 1planar graphs with girth at least 5, Fabrici and Madaras [4] showed that five colors suffices for properly coloring edges. In [3], Borodin et al. also proved that each 1-planar graph is acyclically 20-colorable but they did not claim that this bound is tight. Although it would be natural to consider other kinds of colorings (and other questions concerning



 <sup>&</sup>lt;sup>1</sup> Research supported by grants NNSF (10871119, 10971121) of China.
\* Corresponding author.

<sup>0020-0190/\$ –</sup> see front matter  $\,$  © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2010.11.001

standard vertex coloring) of 1-planar graphs, it appears that no other work on this has been done. This paper is devoted to prove that every 1-planar graph with maximum degree at least 10 is of class one.

# 2. Main results and their proofs

In the following, we always assume that every 1-planar graph G is drawn on a plane properly and optimally, that is,

- (1) Properly. Every edge is crossed by at most one other edge;
- (2) Optimally. The number of crossings is as small as possible.

Such a 1-planar drawing of *G* is called 1-*plane graph*. So for each pair  $x_1y_1, x_2y_2$  of edges in a 1-plane graph *G* that cross each other at a crossing point *z*, their end vertices are pairwise distinct. Let C(G) be the set of all crossing points and  $E_0(G)$  be the non-crossed edges in *G*. Then the *associated plane graph*  $G^{\times}$  of *G* is the plane graph such that  $V(G^{\times}) = V(G) \cup C(G)$  and  $E(G^{\times}) = E_0(G) \cup \{xz, yz \mid xy \in E(G) \setminus E_0(G)$  and *z* is the crossing point on *xy*}. Thus in  $G^{\times}$ , each of the crossing point becomes an actual vertex of degree four. For convenience, we still call the new vertices in  $G^{\times}$  crossing vertices, and the edge in E(G) which contains a crossing vertex is called a crossing edge. The notion of "associated plane graph" is very useful when we deal with the coloring problem of 1-planar graphs by using discharging.

Now, we begin to give some basic properties on a 1-plane graph *G* and its associated plane graph  $G^{\times}$ . For a vertex  $v \in V(G)$ , we use  $f_k(v)$  to denote the number of *k*-faces that are incident with it in  $G^{\times}$  and use  $n_c(v)$  to denote the number of crossing vertices that are adjacent to it in  $G^{\times}$ . In the following, one should be clear that  $d_G(v) = d_{G^{\times}}(v)$  holds for every vertex  $v \in V(G)$  by the definition of  $G^{\times}$ .

**Lemma 1.** Let *G* be a 1-plane graph and  $G^{\times}$  be its associated plane graph. Then the following results hold.

- (a) For any two crossing vertices u and v in  $G^{\times}$ ,  $uv \notin E(G^{\times})$ .
- (b) If there is a 3-face uvwu in  $G^{\times}$  such that  $d_G(v) = 2$ , then u and w are not crossing vertices.
- (c) If  $d_G(u) = 3$  and v is a crossing vertex in  $G^{\times}$ , then either  $uv \notin E(G^{\times})$  or uv is not incident with two 3-faces.
- (d) If a 3-vertex v in G is incident with two 3-faces and adjacent to two crossing vertices in G<sup>×</sup>, then v must also be incident with a 5<sup>+</sup>-face.

**Proof.** (a) follows from (1).

For (b), if u is a crossing vertex of  $G^{\times}$  that is crossed by two edges  $vv_1$  and  $ww_1$  in G, then we can draw  $ww_1$ into the face incident with  $w, v, w_1$  such that  $ww_1$  is not crossed by the path  $wvv_1$ , a contradiction to (2). So u is not a crossing vertex. Similarly, we can also prove that wis not a crossing vertex either.

For (c), suppose, to the contrary, that there are two 3-faces, say *uvxu* and *uvyu* sharing a common edge *uv* such

that  $d_G(u) = 3$  and v is a crossing vertex. Then the path xvy in  $G^{\times}$  corresponds to the crossing edge xy in G and v is a crossing point on xy. Now we can draw xy into the face incident with u, x, y such that xy is not a crossing edge, which contradicts to (2).

