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In this note we introduce the concept of equitable d-relaxed coloring. We prove that
each graph with maximum degree at most r admits an equitable 1-relaxed r-coloring and
provide a polynomial-time algorithm for constructing such a coloring.
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1. Introduction

In this article we aim to introduce the notion of equi-
table relaxed coloring. We begin by reviewing the separate
concepts of relaxed coloring and equitable coloring.

Let G = (V , E) be a graph. A d-relaxed k-coloring, also
known as a d-defective coloring, of G is a function f
from V to [k] := {1, . . . ,k} such that each color class
V i := f −1(i) induces a graph G[V i] with maximum degree
�(G[V i]) � d. In this case we say that f is a (k,d)-coloring
of G and that G is (k,d)-colorable. So a (k,0)-coloring is
just a (proper) k-coloring. Let χd(G) denote the least k
such that G is (k,d)-colorable. We call an edge whose end
points have the same color a flaw. This notion of coloring
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has been studied by many authors including [4–6,15]. For
our purposes the following bound of Matsumoto [15] is a
useful starting point.

Theorem 1. Every graph G satisfies χ1(G) � 1 + ��(G)
2 � =

χ1(K�(G)+1).

A k-coloring f of G is equitable if every color class has
size � |V |

k � or � |V |
k �. Hajnal and Szemerédi [7] answered a

question of Erdős by proving:

Theorem 2. Every graph G with �(G) � r has an equitable (r +
1)-coloring.

Their proof was quite complicated, and did not yield
a polynomial-time algorithm for producing the coloring.
Recently Mydlarz and Szemerédi [17], and independently
Kierstead and Kostochka [9], found simpler proofs that did
yield polynomial-time algorithms. See [10] for an even
simpler proof. These ideas were combined in [11] to ob-
tain an O (r|V |2) time algorithm. Kierstead and Kostochka
[8] also strengthened the Hajnal–Szemerédi Theorem by
weakening the degree constraint:
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Theorem 3. Let G be a graph with d(x) + d(y) � 2r + 1 for
every edge xy. Then G has an equitable (r + 1)-coloring.

The proof of Theorem 3 is more complicated than the
new proofs of Theorem 2 in the sense that it does not yield
a polynomial-time algorithm. This leads to the following
open problem which first appeared in [11]:

Problem 4. Find a polynomial-time algorithm to equitably
(r + 1)-color any graph with d(x) + d(y) � 2r + 1 for every
edge xy.

It is natural to ask about an equitable version of the
following theorem of Brooks [2]:

Theorem 5. For any connected graph G, except the complete
graph and the odd cycle, χ(G) � �(G).

Let χe(G) be the smallest integer k such that G has an
equitable k-coloring. In 1973 Meyer [16] formulated:

Conjecture 6. The statement of Theorem 5 holds with χ(G) re-
placed by χe(G).

By Theorem 5, an equivalent version of this conjecture
is that every �(G)-colorable graph has an equitable col-
oring using at most �(G) colors. Here one should pay
attention to an important difference between equitable
coloring and normal coloring. Any k-colorable graph is k′-
colorable for all k′ � k but this property does not nec-
essarily hold for equitable coloring. For example, H :=
K2m+1,2m+1 has no equitable (2m + 1)-coloring, although
it satisfies �(H) = 2m + 1 and χe(H) = 2. This distinction
motivates us to introduce another interesting parameter
for equitable coloring. Let the equitable chromatic thresh-
old, denoted by χ∗

e (G), of G be the smallest integer k
such that G has an equitable k′-coloring for all k′ � k.
In these terms the Hajnal–Szemerédi Theorem states that
χ∗

e (G) � �(G) + 1. In 1994 Chen, Lih, and Wu, strength-
ening Meyer’s Conjecture, posed the most important open
problem in the theory of equitable coloring:

Conjecture 7. Every connected graph G, except the complete
graph Kr and the odd cycle C2m+1 and the balanced complete
bipartite graph K2m+1,2m+1 , has an equitable �(G)-coloring.

In our terms, and using the Hajnal–Szemerédi The-
orem, the conjecture is equivalent to: Every connected
graph G satisfies χ∗

e (G) � �(G), except for Kr , C2m+1,
and K2m+1,2m+1. Chen et al. [3] proved the case �(G) � 3
and recently Kierstead and Kostochka [13] proved the case
�(G) = 4. They also phrased a similar conjecture with-
out the connectedness condition of Chen et al. First, for
every positive integer r they identified a small collection
of r-basic graphs (if r � 6 then the only r-basic graph is
Kr ) with the property that every r-coloring of an r-basic
graph has color classes of equal size, and they defined
an r-colorable graph to be r-decomposable if its vertices
could be partitioned into r-basic parts. It follows that ev-
ery r-coloring of an r-decomposable graph is equitable.

