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a b s t r a c t

A graph is said to be K1,t -free if it does not contain an induced subgraph isomorphic to K1,t .
Let h(t, k) be the smallest integerm such that every K1,t -free graph of order greater thanm
and with minimum degree at least t contains k vertex-disjoint triangles. In this paper, we
obtain a lower bound of h(t, k) by a constructivemethod. According to the lower bound,we
totally disprove the conjecture raised by HongWang [H.Wang, Vertex-disjoint triangles in
claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441–447].
We also obtain an upper bound of h(t, k) which is related to Ramsey numbers R(3, t). In
particular, we prove that h(4, k) = 9(k− 1) and h(5, k) = 14(k− 1).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple andundirected. LetGbe a graph.WeuseV (G), E(G), δ(G) and∆(G) to denote the
vertex set, the edge set, the minimum degree and the maximum degree of G. If uv ∈ E(G), then u is said to be the neighbor
of v. We use N(v) to denote the set of neighbors of a vertex v. The degree d(v) = |N(v)|. For a subset U of V (G),G[U]
denotes the subgraph of G induced by U . The join G = G1 ∨ G2 of graph G1 and G2 with disjoint vertex sets V1 and V2 and
edge sets E1 and E2 is the graph G1

⋃
G2 together with all the edges jointing V1 and V2. For any positive integers k and l,

the Ramsey number R(k, l) is the smallest integer n such that every graph on n vertices contains either a clique of k vertices
or an independent set of l vertices. A (k, l)-Ramsey graph is a graph on R(k, l) − 1 vertices that contains neither a clique of
k vertices nor an independent set of l vertices. By the definition of R(k, l), (k, l)-Ramsey graph does exist for all k ≥ 2 and
l ≥ 2. The graph Ck is a cycle with k vertices and we call C3 a triangle. We use mQ to represent m vertex-disjoint copies of
graph Q . Other notations can be found in [1].
K1,t is the star of order t + 1. A graph is said to be K1,t-free if it does not contain an induced subgraph isomorphic to

K1,t (t ≥ 2). Let h(t, k) be the smallest integerm such that every K1,t-free graph of order greater thanm and with minimum
degree at least t contains k vertex-disjoint triangles. Wang [5] proved that h(3, k) = 6(k − 1) for any k ≥ 2, and he put
forward the following conjecture.

Conjecture 1 ([5]). For each integer t ≥ 4, there exists an integer kt depending on t only such that h(t, k) = 2t(k − 1) for all
integers k ≥ kt .

In Section 2, we get a proper lower bound of h(t, k) by a constructive method that h(4, k) ≥ 9(k − 1) and h(t, k) ≥
(4t − 9)(k − 1) for any t ≥ 5. Since 4t − 9 > 2t for any t ≥ 5, we totally disprove Conjecture 1. In Section 3, we give an
upper bound of h(t, k), which is related to R(3, t). In particular, we prove that h(4, k) = 9(k− 1) and h(5, k) = 14(k− 1).
In Section 4, we give some remarks on h(t, k) and list some interesting open problems. The paper ends with one conjecture.
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2. A lower bound of h(t, k)

Let Gn,m be the graph whose vertices are 0, 1, . . . , n − 1 where two vertices i and j are adjacent if and only if (i − j) ∈
{±m,±(m+ 1), . . . ,±(2m− 1)}.

Lemma 1 ([4]). If n ≥ 6m−2 then Gn,m is a triangle-free regular graphwhose degree is equal to 2m. Furthermore, if n ≤ 8m−3,
then the independent number of Gn,m is equal to 2m.

Similarly, we define Hn,m to be the graph whose vertices are 0, 1, . . . , n−1 where two vertices i and j are adjacent if and
only if (i− j) ∈ {±m,±(m+ 1), . . . ,±(2m− 1),±b n2c}.

Lemma 2. H8m−2,m is a triangle-free regular graph whose degree is equal to 2m + 1 and its independent number is equal to
2m+ 1.