For (d), let x, y and z be the neighbors of v in  $G^{\times}$ . Since  $f_3(v) \ge 2$  and  $n_c(v) = 2$ , without loss of generality, we assume  $xy, xz \in E(G^{\times})$ . It follows that y and z must be crossing vertices by (a) and (c). Now we claim that the face  $f \in F(G^{\times})$  that contains the edges vy and vz is a 5<sup>+</sup>-face. Suppose  $d_{G^{\times}}(f) = 4$  and thus denote f by vyuzv. So by the definition of  $G^{\times}$ , both the path xyu and the path xzu are the crossing edges of G connecting x to u, which implies that there is a multiple edge in G, a contradiction.  $\Box$ 

**Lemma 2.** Let *G* be a 1-plane graph. Then for every vertex  $v \in V(G)$ , we have

$$f_{3}(v) + n_{c}(v) \leq \begin{cases} 3, & \text{if } d_{G}(v) = 3 \text{ and } f_{3}(v) \neq 2; \\ 4, & \text{if } d_{G}(v) = 3 \text{ and } f_{3}(v) = 2; \\ 5, & \text{if } d_{G}(v) = 4; \\ \lfloor \frac{3d_{G}(v)}{2} \rfloor, & \text{if } d_{G}(v) \ge 5. \end{cases}$$

**Proof.** If  $d_G(v) = 3$ , let x, y and z be the neighbors of v in  $G^{\times}$  (recall that  $d_{G^{\times}}(v) = d_G(v) = 3$ ). Suppose  $f_3(v) = 3$ . That is,  $xy, yz, zx \in E(G^{\times})$ . If x is a crossing vertex, then there exists two edge joining y and z, which cannot occur. Similarly, y and z are not crossing vertices. So  $n_c(v) = 0$ . Suppose  $f_3(v) = 2$ . That is,  $xy, yz \in E(G^{\times})$  but  $zx \notin E(G^{\times})$  without loss of generality. Then by Lemma 1(a),  $n_c(v) \leq 2$ . Suppose  $f_3(v) = 1$ . Without loss of generality, we assume  $xy \in E(G^{\times})$ . Then x and y cannot be crossing vertices simultaneously by Lemma 1(a). So  $n_c(v) \leq 2$ . Suppose  $f_3(v) = 0$ . Then we have  $n_c(v) \leq 3$  trivially. In each case we all have  $f_3(v) + n_c(v) \leq 4$ , and the strict inequality holds if  $f_3(v) \neq 2$ .

If  $d_G(v) = 4$ , let x, y, z and w be the neighbors of v in  $G^{\times}$  cyclicity. Suppose  $f_3(v) = 4$ . That is,  $xy, yz, zw, wx \in E(G^{\times})$ . Then by Lemma 1(a),  $n_c(v) \leq 2$ . If  $n_c(v) = 2$ , without loss of generality, we assume x, z are crossing vertices. But in this case, both the paths wxy and wzy in  $G^{\times}$  correspond to a crossing edge in G that joins w and y, a contradiction to the fact that G admits no multiple edge. So  $n_c(v) \leq 1$ . Similarly, we can prove that if  $f_3(v) = i$ , then  $n_c(v) \leq 5 - i$  for each  $0 \leq i \leq 3$ . Thus, we have  $f_3(v) + n_c(v) \leq 5$  if  $d_G(v) = 4$ .

If  $d_G(v) \ge 5$ , then v is incident with  $(d_G(v) - f_3(v))$ faces having degree 4 or larger. So by Lemma 1, the largest possible number of crossing vertices that are adjacent to vis  $d_G(v) - f_3(v) + \lfloor \frac{d_G(v)}{2} \rfloor = \lfloor \frac{3d_G(v)}{2} \rfloor - f_3(v)$ . Thus,  $f_3(v) + n_c(v) \le \lfloor \frac{3d_G(v)}{2} \rfloor$ .  $\Box$ 

Let *G* be a 1-plane graph and  $G^{\times}$  be its associated plane graph. A 3-face in  $G^{\times}$  is *special* if it is incident with one crossing vertex. Otherwise we call it a *normal* 3-face. For every vertex  $v \in V(G)$ , let s(v) be the number of the special 3-faces that are incident with v in  $G^{\times}$ . By Lemmas 1 and 2, one can easily have the following corollary. Here we also mark this corollary as a lemma since it will be useful in the following.

**Lemma 3.** Let *G* be a 1-plane graph and *v* be a vertex in *G*. Then  $s(v) \leq 2n_c(v)$ . Furthermore, if  $d_G(v) = 3$  and  $f_3(v) = 3$ , then s(v) = 0; if  $d_G(v) = 3$ ,  $f_3(v) = 2$ , then s(v) = 2 only if *v* is incident with a 5<sup>+</sup>-face; if  $d_G(v) = 4$  and  $f_3(v) = 4$ , then  $s(v) \leq 2$ . If  $d_G(v) \geq 5$ , then  $s(v) \leq 2\lfloor \frac{d_G(v)}{2} \rfloor$ .

