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and with minimum degree at least t contains k vertex-disjoint triangles. In this paper, we
obtain a lower bound of h(t, k) by a constructive method. According to the lower bound, we
totally disprove the conjecture raised by Hong Wang [H. Wang, Vertex-disjoint triangles in
claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441-447].

;gy‘:‘;fggsg:raph We also obtain an upper bound of h(t, k) which is related to Ramsey numbers R(3, t). In
Diérjoint particular, we prove that h(4, k) = 9(k — 1) and h(5, k) = 14(k — 1).
Triangle © 2010 Elsevier B.V. All rights reserved.

Ramsey number

1. Introduction

In this paper, all graphs are finite, simple and undirected. Let G be a graph. We use V(G), E(G), 6(G) and A(G) to denote the
vertex set, the edge set, the minimum degree and the maximum degree of G. If uv € E(G), then u is said to be the neighbor
of v. We use N(v) to denote the set of neighbors of a vertex v. The degree d(v) = |N(v)|. For a subset U of V(G), G[U]
denotes the subgraph of G induced by U. The join G = G; V G, of graph G; and G, with disjoint vertex sets V; and V, and
edge sets E; and E; is the graph G; | G, together with all the edges jointing V; and V5. For any positive integers k and I,
the Ramsey number R(k, I) is the smallest integer n such that every graph on n vertices contains either a clique of k vertices
or an independent set of [ vertices. A (k, [)-Ramsey graph is a graph on R(k, [) — 1 vertices that contains neither a clique of
k vertices nor an independent set of [ vertices. By the definition of R(k, I), (k, [)-Ramsey graph does exist for all k > 2 and
[ > 2. The graph C; is a cycle with k vertices and we call C; a triangle. We use mQ to represent m vertex-disjoint copies of
graph Q. Other notations can be found in [1].

Ky ¢ is the star of order t + 1. A graph is said to be Kj ;-free if it does not contain an induced subgraph isomorphic to
Ky (t > 2).Let h(t, k) be the smallest integer m such that every K; ;-free graph of order greater than m and with minimum
degree at least t contains k vertex-disjoint triangles. Wang [5] proved that h(3, k) = 6(k — 1) for any k > 2, and he put
forward the following conjecture.

Conjecture 1 ([5]). For each integer t > 4, there exists an integer k; depending on t only such that h(t, k) = 2t(k — 1) for all
integers k > k.

In Section 2, we get a proper lower bound of h(t, k) by a constructive method that h(4, k) > 9(k — 1) and h(t, k) >
(4t — 9)(k — 1) forany t > 5. Since 4t — 9 > 2t for any t > 5, we totally disprove Conjecture 1. In Section 3, we give an
upper bound of h(t, k), which is related to R(3, t). In particular, we prove that h(4, k) = 9(k — 1) and h(5, k) = 14(k — 1).
In Section 4, we give some remarks on h(t, k) and list some interesting open problems. The paper ends with one conjecture.
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2. Alower bound of h(t, k)

Let G, be the graph whose vertices are 0, 1, ..., n — 1 where two vertices i and j are adjacent if and only if (i —j) €
{£m, £(m+ 1), ..., £2m — 1}

Lemma 1 ([4]).If n > 6m—2 then Gy, is a triangle-free regular graph whose degree is equal to 2m. Furthermore, if n < 8m—3,
then the independent number of G, n, is equal to 2m.

Similarly, we define H, ,, to be the graph whose vertices are 0, 1, ..., n — 1 where two vertices i and j are adjacent if and
onlyif (i —j) € {£m, £(m + 1), ..., £2m — 1), £[5]}.

Lemma 2. Hgy_; 1 iS a triangle-free regular graph whose degree is equal to 2m + 1 and its independent number is equal to
2m+ 1.

Proof. Suppose, to the contrary, that Hsp,_» ,n contains a triangle, say totityto where 0 < tp < t; < t; < 8m — 3. Then
tt—tte{fmm4+1,...,2m—1,4m —1}for0 <i < j<2.S0t, —ty = (t — t1) + (t; — to) = m + m = 2m which
implies that t, — top = 4m — 1.Since t; # tjfor0 <i <j < 2,t; —ty < 2m — land t, — t; < 2m — 1. This implies that
ty —to = (t2 — t1) + (t1 — to) < 4m — 2, a contradiction. So Hg;;—2 m is a triangle-free graph.

LetS ={£fm,+(m+1),...,£2m —1),4m — 1}.Thenforanyi,j € S, (i —j) & S.Since |S| = 2m + 1, a(Hsm—2,m) =
2m+ 1.