Proof. Suppose, to the contrary, that H8m−2,m contains a triangle, say t0t1t2t0 where 0 ≤ t0 < t1 < t2 ≤ 8m − 3. Then
tj − ti ∈ {m,m + 1, . . . , 2m − 1, 4m − 1} for 0 ≤ i < j ≤ 2. So t2 − t0 = (t2 − t1) + (t1 − t0) ≥ m + m = 2m which
implies that t2 − t0 = 4m − 1. Since ti 6= tj for 0 ≤ i < j ≤ 2, t1 − t0 ≤ 2m − 1 and t2 − t1 ≤ 2m − 1. This implies that
t2 − t0 = (t2 − t1)+ (t1 − t0) ≤ 4m− 2, a contradiction. So H8m−2,m is a triangle-free graph.
Let S = {±m,±(m+ 1), . . . ,±(2m− 1), 4m− 1}. Then for any i, j ∈ S, (i− j) 6∈ S. Since |S| = 2m+ 1, α(H8m−2,m) ≥

2m+ 1.
Consider 2m+1 numbers 0 ≤ t0 < t1 < · · · < t2m ≤ n−1 and suppose that (tj− ti) 6∈ {±m,±(m+1), . . . ,±(2m−1)}

for any i and j. Put si = ti+1 − ti (i = 1, 2, . . . , 2m − 1), s0 = n + t0 − t2m. It is clear that si ≤ m − 1 or si ≥ 2m
for any i = 0, 1, . . . , 2m − 1. Let r be equal to the number of members si which satisfy si ≥ 2m. If r ≥ 3, then
n ≥ r · 2m + (2m + 1 − r) · 1 = r(2m − 1) + 2m + 1 ≥ 8m − 2, that contradicts the assumption of the lemma. If
r ≤ 2 then there exists i such that si+j < m for every j = 0, 1, . . . ,m − 1 (we mean that s2m+1 = s0, s2m+2 = s1, . . .).
Denote p0 = 0, pj = si + si+1 + · · · + si+j−1 (j = 1, 2, . . . ,m). Hence pj ≡ (ti+j − ti)(mod n). Since every si+j ≥ 1, pm ≥ m.
Let j = min{l : pl ≥ m}. So pj ≥ m, pj−1 ≤ m − 1, pj = pj−1 + si+j ≤ (m − 1) + (m − 1) ≤ 2m − 1. Therefore,
(ti − ti+j) ∈ {±m,±(m+ 1), . . . ,±(2m− 1)}, which leads to a contradiction. �

Theorem 3. For each integer k ≥ 2, h(4, k) ≥ 9(k− 1).

Proof. LetW be a wheel of order 9. LabelW ’s center by v0 and its neighbors by v1, v2, . . . , v8. Let H be a graph obtained
from W by adding two edges v1v5 and v2v6. It is obvious that H does not contain two vertex-disjoint triangles. Set
P(H) = {v3, v4, v7, v8}. Let Πk be the set of graphs of order 9(k − 1) such that a graph G belongs to Πk if and only if it
is obtained from k− 1 vertex-disjoint copies H1, . . . ,Hk−1 of H by adding 2(k− 1) new edges on

⋃k−1
i=1 P(Hi) so that these

new edges form a perfect matching. It is easy to check that every graph H belonging to
∏
k is the K1,4-free graph which

contains at most k− 1 vertex-disjoint triangles and δ(G) ≥ 4. So h(4, k) ≥ 9(k− 1). �

Theorem 4. For each integers t ≥ 5 and k ≥ 2,

h(t, k) ≥
{
(4t − 6)(k− 1), if t is odd;
(4t − 9)(k− 1), if t is even.

Proof. Let G = (k − 1)(K1 ∨ G8m−3,m). Then |V (G)| = (8m − 2)(k − 1) and δ(G) = 2m + 1. By Lemma 1, G is a K1,2m+1-
free graph which contains at most k − 1 vertex-disjoint triangles. So h(2m + 1, k) ≥ (8m − 2)(k − 1). Let t = 2m + 1.
Then h(t, k) ≥ (4t − 6)(k − 1). Similarly, we put H = (k − 1)(K1 ∨ H8m−2,m). Then |V (G)| = (8m − 1)(k − 1) and
δ(G) = 2m + 2. By Lemma 2, H is a K1,2m+2-free graph which contains at most k − 1 vertex-disjoint triangles. So we also
have h(2m+ 2, k) ≥ (8m− 1)(k− 1). Let t = 2m+ 2. Then h(t, k) ≥ (4t − 9)(k− 1). �

By Theorems 3 and 4, we totally disprove Conjecture 1.