The following well-known lemma can be found in [8].

**Lemma 4** (Vizing's Adjacency Lemma). Let G be a  $\Delta$ -critical graph and let v, w be adjacent vertices of G with  $d_G(v) = k$ . Then

- (1) if  $k < \Delta$ , then w is adjacent to at least  $(\Delta k + 1) \Delta$ -vertices;
- (2) if  $k = \Delta$ , then w is adjacent to at least two  $\Delta$ -vertices;
- (3) *G* contains at least  $(\Delta \delta(G) + 2) \Delta$ -vertices.

**Lemma 5.** (See [6].) No  $\Delta$ -critical graph *G* has distinct vertices *x*, *y*, *z* such that *x* is adjacent to both *y* and *z*,  $d_G(z) < 2\Delta - d_G(x) - d_G(y) + 2$ , and *xz* is in at least  $d_G(x) + d_G(y) - \Delta - 2$  triangles not containing *y*.

Let v be a non-crossing 4-vertex in  $G^{\times}$  with x, y, z and u being its neighbors in  $G^{\times}$  cyclically. If x, z are crossing vertices,  $xy, yz, zu \in E(G^{\times})$  and v is also incident with a 4-face xvuw where  $d_G(w) < \Delta$ , then we call such a vertex v a *special* 4-vertex. Otherwise we call it a *non-special* 4-vertex.

**Lemma 6.** Let *G* be a  $\Delta$ -critical 1-plane graph. If three 4-vertices in *G* are adjacent to a vertex  $\nu \in V(G)$  with  $d_G(\nu) = f_3(\nu) = \Delta \ge 10$ , then none of them is special.

**Proof.** We prove it by contradiction. By Vizing's Adjacency Lemma (VAL for short), v is also adjacent to  $(\Delta - 3)$   $\Delta$ vertices in G. Choose u to be a special 4-vertex adjacent to v in G, that is to say,  $uv \in E(G)$ . Suppose  $uv \in E(G^{\times})$ . Then since  $d_G(v) = f_3(v)$ , one can easily observe that uvis incident with at least two triangles in G, say uvx and *uvy*. By VAL, *x* and *y* cannot be both 4-vertices. So there exists another 4-vertex in G, say w, that is a neighbor of v. Consider the three vertices u, v, w. We have that  $d_G(u) = 4 < \Delta - 2 = 2\Delta - d_G(v) - d_G(w) + 2$  and uv is in at least  $d_{C}(v) + d_{C}(w) - \Delta - 2$  triangles not containing w. By Lemma 5, such three vertices cannot appear in *G*, a contradiction. So  $uv \notin E(G^{\times})$ , that is to say uv is a crossing edge in G. We assume that uv is crossed by xy at a point z in G. So z is a crossing vertex in  $G^{\times}$ . Since  $d_G(v) = f_3(v)$ , we can also deduce that  $vx, vy \in E(G)$ . Suppose  $ux, uy \in E(G)$ . Then *uvxu* and *uvyu* are two triangles in *G*. By the same argument as above, this is impossible. Without loss of generality, we assume that  $ux \notin E(G)$ . Denote the face incident with the two edges xz, uz in  $G^{\times}$  to be f. We then have  $d_{G^{\times}}(f) \ge 4$ . Since *u* is special, we also have  $d_{G^{\times}}(f) \le 4$ . So  $d_{G^{\times}}(f) = 4$  and  $d_G(x) < \Delta$ . Thus we must have  $d_G(x) = 4$ (notice that x is not a crossing vertex and does not need to be a special vertex). Note that  $vx \in E(G^{\times})$ ,  $uv \in E(G)$  and  $d_G(u) = 4$ . By the same argument as before, this is again impossible. This contradiction just completes the proof of this lemma.  $\Box$ 

**Theorem 7.** *Each* 1-*planar graph with maximum degree*  $\Delta \ge 10$  *can be edge-colored with*  $\Delta$  *colors.* 

**Proof.** Suppose that *G* is a counterexample to the theorem with the smallest number of edges. Then *G* is a  $\Delta$ -critical 1-plane graph. By VAL, we have  $\delta(G) \ge 2$ . In the following, we apply the discharging method on the associated planar graph  $G^{\times}$  of *G* and complete the proof by a contradiction.

