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1. Introduction

All graphs considered in this paper are finite, simple
and undirected. Any undefined notation follows that of
Bondy and Murty [1]. For a real number x, let |x| be the
greatest integer not larger than x. Let G be a graph. We use
V(G) and E(G) to denote its vertex set and its edge set, re-
spectively. Let v € V(G). If uv € E(G), then the vertex u is
said to be a neighbor of v in G. We denote by Ng(v) the
set of neighbors of v in G and by d¢(v) the degree of v in
G (dg(v) =|N¢(v)|). We use §(G) and A(G) to denote the
minimum degree and the maximum degree of G, respec-
tively. If G is a planar graph, we assume that G has always
been embedded in the plane. Let G be a planar graph. We
denote by F(G) the face set of G. The degree of a face f in
G, denote by dg(f), is the number of edges incident with
it, where each cut-edge is counted twice. Throughout this
paper, a k-, kT- and k~-vertex (or face) in a planar graph
is a vertex (or face) of degree k, at least k and at most k,
respectively.

A graph is k edge-colorable if its edges can be col-
ored with k colors in such a way that adjacent edges
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receive different colors. The edge chromatic number (or
chromatic index) of G, denoted by x’(G), is the small-
est integer k such that G is k edge-colorable. For edge
coloring, Vizing's theorem states that for any graph G,
A(G) < x'(G) < A(G) + 1. A graph G is said to be of class
one if x'(G) = A(G), and of class two if x'(G) = A(G) +1.
A graph G is critical if G is a connected graph of class two
and x'(G —e) < x/(G) for every edge e of G. If a graph G
is critical and its maximum degree is A, we say that G is
A-critical. Edge coloring of planar graphs was investigated
in many papers, such as [6] and [7].

A graph G is 1-planar if it can be drawn on the plane
so that each edge is crossed by at most one other edge.
The notion of 1-planar graphs was introduced by Ringel
[5] in connection with the problem of simultaneous col-
oring of adjacent/incidence vertices and faces of plane
graphs. Compared to the family of planar graphs, 1-planar
graphs have not been extensively studied in the literature.
Ringel conjectured that each 1-planar graph is 6-colorable,
which was confirmed by Borodin [2]. Since there exists a
7-regular 1-planar graph, the bound 6 here is sharp. For 1-
planar graphs with girth at least 5, Fabrici and Madaras [4]
showed that five colors suffices for properly coloring edges.
In [3], Borodin et al. also proved that each 1-planar graph
is acyclically 20-colorable but they did not claim that this
bound is tight. Although it would be natural to consider
other kinds of colorings (and other questions concerning
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standard vertex coloring) of 1-planar graphs, it appears
that no other work on this has been done. This paper is
devoted to prove that every 1-planar graph with maximum
degree at least 10 is of class one.

2. Main results and their proofs

In the following, we always assume that every 1-planar
graph G is drawn on a plane properly and optimally, that
is,

(1) Properly. Every edge is crossed by at most one other
edge;

(2) Optimally. The number of crossings is as small as pos-
sible.

Such a 1-planar drawing of G is called 1-plane graph. So for
each pair x1y1,x2y2 of edges in a 1-plane graph G that
cross each other at a crossing point z, their end vertices
are pairwise distinct. Let C(G) be the set of all crossing
points and E¢(G) be the non-crossed edges in G. Then the
associated plane graph G* of G is the plane graph such
that V(G*) = V(G) UC(G) and E(G*) = Eo(G) U {xz, yz |
Xy € E(G)\Eo(G) and z is the crossing point on xy}. Thus
in G*, each of the crossing point becomes an actual vertex
of degree four. For convenience, we still call the new ver-
tices in G* crossing vertices, and the edge in E(G) which
contains a crossing vertex is called a crossing edge. The
notion of “associated plane graph” is very useful when we
deal with the coloring problem of 1-planar graphs by using
discharging.

Now, we begin to give some basic properties on a
1-plane graph G and its associated plane graph G*. For
a vertex v € V(G), we use fi(v) to denote the number
of k-faces that are incident with it in G* and use n.(v)
to denote the number of crossing vertices that are adja-
cent to it in G*. In the following, one should be clear
that dg(v) =dgx(v) holds for every vertex v € V(G) by
the definition of G*.

Lemma 1. Let G be a 1-plane graph and G* be its associated
plane graph. Then the following results hold.