Consider 2m+1numbers0 < ty < t; < --- < th < n—1andsuppose that (t; —t;) & {m, £(m+1),...,£2m—1)}
foranyiandj. Puts; = i —t; (i = 1,2,...,2m — 1),50 = n+ tyg — tyy. [tisclear thats; < m — lors; > 2m
foranyi = 0,1,...,2m — 1. Let r be equal to the number of members s; which satisfy s; > 2m. If r > 3, then
n>r-2m+Q2m+1—-r)-1=r2m—1)+2m+ 1 > 8m — 2, that contradicts the assumption of the lemma. If
r < 2 then there exists i such that s;;; < mforeveryj = 0,1,..., m — 1 (we mean that Sy, 11 = So, Som42 = S1,...).
Denote pg = 0, pj = $; + Sit1 + -+ - +Sitj—1 = 1, 2, ..., m). Hence p; = (tiy; — t;)(mod n). Since every siyj > 1, pp > m.
Letj = min{l : pp > m}.Sop; > m,pji-1 <m—1,pj = pj-1 +Siyjy < (m—1) + (m — 1) < 2m — 1. Therefore,
(t; — tiyy) € {£m, £(m+ 1), ..., £(2m — 1)}, which leads to a contradiction. O

Theorem 3. For each integer k > 2, h(4, k) > 9(k — 1).

Proof. Let W be a wheel of order 9. Label W’s center by vy and its neighbors by vy, v, ..., vg. Let H be a graph obtained
from W by adding two edges vivs and v,ve. It is obvious that H does not contain two vertex-disjoint triangles. Set
P(H) = {vs3, vy4, v7, vg}. Let IT; be the set of graphs of order 9(k — 1) such that a graph G belongs to [T, if and only if it
is obtained from k — 1 vertex-disjoint copies Hy, . .., Hy_; of H by adding 2(k — 1) new edges on Ui:l] P(H;) so that these
new edges form a perfect matching. It is easy to check that every graph H belonging to [], is the K; 4-free graph which
contains at most k — 1 vertex-disjoint triangles and §(G) > 4.So h(4,k) > 9(k—1). O

Theorem 4. For each integerst > 5and k > 2,

(4t — 6)(k — 1), if tisodd,
h(t. k) = =(4t —9)(k—1). if tiseven.

Proof. Let G = (k — 1)(K; V Ggm—3.m)- Then |[V(G)| = (8m — 2)(k — 1) and §(G) = 2m + 1. By Lemma 1, G is a Ky 2m+1-
free graph which contains at most k — 1 vertex-disjoint triangles. So h2m + 1, k) > (8m — 2)(k — 1). Lett = 2m + 1.
Then h(t, k) > (4t — 6)(k — 1). Similarly, we put H = (k — 1)(Ky V Hgp—2.m). Then |V(G)| = (8m — 1)(k — 1) and
8(G) = 2m + 2. By Lemma 2, H is a Kj am42-free graph which contains at most k — 1 vertex-disjoint triangles. So we also
have h2m + 2, k) > (8m — 1)(k — 1). Lett = 2m + 2. Then h(t, k) > (4t — 9)(k—1). O

By Theorems 3 and 4, we totally disprove Conjecture 1.

3. An upper bound of h(t, k)

In this section, we continue to consider K; .-free graphs and give an upper bound of h(t, k). First, we introduce a useful
lemma, which is known as Ramsey’s Theorem.

Lemma 5 ([1] (Ramsey’s Theorem)). For any two integers k > 2 andl > 2, R(k, 1) < R(k,1 — 1) + R(k — 1, I). Furthermore, if
R(k,1 — 1) and R(k — 1, I) are both even, then the strict inequality holds.

In [2] (also see page 7 in [3]), Burr et al. proved that R(k,t) > R(k — 1,t) + 2t — 3 for k,t > 3. It follows that
R(3,t) > R(2,t — 1) + 2t — 3 = 3t — 3 for t > 3. So we have the following lemma.

Lemma 6. For each integer t > 4, max { {@J 2t —2,3t—4,3t— 6] <RB,t—1+t—4
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Theorem 7. For each integer t > 4, h(t, k) < g(t)(k — 1) where

(t) = R3,t—1)+t—1, if R(3,t — 1)andt are both even;
gl = R(3,t—1) +t, otherwise.