Moreover, if H is r-decomposable then H + Kr,r has no eq-
uitable r-coloring. Kierstead and Kostochka [12] made the
following conjecture, and proved that it is equivalent to
Conjecture 7.

Conjecture 8. If G satisfies �(G) � r and χ(G) � r, then G
has no equitable r-coloring if and only if r is odd, Kr,r ⊆ G and
G − Kr,r is r-decomposable.

Now we combine these lines of research. An equitable
(k,d)-coloring is a (k,d)-coloring that is also equitable. De-
fine the equitable d-relaxed threshold, denoted by χ∗d

e (G), of
G to be the least k such that G has an equitable (k′,d)-
coloring for all k′ � k.

Recall the following theorem of Vizing [18]:

Theorem 9. For every graph G, there exists a (�(G)+ 1)-edge-
coloring of G.

With Theorem 9, the proof of our first result is easy.

Theorem 10. Let G be a graph with �(G) � r and suppose 1 �
d � r. Then:

(a) χ∗d
e (G) � r + 1 − d;

(b) an equitable (r + 2 − d,d)-coloring can be constructed in
polynomial-time.

Proof. (a) By Theorem 9, G has an (r + 1)-edge-coloring g
with edge-color classes F1, . . . , Fr+1. Let R be the spanning
subgraph of G with E(R) := ⋃d

i=1 Fi . Let R+ be an edge-
maximal graph such that R ⊆ R+ ⊆ G and �(R+) � d;
set H := G − E(R+). For any edge xy ∈ E(H), g(xy) ∈
{d + 1, . . . , r + 1}; so �(H) � r + 1 − d. Furthermore, either
x or y must have degree d in R+ by the edge maximality
of R+ . Therefore

dH (x) + dH (y) � �(G) − d + �(H) � 2(r − d) + 1.

Thus by Theorem 3, H has an equitable (r +1−d)-coloring
f , and f is an (r + 1 − d,d)-coloring of G , since all flaws
are edges in R+ and �(R+) � d.

(b) Let H be as in the proof of part (a). �(H) � r +1−d
so H has an equitable (r + 2 −d)-coloring f by Theorem 2,
and f is an (r + 2 − d,d)-coloring of G , as required. Any
standard proof of Vizing’s Theorem yields a polynomial-
time algorithm. Moreover as remarked above [9,11,15] all
give polynomial-time algorithms for equitable coloring. So
it follows that we can construct f in polynomial-time. �

Now we restrict our attention to the case d = 1. No-
tice that our proof of Theorem 10(a) does not yield a
polynomial-time algorithm because the proof of Theo-
rem 3 does not. In the next section we give an alterna-
tive proof of Theorem 10(a) in the case d = 1 that does
yield a polynomial-time algorithm. We are also hopeful
that it may lead to improvements for the upper bound.
This proof uses techniques from the new proofs of the
Hajnal–Szemerédi Theorem discussed above, but also has
interesting new twists.
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For any class of graphs C set χ∗d
e (C) := maxG∈C χ∗d

e (G),
etc. Let Cr be the class of graphs with maximum degree
at most r. Using Theorems 1 and 10, we have the natural
problem:

Problem 11. Close the gap � r
2 �+ 1 = χ1(Cr) � χ∗1

e (Cr) � r.

It is tempting to conjecture that the lower bound is
tight, but one must be careful, at least for small values of r
and special graphs. For example, if r = 3 then � r

2 � + 1 = 2,
but the Petersen graph has no equitable (2,1)-coloring.

Notation. Most of our notation is standard or defined
above; possible exceptions include the following. For a ver-
tex y and sets of vertices X and Y , N X (y) denotes the
set of neighbors of y contained in X and dX (y) denotes
the size of N X (y). The set of edges with one end in X
and the other in Y is denoted by E(X, Y ). An (X, Y )-path
is a path that starts with a vertex in X and ends with a
vertex in Y . We abbreviate (X, {y})-path with (X, y)-path,
etc. |G| is the order (the number of vertices) of the graph
G . Recall (see p. 12 of [14]) that for a family S of sets,⋃S := {x: ∃S(S ∈ S ∧ x ∈ S)}. For basic undefined con-
cepts we refer the reader to [1].

2. A polynomial-time algorithm for Theorem 10(a), case
d = 1

In this section we first give another proof of Theo-
rem 10(a) in the case d = 1, and show that it yields a
polynomial-time algorithm.