(a) For any two crossing vertices u and v in G*, uv ¢ E(G*).

(b) If there is a 3-face uvwu in G* such that d¢(v) = 2, then
u and w are not crossing vertices.

(c) If dc(u) =3 and v is a crossing vertex in G*, then either
uv ¢ E(G*) or uv is not incident with two 3-faces.

(d) If a 3-vertex v in G is incident with two 3-faces and ad-
jacent to two crossing vertices in G*, then v must also be
incident with a 5% -face.

Proof. (a) follows from (1).

For (b), if u is a crossing vertex of G* that is crossed
by two edges vvi and wwq in G, then we can draw wwq
into the face incident with w, v, wi such that ww is not
crossed by the path wvvq, a contradiction to (2). So u is
not a crossing vertex. Similarly, we can also prove that w
is not a crossing vertex either.

For (c), suppose, to the contrary, that there are two 3-
faces, say uvxu and uvyu sharing a common edge uv such

that dg(u) =3 and v is a crossing vertex. Then the path
xvy in G* corresponds to the crossing edge xy in G and
v is a crossing point on xy. Now we can draw xy into the
face incident with u,x, y such that xy is not a crossing
edge, which contradicts to (2).

For (d), let x,y and z be the neighbors of v in G*.
Since f3(v) > 2 and n.(v) = 2, without loss of generality,
we assume xy, xz € E(G*). It follows that y and z must be
crossing vertices by (a) and (c). Now we claim that the face
f € F(G*) that contains the edges vy and vz is a 5" -face.
Suppose d¢gx (f) =4 and thus denote f by vyuzv. So by
the definition of G*, both the path xyu and the path xzu
are the crossing edges of G connecting x to u, which im-
plies that there is a multiple edge in G, a contradiction. O

Lemma 2. Let G be a 1-plane graph. Then for every vertex v €
V (G), we have

3, iffdc(v) =3 and f3(v) #2;

4, ifdg(v)=3and f3(v) =2;
f3(V)+TlC(V)< 5’ l.fdG(V):4;

1296M | ifdg(v) > 5.

Proof. If d¢c(v) =3, let x, y and z be the neighbors of v
in G* (recall that dgx(v) =dg(v) = 3). Suppose f3(v) =
3. That is, xy,yz,zx € E(G*). If x is a crossing vertex,
then there exists two edge joining y and z, which can-
not occur. Similarly, y and z are not crossing vertices. So
nc(v) = 0. Suppose f3(v) = 2. That is, xy, yz € E(G*) but
zx ¢ E(G*) without loss of generality. Then by Lemma 1(a),
ne(v) < 2. Suppose f3(v) = 1. Without loss of generality,
we assume xy € E(G*). Then x and y cannot be crossing
vertices simultaneously by Lemma 1(a). So n¢(v) < 2. Sup-
pose f3(v) = 0. Then we have n¢(v) < 3 trivially. In each
case we all have f3(v) +nc(v) <4, and the strict inequal-
ity holds if f3(v) #2.

If dc(v) =4, let x, ¥,z and w be the neighbors of v in
G* cyclicity. Suppose f3(v) = 4. That is, xy, yz, zw, wx €
E(G*). Then by Lemma 1(a), nc(v) < 2. If nc(v) = 2, with-
out loss of generality, we assume x, z are crossing vertices.
But in this case, both the paths wxy and wzy in G* cor-
respond to a crossing edge in G that joins w and y, a
contradiction to the fact that G admits no multiple edge.
So ne(v) < 1. Similarly, we can prove that if f3(v) =1,
then nc.(v) <5 —1i for each 0 <i < 3. Thus, we have
f3(v)+nc(v) <5 ifdg(v) =4.

If dg(v) > 5, then v is incident with (dg(v) — f3(v))
faces having degree 4 or larger. So by Lemma 1, the largest
possible number of crossing vertices that are adjacent to v
is dg (v) — f3(v) + 9542 | = (260 | — f5(v). Thus, f3(v)+
ne(v) < [¥5™). o

Let G be a 1-plane graph and G* be its associated plane
graph. A 3-face in G* is special if it is incident with one
crossing vertex. Otherwise we call it a normal 3-face. For
every vertex v € V(G), let s(v) be the number of the spe-
cial 3-faces that are incident with v in G*. By Lemmas 1
and 2, one can easily have the following corollary. Here we
also mark this corollary as a lemma since it will be useful
in the following.