Since  $G^{\times}$  is a plane graph, we have

$$\sum_{v \in V(G^{\times})} (d_{G^{\times}}(v) - 4) + \sum_{f \in F(G^{\times})} (d_{G^{\times}}(f) - 4) = -8$$

by Euler's formula. Note that  $d_{G^{\times}}(v) - 4 = 0$  for every  $v \in V(G^{\times}) \setminus V(G)$  and  $d_{G}(v) = d_{G^{\times}}(v)$  for every  $v \in V(G)$ . We can rewrite the above equation in a much more convenient form:

$$\sum_{\nu \in V(G)} (d_G(\nu) - 4) + \sum_{f \in F(G^{\times})} (d_{G^{\times}}(f) - 4) = -8.$$

Now we define ch(x) to be the initial charge of  $x \in V(G) \cup F(G^{\times})$ . Let  $ch(v) = d_G(v) - 4$  for each vertex  $v \in V(G^{\times})$  and let  $ch(f) = d_{G^{\times}}(f) - 4$  for each face  $f \in F(G^{\times})$ . It follows that  $\sum_{x \in V(G) \cup F(G^{\times})} ch(x) = -8$ . We now redistribute the initial charge ch(x) and form a new charge ch'(x) for each  $x \in V(G) \cup F(G^{\times})$  by discharging method. Since our rules only move charge around, and do not affect the sum, we have  $\sum_{x \in V(G) \cup F(G^{\times})} ch'(x) = -8$ . We use  $\tau(x_1 \to x_2)$  to denote the charge move from  $x_1$  to  $x_2$ . Our discharging rules are defined as follows.

- R1. Suppose f = uvw is a normal 3-face in  $G^{\times}$ .
  - R1-1. If  $2 \leq d_G(u) \leq 5$ , then  $\tau(u \to f) = 0$  and  $\tau(v \to f) = \tau(w \to f) = \frac{1}{2}$ . R1-2. If  $\min\{d_G(u), d_G(w)\} \geq 6$ , then  $\tau(u \to f) = \frac{1}{2}$ .
  - R1-2. If  $\min\{d_G(u), d_G(v), d_G(w)\} \ge 6$ , then  $\tau(u \to f) = \tau(v \to f) = \tau(w \to f) = \frac{1}{3}$ .
- R2. Suppose f = uvw is a special 3-face in  $G^{\times}$  and u is the crossing vertex of f, then  $\tau(u \to f) = 0$  and  $\tau(v \to f) = \tau(w \to f) = \frac{1}{2}$ .
- R3. Suppose *f* is a face in  $G^{\times}$  with  $d_{G^{\times}}(f) \ge 5$  and *v* is a vertex in *G* that is incident with *f* with  $3 \le d_G(v) \le 4$ , then  $\tau(f \to v) = \frac{1}{2}$ . R4. Suppose  $d_G(u) = 7$  and  $uv \in E(G)$ . If  $d_G(v) = 6$ , then
- R4. Suppose  $d_G(u) = \overline{7}$  and  $uv \in E(G)$ . If  $d_G(v) = 6$ , then  $\tau(u \rightarrow v) = \frac{1}{10}$ .
- R5. Suppose  $d_G(u) = 8$  and  $uv \in E(G)$ . R5-1. If  $d_G(v) = 4$ , then  $\tau(u \to v) = \frac{3}{8}$ . R5-2. If  $d_G(v) = 5$ , then  $\tau(u \to v) = \frac{1}{8}$ . R5-3. If  $d_G(v) = 6$ , then  $\tau(u \to v) = \frac{2}{15}$ .
- R6. Suppose  $d_G(u) = 9$  and  $uv \in E(G)$ . R6-1. If  $d_G(v) = 3$ , then  $\tau(u \to v) = \frac{1}{2}$ . R6-2. If  $d_G(v) = 4$ , then  $\tau(u \to v) = \frac{3}{8}$ . R6-3. If  $d_G(v) = 5$ , then  $\tau(u \to v) = \frac{1}{6}$ . R6-4. If  $d_G(v) = 6$ , then  $\tau(u \to v) = \frac{3}{20}$ . R6-5. If  $d_G(v) = 7$ , then  $\tau(u \to v) = \frac{1}{30}$ .
- R7. Suppose  $10 \leq d_G(u) \leq \Delta$  and  $uv \in E(\widetilde{G})$ . R7-1 If  $2 \leq d_G(v) \leq 9$  and v is non-special when  $d_G(v) = 4$ , then  $\tau(u \to v) = \frac{1}{d_G(v)-1}$ .

R7-2. If  $d_G(v) = 4$  and v is special,  $\tau(u \rightarrow v) = \frac{3}{8}$ .