3. An upper bound of h(t, k)

In this section, we continue to consider K1,t-free graphs and give an upper bound of h(t, k). First, we introduce a useful
lemma, which is known as Ramsey’s Theorem.

Lemma 5 ([1] (Ramsey’s Theorem)). For any two integers k ≥ 2 and l ≥ 2, R(k, l) ≤ R(k, l− 1)+ R(k− 1, l). Furthermore, if
R(k, l− 1) and R(k− 1, l) are both even, then the strict inequality holds.

In [2] (also see page 7 in [3]), Burr et al. proved that R(k, t) ≥ R(k − 1, t) + 2t − 3 for k, t ≥ 3. It follows that
R(3, t) ≥ R(2, t − 1)+ 2t − 3 = 3t − 3 for t ≥ 3. So we have the following lemma.

Lemma 6. For each integer t ≥ 4,max
{⌊

3(t−1)
2

⌋
, 2t − 2, 52 t − 4, 3t − 6

}
≤ R(3, t − 1)+ t − 4.
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Theorem 7. For each integer t ≥ 4, h(t, k) ≤ g(t)(k− 1) where

g(t) =
{
R(3, t − 1)+ t − 1, if R(3, t − 1) and t are both even;
R(3, t − 1)+ t, otherwise.

Proof. If k ≤ 1, the theorem is obvious. So we assume that k ≥ 2. Suppose that the theorem is false. Let s be the greatest
integer such that G contains s vertex-disjoint triangles, say T1, . . . , Ts. Then s < k. Define T = {T1, . . . , Ts}, S =

⋃s
i=1 V (Ti)

and H = G− S. Since G is K1,t-free and δ(G) ≥ t , we have that
(1)∆(H) ≤ t − 1, and
(2) every vertex must be contained in a triangle.

By the maximality of s, we have that
(3) any triangle must have at least one vertex in S.

Thus, we can divide V (H) into three disjoint subsets V1, V2 and V3 by the following steps. Let x ∈ V (H) and Cx the set of
triangles incident with x. First, if there is a triangle C ∈ Cx, say C = xyzx, and a Tm ∈ T such that x, z ∈ V (H) and y ∈ V (Tm),
then we put x into V1 and say that x is dominated by Tm at y. Otherwise, any triangle containing x must has two vertices
contained in S. Then, if there exist a C ∈ Cx, say C = xyzx, and a Tm ∈ T such that y, z ∈ V (Tm), then we put x into V2 and
say that x is dominated by Tm at y and z. Finally, we left the case that for any triangle C ∈ Cx, the two vertices in C different
from xmust contain in different triangles in T . Thus we choose a triangle C ∈ Cx, say C = xyzx, and two triangles Tm, Tn ∈ T
such that y ∈ V (Tm) and z ∈ V (Tn)where 1 ≤ m < n ≤ s. Now we put x into V3 and say that x is dominated by both Tm at y
and Tn at z. Moreover, this partition of V (H) should also satisfies

• |V1| is maximum, and subject to the condition,
• |V2| is maximum.