Algorithmic proof of Theorem 10(a), case d = 1. We ar-
gue by induction on |V |. The base case is trivial so assume
|V | > 1. Let v ∈ V . By the induction hypothesis, there ex-
ists an equitable (r,1)-coloring f of G − v . Let s := � |V |

r �.

If � |V −v|
r � < s then |V − v| = r(s − 1). If � |V −v|

r � = s then
r(s − 1) � |V − v| � rs − 1. In any case, every color class of
f has order s or s − 1. Since d(v) � r we can pick a color
class X of f in which v has at most one neighbor. Extend
f to G by moving v to X and let X ′ = X + v . If f is not
an (r,1)-coloring of G , there must exist u ∈ N X ′(v) such
that dX ′(u) = 2. Then dV \X ′(u) � r − 2 and we can move
u to a color class in which it has no neighbors. Since the
order of exactly one color class has increased, if f is not
already equitable then there exists exactly one color class
of order s+1, at least one color class of order s−1, and all
other color classes have order s. Call such an (r,1)-coloring
a nearly equitable coloring of G .

Consider any nearly equitable (r,1)-coloring f . Define
an auxiliary digraph H := H( f ) on the color classes of f
by XY ∈ E(H) if and only if some vertex x ∈ X has no
neighbors in Y . In this case we say that x witnesses XY .
If P := X1 X2 · · · Xt is a path in H and xi (1 � i � t − 1) is
a vertex in Xi such that xi witnesses Xi Xi+1, then switch-
ing witnesses along P means moving xi to Xi+1 for every
1 � i � t − 1. This operation decreases |X1| by one and
increases |Xt | by one, while leaving the sizes of the inte-
rior vertices (color classes) unchanged. Call a color class
X small if |X | = s − 1 and let A0 be the set of small

classes and A ⊇ A0 be the set of color classes X for which
there exists an (X,A0)-path in H. Let V + := V +( f ) be the
unique color class of size s + 1. Define B := B( f ) to be the
set of color classes X such that there exists a (V +, X)-path
in H. If X ∈ A ∩ B then there exists a (V +, X)-path and
an (X,A0)-path in H; joining these paths at X to obtain
a (V +,A0)-path, and then switching witnesses, yields an
equitable (r,1)-coloring of G . Otherwise A and B are dis-
joint, and we must work harder. In this case, let M be the
set of classes not in A ∪ B, and set: A := ⋃A, B := ⋃B,
M := ⋃M, a := |A|, b := |B| and m := |M| = r − a − b.
Since A0 ⊆ A and V + ∈ B we have

a(s − 1) � |A| � as − 1,

ms = |M| and bs + 1 = |B|. (2.1)

Call an edge zy ∈ E(A, B) a solo edge if z ∈ Z ∈ A and
dZ (y) = 1. Solo edges exist: Otherwise every y ∈ B has at
least two neighbors in every class of A and at least one
neighbor in every class of M; so 2a + m � dA∪M(y) � r.
Let X ∈ A0. If v ∈ M then dX (v) � 1. Thus by (2.1),

ms + 2(bs + 1) = |M| + 2|B| � ∣
∣E(X, B ∪ M)

∣
∣ � r|X |

= r(s − 1).

So m + 2b < r, yielding the contradiction: 2r > (2a + m) +
(m + 2b) = 2r.

Fix a solo edge zy with z ∈ Z ∈ A and y ∈ Y ∈ B, and
let P z be a (Z ,A0)-path and P y be a (V +, Y )-path in H.
We will improve f to an (r,1)-coloring f ′ so that either
f ′ is equitable (possibly with one additional flaw) or f ′ is
nearly equitable, but has less flaws. More formally, argue
by secondary induction on the number γ of flaws in f .
First, move y to Z and switch witnesses along P y to form
an equitable (b,1)-coloring of B − y. If z is not incident
to a flaw in f then this yields an equitable or nearly eq-
uitable (r,1)-coloring of G . If the coloring is not already
equitable, the large class is now Z + y and we obtain an
equitable (r,1)-coloring f ′ of G by switching witnesses
along P z . In particular, this proves the base case γ = 0. If
z is incident to a flaw in f , then dZ+y(z) = 2. Thus we can
move z to some color class in which it has no neighbors.
This yields an equitable or nearly equitable (r,1)-coloring
f ′ of G; moreover we have removed a flaw incident to z
without introducing any new flaws, so we are done by the
secondary induction hypothesis. �

Our next goal is to implement an algorithm based on
the preceding proof.