Proof. If k < 1, the theorem is obvious. So we assume that k > 2. Suppose that the theorem is false. Let s be the greatest
integer such that G contains s vertex-disjoint triangles, say Ty, ..., Ts. Thens < k. Define T = {Ty, ..., Ts},S = Ule V(T;)
and H = G — S. Since G is K; ¢-free and §(G) > ¢, we have that

(1)AH) <t—1,and

(2) every vertex must be contained in a triangle.
By the maximality of s, we have that

(3) any triangle must have at least one vertex in S.
Thus, we can divide V(H) into three disjoint subsets V1, V, and V3 by the following steps. Let x € V(H) and Cy the set of
triangles incident with x. First, if there is a triangle C € Gy, say C = xyzx,and a Ty, € T such thatx,z € V(H) andy € V(Ty),
then we put x into V¢ and say that x is dominated by T,, at y. Otherwise, any triangle containing x must has two vertices
contained in S. Then, if there exist a C € G, say C = xyzx,and a T, € T such thaty, z € V(Ty,), then we put x into V, and
say that x is dominated by Ty, at y and z. Finally, we left the case that for any triangle C € C,, the two vertices in C different
from x must contain in different triangles in T. Thus we choose a triangle C € Cy, say C = xyzx, and two triangles T;,,, T, € T
such thaty € V(T,) and z € V(T,) where 1 < m < n < s. Now we put x into V3 and say that x is dominated by both T;, aty
and T, at z. Moreover, this partition of V (H) should also satisfies

e |V4] is maximum, and subject to the condition,
e |V, is maximum.

Setting this way, we will have V; (| V; = @forany 1 < i < j < 3 and moreover, if two vertices in V, |_J V3 have a common
neighbor in S, they are not adjacent (by the choice of V;’s). In the following, we call a vertex xi-vertex ifx € V; (1 <i < 3)
and always assume that for x € V; [ V,, if there are two or more triangles which can dominate x, we only choose one; and
for x € V3, if it is dominated by at least two pairs of triangles, then we choose only one pair of triangles in T to dominate x.

Let T, = xyzx be a triangle in the set T. For any v € T, we define S;(T,, v) to be the set of i-vertices dominated by T,, at
v and then S;(Ty,) = UveTm Si(Tyn, v), where 1 < i < 3.Then

(4) max{|S;(Tn, X1, 1S3(Tin, V)1, 1S3(Tm, 2)|} < € — 2.

Since if |S3(Tn,x)| > t — 1, that is, x is adjacent to t — 1 3-vertices Xq,...,X_; dominated by T, then
Gl{x, x1, ..., %—1,2}] =~ Kj;, a contradiction. So |S3(Tjp, x)| < t — 2. Similarly, we have |S3(T,,y)| < t — 2 and
|S3(Tp, z)| <t — 2. Hence (4) holds.

(5) I Tl < | 252 .

Since if |Sy(Ty)| > 3“;” , there must exist a vertex, say x, such that T,, dominates at least t 2-vertices at x. Then these

t 2-vertices along with x forms a K ¢, a contradiction.

(6) max{|Sz(Tpm, X) (U S3(Tm, %), 1S2(Ten» ¥) U S3(Tin, )1, 1S2(Trns 2) U S3(Tw, 2} < £ — 1.

Since if [S; (T, X) U S3(Tm, 0| = t, G [{x} [ S2(Tm, %) | S3(Tm, )] 2 K11, a contradiction.

Let v € V; |J V5. If v is dominated by some T, € T, then we define a(v, T,;) = 1. Otherwise, we define a(v, T,,) = 0. Let
v € V3 and v is dominated by two triangles T; = xyzx and T; = abca at x and g, respectively. If max{|S:(T;, ¥)|, [S1(T;, 2)[} > 1
and S1(Tj;, b) = S1(Tj, ¢) = 0, we define a(v, Tj) = 1and a(v, T;,) = 0 for all m # j. Otherwise, we define a(v, T;)) =
a(v,T)) = 3 anda(v, T,) = Oforanym € {1,2,...,s}\ {i.j}.

For each T, € T, we define its dominatingcapacity ca(T,;) = erv(H) a(x, Tp). Since any vertex in V(H) is dominated
bysome T; € T, i ca(Ty) = Y i Y vevan A% T) = D ey iz AX.T) = [VH)| = gO)(k — 1) +1—3s >
(g(t) — 3)s + 1. This implies that there is a triangle T,, say T, = xyzx, such that ca(T,) > g(t) — 3 forsome 1 < @ <s.

Case 1. T,, dominates no 3-vertices.
Suppose T, dominates no 1-vertices, then by (5) and Lemma 6, we have ca(T,) < L@J <R@G,t—1)+t—4 < g(t)-3.