Setting this way, wewill have Vi
⋂
Vj = ∅ for any 1 ≤ i < j ≤ 3 andmoreover, if two vertices in V2

⋃
V3 have a common

neighbor in S, they are not adjacent (by the choice of Vi’s). In the following, we call a vertex xi-vertex if x ∈ Vi (1 ≤ i ≤ 3)
and always assume that for x ∈ V1

⋃
V2, if there are two or more triangles which can dominate x, we only choose one; and

for x ∈ V3, if it is dominated by at least two pairs of triangles, then we choose only one pair of triangles in T to dominate x.
Let Tm = xyzx be a triangle in the set T . For any v ∈ Tm, we define Si(Tm, v) to be the set of i-vertices dominated by Tm at

v and then Si(Tm) =
⋃
v∈Tm Si(Tm, v), where 1 ≤ i ≤ 3. Then

(4) max{|S3(Tm, x)|, |S3(Tm, y)|, |S3(Tm, z)|} ≤ t − 2.
Since if |S3(Tm, x)| ≥ t − 1, that is, x is adjacent to t − 1 3-vertices x1, . . . , xt−1 dominated by Tm, then

G[{x, x1, . . . , xt−1, z}] ' K1,t , a contradiction. So |S3(Tm, x)| ≤ t − 2. Similarly, we have |S3(Tm, y)| ≤ t − 2 and
|S3(Tm, z)| ≤ t − 2. Hence (4) holds.
(5) |S2(Tm)| ≤

⌊
3(t−1)
2

⌋
.

Since if |S2(Tm)| >
⌊
3(t−1)
2

⌋
, there must exist a vertex, say x, such that Tm dominates at least t 2-vertices at x. Then these

t 2-vertices along with x forms a K1,t , a contradiction.
(6) max{|S2(Tm, x)

⋃
S3(Tm, x)|, |S2(Tm, y)

⋃
S3(Tm, y)|, |S2(Tm, z)

⋃
S3(Tm, z)|} ≤ t − 1.

Since if |S2(Tm, x)
⋃
S3(Tm, x)| ≥ t,G

[
{x}
⋃
S2(Tm, x)

⋃
S3(Tm, x)

]
⊇ K1,t , a contradiction.

Let v ∈ V1
⋃
V2. If v is dominated by some Tm ∈ T , then we define a(v, Tm) = 1. Otherwise, we define a(v, Tm) = 0. Let

v ∈ V3 and v is dominated by two triangles Ti = xyzx and Tj = abca at x and a, respectively. If max{|S1(Ti, y)|, |S1(Ti, z)|} ≥ 1
and S1(Tj, b) = S1(Tj, c) = 0, we define a(v, Tj) = 1 and a(v, Tm) = 0 for all m 6= j. Otherwise, we define a(v, Ti) =
a(v, Tj) = 1

2 and a(v, Tm) = 0 for anym ∈ {1, 2, . . . , s} \ {i, j}.
For each Tm ∈ T , we define its dominatingcapacity ca(Tm) =

∑
x∈V (H) a(x, Tm). Since any vertex in V (H) is dominated

by some Ti ∈ T ,
∑s
i=1 ca(Ti) =

∑s
i=1
∑
x∈V (H) a(x, Ti) =

∑
x∈V (H)

∑s
i=1 a(x, Ti) ≥ |V (H)| ≥ g(t)(k − 1) + 1 − 3s ≥

(g(t)− 3)s+ 1. This implies that there is a triangle Tα , say Tα = xyzx, such that ca(Tα) > g(t)− 3 for some 1 ≤ α ≤ s.
Case 1. Tα dominates no 3-vertices.
Suppose Tα dominates no 1-vertices, then by (5) and Lemma6,we have ca(Tα) ≤

⌊
3(t−1)
2

⌋
≤ R(3, t−1)+t−4 ≤ g(t)−3.

So without loss of generality, we can assume x1 is a 1-vertex dominated by Tα at x. Then by the definition of V1, there
exists another vertex x2 ∈ V1 such that xx2, x1x2 ∈ E(G). By the maximality of s, if v is a 2-vertex dominated by Tα , we
must have vx ∈ E(G). Suppose S1(Tα, y)