126 X. Zhang, J.-L. Wu / Information Processing Letters 111 (2011) 124-128

Lemma 3. Let G be a 1-plane graph and v be a vertex in G.
Then s(v) < 2n¢(v). Furthermore, ifdg(v) = 3 and f3(v) =3,
then s(v) =0; if dg(v) =3, f3(v) =2, then s(v) =2 only if
v is incident with a 5% -face; if dg(v) = 4 and f3(v) =4, then
s(v) <2.Ifdg(v) =5, then s(v) < ZLWJ.

The following well-known lemma can be found in [8].

Lemma 4 (Vizing’s Adjacency Lemma). Let G be a A-critical
graph and let v, w be adjacent vertices of G with dg(v) = k.
Then

(1) if k < A, then w is adjacent to at least (A — k + 1) A-
vertices;

(2) ifk = A, then w is adjacent to at least two A-vertices;

(3) G contains at least (A — 8(G) + 2) A-vertices.

Lemma 5. (See [6].) No A-critical graph G has distinct vertices
X, y, z such that x is adjacent to both y and z, dg(z) < 2A —
dg(x) —dg(y) +2,and xzisin at least d¢ (x) + dg(y) — A —2
triangles not containing y.

Let v be a non-crossing 4-vertex in G* with x, y, z and
u being its neighbors in G* cyclically. If x, z are crossing
vertices, xy, yz,zu € E(G*) and v is also incident with a
4-face xvuw where d¢(w) < A, then we call such a vertex
v a special 4-vertex. Otherwise we call it a non-special 4-
vertex.

Lemma 6. Let G be a A-critical 1-plane graph. If three 4-
vertices in G are adjacent to a vertex v € V(G) with dg(v) =
f3(v) = A > 10, then none of them is special.

Proof. We prove it by contradiction. By Vizing's Adjacency
Lemma (VAL for short), v is also adjacent to (A — 3) A-
vertices in G. Choose u to be a special 4-vertex adjacent
to v in G, that is to say, uv € E(G). Suppose uv € E(G*).
Then since dg(v) = f3(v), one can easily observe that uv
is incident with at least two triangles in G, say uvx and
uvy. By VAL, x and y cannot be both 4-vertices. So there
exists another 4-vertex in G, say w, that is a neighbor
of v. Consider the three vertices u, v, w. We have that
de(u)=4<A—-2=2A—dg(v)—dg(w)+2 and uv is in at
least dg(v) +dc(w) — A — 2 triangles not containing w. By
Lemma 5, such three vertices cannot appear in G, a contra-
diction. So uv ¢ E(G*), that is to say uv is a crossing edge
in G. We assume that uv is crossed by xy at a point z in
G. So z is a crossing vertex in G*. Since dg(v) = f3(v), we
can also deduce that vx, vy € E(G). Suppose ux, uy € E(G).
Then uvxu and uvyu are two triangles in G. By the same
argument as above, this is impossible. Without loss of gen-
erality, we assume that ux ¢ E(G). Denote the face incident
with the two edges xz,uz in G* to be f. We then have
dex (f) > 4. Since u is special, we also have d¢x (f) < 4. So
dex (f) =4 and dg(x) < A. Thus we must have dg(x) =4
(notice that x is not a crossing vertex and does not need to
be a special vertex). Note that vx € E(G*), uv € E(G) and
dg(u) = 4. By the same argument as before, this is again
impossible. This contradiction just completes the proof of
this lemma. O

Theorem 7. Each 1-planar graph with maximum degree A >
10 can be edge-colored with A colors.

Proof. Suppose that G is a counterexample to the theorem

with the smallest number of edges. Then G is a A-critical

1-plane graph. By VAL, we have §(G) > 2. In the following,

we apply the discharging method on the associated planar

graph G* of G and complete the proof by a contradiction.
Since G* is a plane graph, we have

Z (dcx(V)—4)+ Z (dGX(f)—4):—8

veV(GX) feF(G®)

by Euler’s formula. Note that dgx (v) —4 =0 for every v €
V(G*)\ V(G) and d¢g(v) =dgx (v) for every v € V(G). We
can rewrite the above equation in a much more convenient
form:

> (dem—4)+ Y (dex())—4)=-8.