Proposition 12. There is an O (n2r) time algorithm to construct
an equitable (r,1)-coloring for any graph on n vertices with
maximum degree at most r � 1.5

Proof. The algorithm will receive a graph G on n vertices
x1, . . . , xn . Let Vk := {xi: i � k} and Gk := G[Vk]. We start
by finding (trivially) an equitable r-coloring of the 1-vertex

5 Our model of computation assumes that array entries can be written
and read in one step, and all numbers and addresses are O (n).
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graph G1. Now suppose that we have constructed an (r,1)-
coloring of Gk , and consider stage k + 1, in which we color
Gk+1. First we add xk+1 to a color class in which it has at
most one neighbor. This can create at most one flaw, and
the result is an equitable or nearly equitable (r,1)-coloring
of Gk+1, unless a flaw xk y is created and y is already in-
cident to a flaw. In this case, we can move y to a class
in which it has no flaws, and again obtain an equitable
or nearly equitable coloring of Gk+1. If we are left with
a nearly equitable coloring, then we improve the situa-
tion by recoloring to get either an equitable (r,1)-coloring,
possibly with one more flaw, or a nearly equitable (r,1)-
coloring with fewer flaws. This is the most time consuming
operation, but it is performed at most 3n times through-
out the entire process: at most 2n times it removes a flaw,
since at each stage we introduce at most 2 flaws, and at
most n times it produces an equitable (r,1)-coloring.

We will use the following global data structures:

• L is an n × r-array in which L[v, i] is the i-th neighbor
of vertex v (we assume this is how G is received).

• F is an n-array, where F [v] is the color of vertex v .
• N is an n × r-array, where for any vertex v and color

class X , N[v, X] = dX (v).
• C is an r-array, where C[X] is a linked-list of vertices

in color class X .
• S is an r-array, where S[X] is the number of vertices

in color class X .
• P is an n-array, where P [v] is the node of v in the list

C[F [v]] (this array is needed for O (1) removal from
C[F [v]]).

• H is an r × r array representing the adjacency matrix
of the digraph H.

We will show that the procedures listed below meet
the specified performance bounds in the order given. Re-
call that s = �n

r �. In the top-down analysis that follows,
we will assuming that the specified bounds for the lower
procedures hold. Since Main-Procedure produces an equi-
table (r,1)-coloring of G , this will complete the proof. In
the pseudo-code below, lines that begin with � represent
a comment.

Procedure name Performance bound

Main-Procedure O (n2r)
Improve-Nearly-Equitable-Coloring O (r2s)
Construct-H O (r2s)
Move-Witnesses-Along-Path O (r2 + rs)
Move-Vertex-To-Color-Class O (r)

Since each array has at most nr elements, initializa-
tion takes O (nr) steps. The searches on lines 5, 7 and 8
each take O (r) steps. Therefore the lines 2 through 9 con-
sume O (nr) steps throughout the entire procedure since
each line completes in O (r) steps. We can perform the
check on line 10 by searching the array S in O (r) steps.
As was argued above, because Improve-Nearly-Equitable-

Coloring either removes a flaw or produces an equitable
(r,1)-coloring of Gk , Improve-Nearly-Equitable-Coloring

is called at most 3n times. Therefore the entire routines
run in O (nr2s) = O (n(rs)r) = O (n2r) steps, because rs �
n + r.

V + can be found by searching the array S , so line 1
takes O (r) steps. Starting with V + , a breadth-first search
of H is used to mark all color classes in B. To compute A,
we perform a breadth-first search from each color class in
A0, but with the sense of the edges in H reversed. Note
that in either search the edges incident to a color class
need only be considered once. Therefore, since there are
at most r2 edges in H, computing A or B takes O (r2)

steps. The search for a solo edge on line 6 takes O (r2s)
steps, because there are at most r2s edges in Gk . The
search on line 11 takes O (r) steps. Therefore every line in
Improve-Nearly-Equitable-Coloring completes in O (r2s)
steps.

There are r2 pairs of color classes to be considered. For
each ordered pair (X, Y ), the search of C[X] on line 2
takes O (s) steps. Therefore Construct-H runs in O (r2s)
steps.

It takes O (r2) steps to find a path in H using breadth-
first search since there are at most r2 edges in H. For each
of the t − 1 edges in the path, it takes O (r + s) steps to
find and move a witness. Since t − 1 � r the running time
of Move-Witnesses-Along-Path is O (r2 + rs).
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It takes O (1) steps to remove P [v] from C[X] and
add P [v] to C[Y ]; and O (r) steps to update N[u, X] and
N[u, Y ]. So the entire routines run in O (r) steps. This com-
pletes the proof. �
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