⋃
S1(Tα, z) ⊆ N(x), then ca(Tα) ≤ ∆(G) − 2 ≤ R(3, t) − 3 ≤ g(t) − 3 by

Lemma 5, a contradiction. So without loss of generality, we can assume that S1(Tα, y) \ N(x) 6= ∅. This implies that there
exists a 1-vertex dominated by Tα at y, say y1, such that yy1 ∈ E(G) and xy1 6∈ E(G). At the same time, there also exist
another vertex y2 ∈ V1 such that yy2, y1y2 ∈ E(G). By the maximality of s, we must have y2 ∈ {x1, x2}. Without loss
of generality, we assume y2 = x1 which implies x1y1, x1y ∈ E(G). By the maximality of s, we have S2(Tα, z) = ∅. Since
vy1 6∈ E(G) for any v ∈ S2(Tα, y), |S2(Tα)| = |S2(Tα, y)| ≤ t − 2. Suppose S1(Tα, z) 6= ∅ or S1(Tα, x) \ {x1, x2} 6= ∅,
then for any 1-vertex v dominated by Tα , we must have vx1 ∈ E(G). For otherwise, we can replace Tα with two new
vertex-disjoint triangles which are also vertex-disjoint to any triangle in T \ {Tα}, a contradiction. Since dH(x1) ≤ t − 1
by (1), S1(Tα) ≤ t − 1 + 1 = t . So ca(Tα) = |S1(Tα)| + |S2(Tα)| ≤ t + t − 2 = 2t − 2 ≤ g(t) − 3 by Lemma 6,
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a contradiction. So S1(Tα, z) = S1(Tα, x) \ {x1, x2} = ∅. By the maximality of s, S1(Tα, y) \ {x1, x2} along with z forms
an independent set in G, so |S1(Tα, y) \ {x1, x2}| ≤ t − 2 which implies S1(Tα) ≤ t − 2 + 2 = t . So we also have
ca(Tα) = |S1(Tα)| + |S2(Tα)| ≤ t + t − 2 = 2t − 2 ≤ g(t)− 3 by Lemma 6, a contradiction.
Case 2. Tα dominates a 3-vertex at x and S1(Tα, y) = S1(Tα, z) = ∅.
Suppose S1(Tα, x) 6= ∅. Select u ∈ S3(Tα, x). Set L = G[NH(x)

⋃
{x, y, z}/{u}]. Then L is a K1,t−1-free graph, for otherwise,

there must exist an independent setM ⊆ V (L) of size t − 1, then G[M
⋃
{x, u}] ' K1,t , a contradiction. By the maximality

of s, L 6⊇ 2C3. It follows that dH(x) = dL(x) + 1 − 2 ≤ R(3, t − 1) − 2. Since S1(Tα, x) 6= ∅, a(w, Tα) ≤ 1
2 for any

w ∈ S3(Tα, y)
⋃
S3(Tα, z) and there is no vertex v ∈ V2 such that vy, vz ∈ E(G). That is, S2(Tα, y)

⋃
S2(Tα, z) ⊆ N(x). By (4),

we have |S3(Tα, y)| ≤ t−2 and |S3(Tα, z)| ≤ t−2. Then ca(Tα) ≤ dH(x)+ 12 (t−2)+
1
2 (t−2) ≤ R(3, t−1)+t−4 ≤ g(t)−3,

a contradiction. So S1(Tα, x) = ∅.
Suppose |S2(Tα)| = 0, then by (4), we have max{|S3(Tα, x)|, |S3(Tα, y)|, |S3(Tα, z)|} ≤ t − 2. This implies ca(Tα) ≤

3(t − 2) ≤ g(t) − 3 by Lemma 6, a contradiction. So |S2(Tα)| = m > 0. Without loss of generality, we can select a vertex
w ∈ S2(Tα) such that wy, wz ∈ E(G). Now, we claim that a(v, Tα) = 1

2 for any v ∈ S3(Tα, x). By the definition of V3,
for such a v, there exists another triangle, say Tγ = dpqd, such that v is dominated by Tγ at d. Then by the maximality
of s, we must have S1(Tγ , p) = S1(Tγ , q) = ∅. By the definition of the function a(·, ·), we have a(v, Tα) = 1