R7-3. If *u* is incident with a 4-face 
$$f = uvwx$$
 in  $G^{\times}$ , then  $\tau(u \to w) = \frac{1}{6}$ .

Let *f* be a face of  $G^{\times}$ . If  $d_{G^{\times}}(f) = 3$ , then  $ch'(f) \ge ch(f) + \min\{2 \times \frac{1}{2}, 3 \times \frac{1}{3}\} = 3 - 4 + 1 = 0$  by R1 and R2. If  $d_{G^{\times}}(f) = 4$ , then ch'(f) = ch(f) = 0. Suppose  $d_{G^{\times}}(f) \ge 5$ . Since any two 4<sup>-</sup>-vertices in *G* are not adjacent by VAL, *f* gives out at most  $\frac{1}{2} \lfloor \frac{d_{G^{\times}}(f)}{2} \rfloor$  by R3. So  $ch'(f) \ge d_{G^{\times}}(f) - 4 - \frac{1}{2} \lfloor \frac{d_{G^{\times}}(f)}{2} \rfloor \ge 0$ .

Let v be a vertex of G. If  $d_G(v) = 2$ , then v is adjacent to two  $\Delta$ -vertices in G by VAL. By Lemma 1(b), v cannot be incident with a special 3-face in  $G^{\times}$ . It follows that  $ch'(v) = ch(v) + 2 \times 1 = 0$  by R1-1 and R7-1.

Suppose  $d_G(v) = 3$ . By R6-1, R7-1 and VAL, v receives  $\frac{1}{2}$  from each of its neighbors of G. At the same time, v gives out some charge if and only if v is incident with special 3-faces in  $G^{\times}$  by R2. If  $s(v) \leq 1$ , then  $ch'(v) \geq ch(v) - \frac{1}{2} + 3 \times \frac{1}{2} = 0$ . Otherwise, by Lemmas 1(c) and 1(d), s(v) = 2 and v is incident with a 5<sup>+</sup>-face f in  $G^{\times}$ . So v receives  $\frac{1}{2}$  from f by R3 and it follows that  $ch'(v) \geq ch(v) - 2 \times \frac{1}{2} + \frac{1}{2} + 3 \times \frac{1}{2} = 0$ .

Suppose  $d_G(v) = 4$ . By VAL and R4–R7, v receives at least  $4 \times \frac{1}{3}$  from its neighbors in G. At the same time by R2, v needs to send  $\frac{1}{2}$  to its incident special 3-faces in  $G^{\times}$  (if such special 3-faces exist). Thus if  $s(v) \leq 2$ , then  $ch'(v) \ge ch(v) - 2 \times \frac{1}{2} + 4 \times \frac{1}{3} = \frac{1}{3} > 0$ . Otherwise  $s(v) \ge 3$ . By Lemma 2, we must have  $s(v) = f_3(v) = 3$  and  $n_c(v) =$ 2. So v gives out  $3 \times \frac{1}{2} = \frac{3}{2}$  to the special 3-faces that are incident with v in  $\tilde{G}^{\times}$  by R2. Denote by f the nonspecial face that is incident with v. Then  $d_{G^{\times}}(f) \ge 4$ . If  $d_{G^{\times}}(f) \ge 5$ , then v receives  $\frac{1}{2}$  from f by R3 and we have  $ch'(v) \ge ch(v) - \frac{3}{2} + \frac{1}{2} + 4 \times \frac{1}{3} = \frac{1}{3} > 0$ . So assume that  $d_{G^{\times}}(f) = 4$  and thus we denote f = vxyzv. If v is a nonspecial vertex, then  $d_G(y) = \Delta$  and v receives  $\frac{1}{6}$  from y by R7-3. So  $ch'(v) \ge ch(v) - \frac{3}{2} + \frac{1}{6} + 4 \times \frac{1}{3} = 0$ . If v is a special 4-vertex, then v is adjacent to at least two  $\Delta$ -vertices in G by VAL. So  $ch'(v) = ch(v) - \frac{3}{2} + 4 \times \frac{3}{8} = 0$  by R5-1, R6-2 and R7-2.