veV(G) feF(G*)

Now we define ch(x) to be the initial charge of x €
V(G) U F(G*). Let ch(v) =dg(v) — 4 for each vertex
v € V(G*) and let ch(f) = dgx(f) — 4 for each face
f € F(G™). It follows that erV(G)uF(GX)Ch(X) = —8. We
now redistribute the initial charge ch(x) and form a new
charge ch’(x) for each x € V(G) U F(G*) by discharging
method. Since our rules only move charge around, and
do not affect the sum, we have Y, yupcx) ' (®) =
Y xev(GUF(Gx) Ch(X) = —8. We use T(x; — X) to denote
the charge move from x; to xp. Our discharging rules are
defined as follows.

R1. Suppose f =uvw is a normal 3-face in G*.

R1-1. If 2 <dg(u) <5, then t(u— f)=0and 7 (v —
H=tw—f=3.

R1-2. If min{dg(u),dg(v),dg(w)} > 6, then t(u —
H=tv—>fH=tw—f=3.

R2. Suppose f = uvw is a special 3-face in G* and u
is the crossing vertex of f, then T(u — f) =0 and
tv— fl=t(w— f)=1.

R3. Suppose f is a face in G* with dgx(f) >5 and v is a
vertex in G that is incident with f with 3 <dg(v) <4,
then t(f —> v) = %

R4. Suppose dg(u) =7 and uv € E(G). If dg(v) =6, then
T(u—v)=15-

R5. Suppose d¢(u) =8 and uv € E(G).

R5-1. If dg(v) =4, then T(u — v) = 3.
R5-2. If dg(v) =5, then T(u — v) = 3.
R5-3. If dg(v) =6, then T(u — v) = &.
R6. Suppose d¢(u) =9 and uv € E(G).
R6-1. If dg(v) =3, then T(u — v) = 1.
R6-2. If dg(v) =4, then T(u — v) = 3.
R6-3. If dg(v) =5, then T(u — v) = %.
R6-4. If dg(v) =6, then T(u — v) = 3.

R6-5. If dg(v) =7, then T(u — v) = 31—0.
R7. Suppose 10 < dg(u) < A and uv € E(G).
R7-1 If 2 <dg(v) <9 and v is non-special when
dc(v) =4, then t(u — v) = m.
R7-2. If dg(v) =4 and v is special, T(u - v) = %.
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R7-3. If u is incident with a 4-face f =uvwx in G*,
then t(u > w) = =

Let f be a face of G*. If d¢x(f) = 3, then ch'(f) >
ch(f)+min{2 x 3,3 x }=3-4+1=0 by R1 and R2. If
dcx (f) =4, then ch'(f) = ch(f) = 0. Suppose d¢x (f) > 5.
Since any two 4~ -vertices in G are not adjacent by VAL, f
gives out at most 2LdGX(f)J by R3. So ch/(f) > dgx(f) —

_ %dexz(f)J >0.

Let v be a vertex of G. If dg(v) =2, then v is adjacent
to two A-vertices in G by VAL By Lemma 1(b), v can-
not be incident with a special 3-face in G*. It follows that
ch’'(v) =ch(v) +2 x 1 =0 by R1-1 and R7-1.

Suppose dg(v) = 3. By R6-1, R7-1 and VAL, v receives 3
from each of its neighbors of G. At the same time, v gives
out some charge if and only if v is incident with special
3-faces in G* by R2. If s(v) <1, then ch’(v) > ch(v) — % +
3 x % = 0. Otherwise, by Lemmas 1(c) and 1(d), s(v) =2

and v is incident with a 5" -face f in G*. So v receives %

from f by R3 and it follows that ch’(v) > ch(v) — 2 x % +
;+3x31=0.
Suppose dg(v) = 4. By VAL and R4-R7, v receives at

least 4 x % from its neighbors in G. At the same time by

R2, v needs to send % to its incident special 3-faces in

X (if such special 3-faces exist). Thus if s(v) < 2, then
ch'(v) >ch(v)—2x J +4x =15 0. Otherwise s(v) > 3.
By Lemma 2, we must have s(v) = f3(v) =3 and n.(v) =
2. So v gives out 3 x 3 =3 to the special 3-faces that
are incident with v in G* by R2. Denote by f the non-
special face that is incident with v. Then dgx(f) > 4. If
dcx (f) > 5, then v receives % from f by R3 and we have
ch’(v) > ch(v) — % + % +4 x % = % > 0. So assume that
dcx (f) =4 and thus we denote f = vxyzv. If v is a non-
special vertex, then dg(y) = A and v receives % from y by
R7-3.S0 ch’'(v) > ch(v)— 3+t +4x § =0.1f v is a special
4-vertex, then v is adjacent to at least two A-vertices in
G by VAL. So ch’(v) =ch(v) — 3 +4 x 3 =0 by R5-1, R6-2
and R7-2.