2 since
S1(Tα, y) = S1(Tα, z) = ∅. Let |S2(Tα, x)| = ax, |S2(Tα, y)| = ay and |S2(Tα, z)| = az , then ax + ay + az = 2m. By (6),
we also have |S3(Tα, x)| ≤ t− 1− ax, |S3(Tα, y)| ≤ t− 1− ay and |S3(Tα, z)| ≤ t− 1− az . Supposem ≥ 2, then ay+ az ≥ 3
and ca(Tα) ≤ m+ 12 (t−1−ax)+(t−1−ay)+(t−1−az) =

5
2 (t−1)−

1
2 (ay+az) ≤

5
2 t−4 ≤ g(t)−3, a contradiction. Sowe

havem = 1 and then ax = 0, ay = az = 1, which implies ca(Tα) ≤ 1+ 12 (t−2)+(t−2)+(t−2) =
5
2 (t−1)−4 ≤ g(t)−3,

a contradiction.
Case 3. Tα dominates a 3-vertex at x but S1(Tα, y) 6= ∅ (the case when S1(Tα, z) 6= ∅ is similar).
Select u ∈ S3(Tα, x), then by the definition of V3, there exists another triangle, say Tβ = abca, such that u ∈ S3(Tβ , a).

That is, xa, xu, au ∈ E(G). Choose y1 ∈ S1(Tα, y). Then a(w, Tα) ≤ 1
2 for any w ∈ S3(Tα, x)

⋃
S3(Tα, z). Suppose

max{|S1(Tβ , b)|, |S1(Tβ , c)|} ≥ 1. Without loss of generality, we assume |S1(Tβ , b)| ≥ 1 and b1 ∈ S1(Tβ , b). Then by the
definition of V1, there exist a vertex y2 ∈ N(y) and b2 ∈ N(b) such that y1y2 ∈ E(G), b1b2 ∈ E(G).
Set U = {y1, y2}

⋃
{b1, b2}. Then by the maximality of s, we have

(a) |U| ≤ 3
(b) There is no vertex v ∈ V (H) \U such that vx, vz ∈ E(G) or vy, vz ∈ E(G). In particular, S2(Tα, x)

⋂
S2(Tα, z) = ∅ and

S2(Tα, y)
⋂
S2(Tα, z) = ∅.

(c) {z}
⋃
NH(x) \ U, {z}

⋃
NH(y) \ {b1, b2}, {x}

⋃
NH(z) \ U are three independent sets. In particular, max{|NH(x) \

U|, |NH(y) \ {b1, b2}|, |NH(z) \ U|} ≤ t − 2.
Next, we claim that |S1(Tα)| ≤ t − 1. First, we consider the case when |U| = 2. Suppose S1(Tα, x) 6= ∅ (the case when
S1(Tα, z) 6= ∅ is similar). If S1(Tα, y) \ U 6= ∅ or S1(Tα, z) 6= ∅, then every vertex in S1(Tα) \ U must be adjacent to the
same vertex in U . Since ∆(H) ≤ t − 1 by (1) and b1 6∈ S1(Tα), |S1(Tα)| ≤ t − 1. If S1(Tα, y) \ U = S1(Tα, z) = ∅,
then by (c) we have |NH(x) \ U| ≤ t − 2 since G is a K1,t-free graph. Note again that b1 6∈ S1(Tα), we also have
|S1(Tα)| ≤ t − 2 + 1 = t − 1. So we assume S1(Tα, x) = S1(Tα, z) = ∅. Then by (c), we have |NH(y) \ {b1, b2}| ≤ t − 2
which implies |S1(Tα)| ≤ t − 2 + 1 = t − 1 since b1 6∈ S1(Tα). Second, we consider the case when |U| = 3. Since
|U| = 3, |{y1, y2}