Suppose  $d_G(v) = 5$ . By Lemma 3,  $s(v) \leq 4$ . So v gives out at most  $4 \times \frac{1}{2} = 2$  by R1-1 and R2. Denote the smallest degree among all the neighbors of v in G by d. Then by VAL we have  $d \ge 7$ , since  $\Delta \ge 10$ . If d = 7, then v must be adjacent to at least four  $\Delta$ -vertices in *G* from which *v* receives  $4 \times \frac{1}{4} = 1$  by R7-1. So  $ch'(v) \ge ch(v) - 2 + 1 =$ 0. If d = 8, then v must be adjacent to at least three  $\Delta$ vertices in *G* from which *v* receives  $3 \times \frac{1}{4} = \frac{3}{4}$  by R7-1 and adjacent to two  $8^+$ -vertices in G from which v receives at least 2  $\times$   $\frac{1}{8} = \frac{1}{4}$  by R5-2, R6-3 and R7-1. So  $ch'(v) \ge$  $ch(v) - 2 + \frac{3}{4} + \frac{1}{4} = 0$ . If d = 9, then v must be adjacent to at least two  $\triangle$ -vertices in *G* from which *v* receives  $2 \times \frac{1}{4} =$  $\frac{1}{2}$  by R7-1 and adjacent to three 9<sup>+</sup>-vertices in G from which v receives at least  $3 \times \frac{1}{6} = \frac{1}{2}$  by R6-3 and R7-1. So  $ch'(v) \ge ch(v) - 2 + \frac{1}{2} + \frac{1}{2} = 0$ . If  $d \ge 10$ , then by R7-1 it is trivial that  $ch'(v) \ge ch(v) - 2 + 5 \times \frac{1}{4} > 0$ .

Suppose  $d_G(v) = 6$ . By R1 and R2, v gives out at most  $6 \times \frac{1}{2} = 3$ . Denote the smallest degree among all the neighbors of v in G by d. Then by VAL we have  $d \ge 6$  since  $\Delta \ge 10$ . If d = 6, then v must be adjacent to five  $\Delta$ -

vertices in *G* from which *v* receives  $5 \times \frac{1}{5} = 1$  by R7-1. So  $ch'(v) \ge ch(v) - 3 + 1 = 0$ . If d = 7, then *v* must be adjacent to at least four  $\Delta$ -vertices in *G* from which *v* receives  $4 \times \frac{1}{5} = \frac{4}{5}$  by R7-1 and adjacent to two 7<sup>+</sup>-vertex in *G* from which *v* receives  $2 \times \frac{1}{10} = \frac{1}{5}$  by R5-3, R6-4 and R7-1. So  $ch'(v) \ge ch(v) - 3 + \frac{4}{5} + \frac{1}{5} = 0$ . If d = 8, then *v* must be adjacent to at least three  $\Delta$ -vertices in *G* from which *v* receives  $3 \times \frac{1}{5} = \frac{3}{5}$  by R7-1 and adjacent to three  $8^+$ -vertices in *G* from which *v* receives  $3 \times \frac{1}{5} = \frac{3}{5}$  by R7-1 and adjacent to three  $8^+$ -vertices in *G* from which *v* receives at least  $3 \times \frac{2}{15} = \frac{2}{5}$  by R5-3, R6-4 and R7-1. So  $ch'(v) \ge ch(v) - 3 + \frac{3}{5} + \frac{2}{5} = 0$ . If d = 9, then *v* must be adjacent to at least two  $\Delta$ -vertices in *G* from which *v* receives  $2 \times \frac{1}{5} = \frac{2}{5}$  by (R7-1) and adjacent to four 9<sup>+</sup>-vertices in *G* from which *v* receives at least  $4 \times \frac{3}{20} = \frac{3}{5}$  by R6-4. So  $ch'(v) \ge ch(v) - 3 + \frac{2}{5} + \frac{3}{5} = 0$ . If  $d \ge 10$ , then by R7-1 it is trivial that  $ch'(v) \ge ch(v) - 3 + 6 \times \frac{1}{5} > 0$ .

Suppose  $d_G(v) = 7$ . By R1 and R2, v gives out at most  $7 \times \frac{1}{2} = \frac{7}{2}$  to the 3-faces incident with it. Denote the smallest degree among all the neighbors of v in G by d. If  $d \leq 6$ , then by VAL v is adjacent to at least five  $\Delta$ -vertices in G from which v receives  $5 \times \frac{1}{6} = \frac{5}{6}$  by R7-1. Meanwhile, v may be adjacent to two  $6^+$ -vertices in G, in which case v must give out at most  $2 \times \frac{1}{10} = \frac{1}{5}$  by R4. So  $ch'(v) \ge ch(v) - \frac{7}{2} + \frac{5}{6} - \frac{1}{5} = \frac{2}{15} > 0$ . If  $7 \le d \le 8$ , then by VAL v is adjacent to at least three  $\Delta$ -vertices in G from which v receives  $3 \times \frac{1}{6} = \frac{1}{2}$  by R7-1. So  $ch'(v) \ge ch(v) - \frac{7}{2} + \frac{1}{2} = 0$ . If d = 9, then v must be adjacent to at least two  $\Delta$ -vertices in G from which v receives at least  $5 \times \frac{1}{30} = \frac{1}{6}$  by R6-5 and R7-1. So  $ch'(v) \ge ch(v) - \frac{7}{2} + \frac{1}{3} + \frac{1}{6} = 0$ . If  $d \ge 10$ , then by R7-1,  $ch'(v) \ge ch(v) - \frac{7}{2} + 7 \times \frac{1}{6} > 0$ .