Suppose dG(v) =5. By Lemma 3, s(v) < 4. So v gives
out at most 4 x 2 =2 by R1-1 and R2. Denote the smallest
degree among all the neighbors of v in G by d. Then by
VAL we have d > 7, since A > 10. If d =7, then v must
be adjacent to at least four A-vertices in G from which v
receives 4 x }l =1 by R7-1. So ch’(v) > ch(v) =2 +1=
0. If d =8, then v must be adjacent to at least three A-
vertices in G from which v receives 3 x 4 =3 3 by R7-1 and
adjacent to two 8'-vertices in G from which v receives
at least 2 x § = 1 by R5-2, R6-3 and R7-1. So ch'(v) >
ch(v)—2+3+1=0.1fd =9, then v must be adjacent to
at least two A-vertices in G from which v receives 2 x }l =
% by R7-1 and adjacent to three 9T-vertices in G from
which v receives at least 3 x % = % by R6-3 and R7-1. So
ch(v)y=ch(v)—2+1+1=01fd> 10 then by R7-1 it
is trivial that ch’(v) > ch(v) —2+5x%x 7 >0.

Suppose dg(v) = 6. By R1 and R2, v gives out at most
6 x % = 3. Denote the smallest degree among all the neigh-
bors of v in G by d. Then by VAL we have d > 6 since
A > 10. If d =6, then v must be adjacent to five A-

vertices in G from which v receives 5 x % =1 by R7-1.
So ch’(v) >ch(v) =3+ 1=0.If d=7, then v must be
adjacent to at least four A-vertices in G from which v re-
ceives 4 x 5 = 5 by R7-1 and adjacent to two 771-vertex
in G from which v receives 2 x ﬁ = 5 by R5-3, R6-4
and R7-1. So ch'(v) > ch(v) =3 + 2 +1=0.1f d =8,
then v must be adjacent to at least three A-vertices in
G from which v receives 3 x l = % by R7-1 and adja-
cent to three 8T -vertices in G from which v receives at
least 3 x % = 2 by R5-3, R6-4 and R7-1. So ch'(v) >
ch(v) =3+ 2 +2=0.1f d=9, then v must be adja-
cent to at least two A-vertices in G from which v receives
2 x 1+ =2 by (R7-1) and adjacent to four 9T -vertices in
G from which v receives at least 4 x 23—0 = % by R6-4. So
ch’(v) > ch(v) —3 + +3 3=0.1fd> 10 then by R7-1 it
is trivial that ch’(v) > Ch(v) —34+6x 5 > 0.

Suppose dg(v) =7. By R1 and R2, v gives out at most
7x 5= ; to the 3-faces incident with it. Denote the
smallest degree among all the neighbors of v in G by d.
If d <6, then by VAL v is adjacent to at least five A-
vertices in G from which v receives 5 x % =2 by R7-1.
Meanwhile, v may be adjacent to two 61-vertices in G,

: : : 1 1
in which case v must give out at most 2 x 5 = 5 by

R4. So ch'(v) >ch(v) -2 +2-1=2%>0.1f7<d<8,
then by VAL v is adjacent to at least three A-vertices in
G from which v receives 3 x ¢ =1 by R7-1. So ch'(v) >
ch(v) — % + 2 =0.Ifd=9, then v must be adjacent
to at least two A-vertices in G from which v receives
2 x 6 = 3 by R7-1 and adjacent to ﬁve 9+-vert1ces in G
from which v receives at least 5 X 30 = E by R6-5 and
R7-1. So ch’(v) > ch(v) -3 + + g =0.1f d > 10, then by
R7-1, ch'(v) > ch(v)— +7 X 6 > 0.