⋂
{b1, b2}| = 1. Let v ∈ {y1, y2}

⋂
{b1, b2}. Then by the maximality of s, every vertex in S1(Tα) \ U must

be adjacent to v. Since dH(v) ≤ t − 1 by (1) and b1 6∈ S1(Tα), |S1(Tα)| ≤ t − 1.
Let |S1(Tα, x) \ U| = bx, |S1(Tα, y) \ U| = by, |S1(Tα, z) \ U| = bz and |S2(Tα)| = m. Note that b1 6∈ S1(Tα) and

|U| ≤ 3, we have |U
⋂
S1(Tα)| ≤ 2. This implies |S1(Tα)| − 2 ≤ bx + by + bz ≤ |S1(Tα)| − 1. By (b) and (c), we have

|S3(Tα, x)| ≤ t − 2 − m − bx and |S3(Tα, z)| ≤ t − 2 − bz . Suppose bx + by + bz = |S1(Tα)| − 1, then by (c), we also
have |S3(Tα, y)| ≤ t − 2 − m − by. This implies ca(Tα) ≤ |S1(Tα)| + m + t−2−m−bx

2 + (t − 2 − m − by) + t−2−bz
2 ≤

|S1(Tα)|−1
2 + 1 + 2(t − 2) ≤ 5

2 t − 4 ≤ g(t) − 3 by Lemma 6, a contradiction. So bx + by + bz = |S1(Tα)| − 2 which
implies |U| = 3. By (c), we have |NH(y) \ U| ≤ |NH(y) \ {b1, b2}| − 1 ≤ t − 3 and then |S3(Tα, y)| ≤ t − 3 − m − by. So
ca(Tα) ≤ |S1(Tα)| +m+ t−2−m−bx

2 + (t − 3−m− by)+ t−2−bz
2 ≤

|A2|−2
2 + 2+ 2t − 5 ≤

5
2 t − 4 ≤ g(t)− 3 by Lemma 6, a

contradiction.
So for any 3-vertex v ∈ S3(Tα, x) where Tα = xyzx,max{|S1(Tα, y)|, |S1(Tα, z)|} ≥ 1 and there must exist a triangle

Tβ = abca such that v ∈ S3(Tβ , a) and |S1(Tβ , b)| = |S1(Tβ , c)| = 0. Then for any v ∈ S3(Tα), a(v, Tα) = 0. By the similar
proof as in Case 1, we also have ca(Tα) ≤ g(t)− 3, a contradiction.
Hence, for each integer t ≥ 4,

h(t, k) ≤
{
(R(3, t − 1)+ t − 1)(k− 1), if R(3, t − 1) and t are both even;
(R(3, t − 1)+ t)(k− 1), for otherwise.

We complete the proof of the theorem. �

By Theorems 3, 4 and 7, we have the following result.

Corollary 8. h(4, k) = 9(k− 1) and h(5, k) = 14(k− 1).
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4. Conclusions

In Section 2, we constructively obtain a lower bound of h(t, k). We firstly construct a K1,t-free graph (in fact, a graph
with independent number no more than t − 1) with minimum degree at least t but containing at most one vertex-disjoint
triangle, then wemake k−1 copies of it. The resulting graph just implies the lower bound of h(t, k). In view of this, consider
a (3, t)-Ramsey graph R (that is a triangle-free graph with its independent number no more than t − 1). The join graph
K1 ∨ Rmust be a K1,t-free graph on R(3, t) vertices but containing at most one vertex-disjoint triangle. But we do not know
whether δ(K1 ∨R) ≥ t or not. In particular, we have the following question.

Question 1. Does there exist a (3, t)-Ramsey graph R such that δ(R) ≥ t − 1?

If such a graph R do exist, then (k− 1)(K1 ∨ R) is a K1,t-free graph on R(3, t)(k− 1) vertices but containing at most k− 1
vertex-disjoint triangles. This implies h(t, k) ≥ R(3, t)(k− 1). This lower bound seems more beautiful and reasonable, but
whether it is proper is still unknown. Note that R(3, 3) = 6, R(3, 4) = 9 and R(3, 5) = 14 (see [1] on page 106). Wang [5]
proved h(3, k) = 6(k− 1) = R(3, 3)(k− 1). In Section 3, we prove h(4, k) = R(3, 4)(k− 1) and h(5, k) = R(3, 5)(k− 1).
These results imply that the answer of the above question is ‘‘yes’’ for 3 ≤ t ≤ 5. Thus we pose the following conjecture to
end this paper.

Conjecture 2. For each integer t ≥ 3, h(t, k) = R(3, t)(k− 1).
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