Suppose  $d_G(v) = 8$ . By R1 and R2, v gives out at most  $8 \times \frac{1}{2} = 4$  to the 3-faces incident with it. Denote the smallest degree among all the neighbors of v in G by d. By VAL we have  $d \ge 4$ . If  $d \ge 7$ , then by R5 v does not give out any charge to its neighbors in *G*. So  $ch'(v) \ge ch(v) - 4 = 0$ . If d = 6, then by VAL v is adjacent to at least five  $\Delta$ vertices in G from which v receives  $5 \times \frac{1}{7} = \frac{5}{7}$  by R7-1. Meanwhile v may be adjacent to three 6<sup>+</sup>-vertices in G to which v may give out at most  $3 \times \frac{2}{15} = \frac{2}{5}$  by R5-3. So  $ch'(v) \ge ch(v) - 4 + \frac{5}{7} - \frac{2}{5} > 0$ . If d = 5, then by VAL v is adjacent to at least six  $\Delta$ -vertices in G from which v receives  $6 \times \frac{1}{7} = \frac{6}{7}$  by R7-1. Meanwhile v may be adjacent to two 5<sup>+</sup>-vertices in G to which v may give out at most  $2 \times \frac{1}{8} = \frac{1}{4}$  by R5-2. So  $ch'(v) \ge ch(v) - 4 + \frac{6}{7} - \frac{1}{4} > 0$ . If  $d = \frac{1}{4}$ 4, then by VAL v is adjacent to at least seven  $\Delta$ -vertices in *G* from which *v* receives  $7 \times \frac{1}{7} = 1$  by R7-1. Meanwhile v may be adjacent to one 4<sup>+</sup>-vertex in G to which v may give out at most  $\frac{3}{8}$ . So  $ch'(v) \ge ch(v) - 4 + 1 - \frac{3}{8} > 0$ .

Suppose  $d_G(v) = 9$ . By R1 and R2, v gives out at most  $9 \times \frac{1}{2} = \frac{9}{2}$  to the 3-faces incident with it. By VAL, v is adjacent to at least two  $\Delta$ -vertices in G from which v receives  $2 \times \frac{1}{8} = \frac{1}{4}$  by R7-1. Meanwhile, v gives out at most  $\max\{\frac{1}{2}, 2 \times \frac{3}{8}, 3 \times \frac{1}{6}, 4 \times \frac{3}{20}, 5 \times \frac{1}{30}\} = \frac{3}{4}$  to its neighbors in G by VAL and R6. So  $ch'(v) \ge ch(v) - \frac{9}{2} + \frac{1}{4} - \frac{3}{4} = 0$ .

Suppose  $10 \le d_G(v) \le \Delta$ . If  $f_3(v) \le d_G(v) - 1$ , then v gives out at most  $\frac{d_G(v)-1}{2} + \frac{1}{6}$  by R1 and R7-3. And v gives