Suppose dg(v) = 8. By R1 and R2, v gives out at most
8 x % =4 to the 3-faces incident with it. Denote the small-
est degree among all the neighbors of v in G by d. By VAL
we have d > 4. If d > 7, then by R5 v does not give out
any charge to its neighbors in G. So ch’(v) > ch(v) —4=0.
If d =6, then by VAL v is adjacent to at least five A-
vertices in G from which v receives 5 x % =2 by R7-1.
Meanwhile v may be adjacent to three 6™ -vertices in G
to which v may give out at most 3 x % = % by R5-3. So
ch’(v) > ch(v) —4+ % — % > 0. If d =5, then by VAL v is
adjacent to at least six A-vertices in G from which v re-
ceives 6 x % = % by R7-1. Meanwhile v may be adjacent
to two 5+-vertices in G to which v may give out at most
2><8 _4 by R5-2. So ch’(v) > ch(v) — 4+———>0 Ifd=
4, then by VAL v is adjacent to at least seven A-vertices
in G from which v receives 7 x % =1 by R7-1. Meanwhile
v may be adjacent to one 4*-vertex in G to which v may
give out at most %. So ch’'(v) >ch(v) —4+1— % > 0.

Suppose dg(v) =9. By R1 and R2, v gives out at most
9 x 7 =3 to the 3-faces incident with it. By VAL, v is
adjacent to at least two A-vertices in G from which v re-

ceives 2 x § = % by R7-1. Meanwhile, v gives out at most

max{3,2 x 3 3 X 1, 4% 35,55 55} = i to its neighbors in

G by VAL and R6. So ch’'(v) = ch(v) — 5 l — % =0.
Suppose 10 < dg(v) < A. If f3(v) g dc(v) — 1, then v

gives out at most ‘15("% + % by R1 and R7-3. And v gives
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out at most max{1,2 x 3,3 x 3,4 x
1.8x )=
So ch’(v)>ch(v)—dc(v#—l—9 > 0 since
dg(v) > 10. Now we assume f3(v) =dg(v) in which case
v gives out at most @ to the faces incident with v by
R1. Denote the smallest degree among all the neighbors of
v in G by d. If d =2, then by VAL d¢(v) = A. Moreover,
v is adjacent to (A — 1) A-vertices and only one 2-vertex
in G. So ch’/(v) > ch(v) — % —-1= A_Tm >0 by R7-1 since
A >10. If d =3, then by VAL dg(v) > A — 1. Moreover, if
dg(v)=A —1i (i=0,1), then v is adjacent to (A —2) A-
vertices and (2 —1i) 3—vertices in G In either case we have
ch’(v) >max{A —1—-4—4 2 — 5. A= 4———2>< 2}_
4210 > 0 by R7-1. If d > 5, then by VAL, v gives out
at most max{4 x 1,5 x £,6 x %,7 x1.8x 2} =1 toits
neighbors in G by R7-1. So ch'(v) > ch(v) — & — 1 =
w > 0. The last case is when d = 4. In this case,
by VAL we have dg(v) > A — 2. Moreover, if dg(v) =
A—j(j=0,1,2), then A > 10+ j and v is adjacent
to (A —3) A-vertices and (3 — j) 4T -vertices in G. Sup-
pose j =2, then by R7-1 and R7-2, ch’(v) > A — 2 —
4— 4523 =208 > 0 since A >10+2=12 when
this case occurs. Suppose j =1, then by R7-1 and R7-
2, ch(v)>A—-1-4—-271_2x 3 =202l 50 since
A >10+ 1 =11 when this case occurs. At last suppose
j=0. Recall that now v is a A-vertex being adjacent to
(A —3) A-vertices and three 4*-vertices in G, say x, y, z. If
max({d¢(x),dc(y),dc(2)} = 5, then v totally gives to x, y, z
at most 2x 3 + % =1 by R7-1 and R7-2. If d¢ (x) = d¢(y) =
d¢(z) =4, then by Lemma 6, none of them can be special.

%,5 X %,6 X %,7 X

2 to its neighbors in G by VAL, R7-1 and R7-2.

12dg (v)—115
24

So v totally gives to x, y,z at most 3 x % =1 by R7-1. In
each case we have ch’(v) > ch(v) — % —1= A%m >0 in
final, since A > 10.

Hence the proof is complete since

—8= Z ch(x) = Z ch'(x) >0

xeV (G)UF(G*) xeV (G)UF(G*)

which is a contradiction. O
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