out at most max $\{1, 2 \times \frac{1}{2}, 3 \times \frac{3}{8}, 4 \times \frac{1}{4}, 5 \times \frac{1}{5}, 6 \times \frac{1}{6}, 7 \times \frac{1}{6$  $\frac{1}{7}$ ,  $8 \times \frac{1}{8}$  =  $\frac{9}{8}$  to its neighbors in *G* by VAL, R7-1 and R7-2. So  $ch'(v) \ge ch(v) - \frac{d_G(v)-1}{2} - \frac{1}{6} - \frac{9}{8} = \frac{12d_G(v)-115}{24} > 0$  since  $d_G(v) \ge 10$ . Now we assume  $f_3(v) = d_G(v)$  in which case v gives out at most  $\frac{d_G(v)}{2}$  to the faces incident with v by R1. Denote the smallest degree among all the neighbors of v in G by d. If d = 2, then by VAL  $d_G(v) = \Delta$ . Moreover, v is adjacent to  $(\Delta - 1)$   $\Delta$ -vertices and only one 2-vertex in *G*. So  $ch'(v) \ge ch(v) - \frac{\Delta}{2} - 1 = \frac{\Delta - 10}{2} \ge 0$  by R7-1 since  $\Delta \ge 10$ . If d = 3, then by VAL  $d_G(v) \ge \Delta - 1$ . Moreover, if  $d_G(v) = \Delta - i$  (*i* = 0, 1), then v is adjacent to ( $\Delta - 2$ )  $\Delta$ vertices and (2 - i) 3-vertices in G. In either case we have  $ch'(v) \ge \max\{\Delta - 1 - 4 - \frac{\Delta - 1}{2} - \frac{1}{2}, \Delta - 4 - \frac{\Delta}{2} - 2 \times \frac{1}{2}\} =$  $\frac{\Delta-10}{2} \ge 0$  by R7-1. If  $d \ge 5$ , then by VAL, v gives out at most max{ $4 \times \frac{1}{4}, 5 \times \frac{1}{5}, 6 \times \frac{1}{6}, 7 \times \frac{1}{7}, 8 \times \frac{1}{8}$ } = 1 to its neighbors in G by R7-1. So  $ch'(v) \ge ch(v) - \frac{d_G(v)}{2} - 1 =$  $\frac{d_G(v)-10}{2} \ge 0$ . The last case is when d = 4. In this case, by VAL we have  $d_G(v) \ge \Delta - 2$ . Moreover, if  $d_G(v) =$  $\Delta - j$  (j = 0, 1, 2), then  $\Delta \ge 10 + j$  and v is adjacent to  $(\Delta - 3)$   $\Delta$ -vertices and (3 - j) 4<sup>+</sup>-vertices in G. Suppose j = 2, then by R7-1 and R7-2,  $ch'(v) \ge \Delta - 2 - 4 - \frac{\Delta - 2}{2} - \frac{3}{8} = \frac{2\Delta - 23}{4} > 0$  since  $\Delta \ge 10 + 2 = 12$  when this case occurs. Suppose j = 1, then by R7-1 and R7-2,  $ch'(v) \ge \Delta - 1 - 4 - \frac{\Delta - 1}{2} - 2 \times \frac{3}{8} = \frac{2\Delta - 21}{4} > 0$  since  $\Delta \ge 10 + 1 = 11$  when this case occurs. At last suppose j = 0. Recall that now v is a  $\Delta$ -vertex being adjacent to  $(\Delta - 3)$   $\Delta$ -vertices and three 4<sup>+</sup>-vertices in *G*, say *x*, *y*, *z*. If  $\max\{d_G(x), d_G(y), d_G(z)\} \ge 5$ , then v totally gives to x, y, z at most  $2 \times \frac{3}{8} + \frac{1}{4} = 1$  by R7-1 and R7-2. If  $d_G(x) = d_G(y) =$  $d_G(z) = 4$ , then by Lemma 6, none of them can be special.

So v totally gives to x, y, z at most  $3 \times \frac{1}{3} = 1$  by R7-1. In each case we have  $ch'(v) \ge ch(v) - \frac{\Delta}{2} - 1 = \frac{\Delta - 10}{2} \ge 0$  in final, since  $\Delta \ge 10$ .

Hence the proof is complete since

$$-8 = \sum_{x \in V(G) \cup F(G^{\times})} ch(x) = \sum_{x \in V(G) \cup F(G^{\times})} ch'(x) \ge 0,$$

which is a contradiction.  $\Box$ 

### Acknowledgements

The authors wish to appreciate the anonymous referees sincerely for their very helpful comments.

#### References

- J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [2] O.V. Borodin, Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Diskret. Analiz 41 (1984) 12–26 (in Russian).
- [3] O.V. Borodin, A.V. Kostochka, A. Raspaud, E. Sopena, Acyclic colouring of 1-planar graphs, Discrete Applied Mathematics 114 (2001) 29-41.
- [4] I. Fabrici, T. Madaras, The structure of 1-planar graphs, Discrete Mathematics 307 (2007) 854–865.
- [5] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ., Hamburg 29 (1965) 107–117.
- [6] D.P. Sanders, Y. Zhao, Planar graphs of maximum degree seven are class I, Journal of Combinatorial Theory, Series B 83 (2) (2002) 348– 360.
- [7] Z. Yan, Y. Zhao, Edge coloring of embedded graphs, Graphs and Combinatorics 16 (2000) 245–256.
- [8] H.P. Yap, Some Topics in Graph Theory, Cambridge University Press, New York, 1986.