So without loss of generality, we can assume x; is a 1-vertex dominated by T, at x. Then by the definition of Vy, there
exists another vertex x, € V;p such that xx, x;x, € E(G). By the maximality of s, if v is a 2-vertex dominated by T, we
must have vx € E(G). Suppose S1(Ty, ¥) | S1(Tw, 2) € N(x), then ca(T,) < A(G) —2 < R(3,t) —3 < g(t) — 3 by
Lemma 5, a contradiction. So without loss of generality, we can assume that S;(T,, y) \ N(x) # @. This implies that there
exists a 1-vertex dominated by T, at y, say y4, such that yy; € E(G) and xy; & E(G). At the same time, there also exist
another vertex y, € V; such that yy,,y1y. € E(G). By the maximality of s, we must have y, € {x;, x,}. Without loss
of generality, we assume y, = x; which implies X1y, x;y € E(G). By the maximality of s, we have S,(T,, z) = #. Since
vy1 € E(G) forany v € $3(Tw, ), [S2(To)| = [S2(Te, )| < t — 2. Suppose S1(Ty,2) # B or S1(Te, %) \ {X1, X2} # 9,
then for any 1-vertex v dominated by T,, we must have vx; € E(G). For otherwise, we can replace T, with two new
vertex-disjoint triangles which are also vertex-disjoint to any triangle in T \ {T,}, a contradiction. Since dy(x{) < t — 1
by (1),51(Ty) <t —14+1 = t.Soca(Ty) = |S1(Te)| + 1S2(Ty)| <t +t—2 = 2t —2 < g(t) — 3 by Lemma 6,
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a contradiction. So S1(Ty,z) = S1(Ty, %) \ {X1,%} = 0. By the maximality of s, S1(T,, y) \ {x1, xo} along with z forms
an independent set in G, so |S1(Ty,y) \ {x1,%}| < t — 2 which implies $1(T,) < t —2 4+ 2 = t. So we also have
ca(Ty) = |S1(T)| + 1S2(Ty)| <t +t—2 =2t —2 < g(t) — 3 by Lemma 6, a contradiction.

Case 2. T,, dominates a 3-vertex at x and S1(T,, y) = $1(Ty, z) = 0.

Suppose S1 (T, x) # @. Select u € S3(Ty, X). Set L = G[Ny (x) [ J{x, y, z}/{u}]. Then L is a K ;_;-free graph, for otherwise,
there must exist an independent set M C V(L) of size t — 1, then G[M [ J{x, u}] >~ K, a contradiction. By the maximality
of s,L 2 2Cs. It follows that dy(x) = d(x) + 1 —2 < R(3,t — 1) — 2. Since S1(T,,x) # ?,a(w,T,) < % for any
w € S3(Ty, ¥) U S3(T,, z) and there is no vertex v € V5 such that vy, vz € E(G). Thatis, S2(Ty, ¥) | S2(Ts, z) € N(x).By (4),
we have |S3(Ty, y)| < t—2and |S5(T,, z)| < t—2.Thenca(T,) < dH(x)—|—%(t—2)+%(t—2) <R@B,t—1)+t—4 <g()-3,
a contradiction. So S;(T,, x) = @.

Suppose |S,(T,)| = 0, then by (4), we have max{|S3(Ty, X)|, |S3(Te, ¥)|, |S3(Ty, 2)|} < t — 2. This implies ca(T,) <
3(t —2) < g(t) — 3 by Lemma 6, a contradiction. So |S,(T,)| = m > 0. Without loss of generality, we can select a vertex
w € S,(T,) such that wy, wz € E(G). Now, we claim that a(v, T,) = % for any v € S3(T,, x). By the definition of V3,
for such a v, there exists another triangle, say T, = dpqd, such that v is dominated by T, at d. Then by the maximality
of s, we must have S;(T,, p) = Si(T,, q) = ¢. By the definition of the function a(, -), we have a(v,T,) = % since
S1(Ty,y) = S1(To, 2) = D. Let |S,(Ty, X)| = ay, [S2(To, ¥)| = a, and |S,(Ty, 2)| = a,, then a, + a, + a, = 2m. By (6),
we also have [S3(Ty, X)| <t —1—ay, |S3(Ty, ¥)| <t —1—ayand [S3(Ty, 2)| <t —1—a,.Supposem > 2,thena, +a, > 3
andca(T,) < m+3(t—1—a)+(t—1—a)+(t—1-a;) = 3(t—1)—3(ay+a,) < 3t—4 < g(t)—3,a contradiction. So we
havem = 1and thena, = 0, a, = a, = 1, whichimplies ca(T,) < 143 (t—2)+(t—2)+(t—2) = 3(t—1)—4 < g(t) -3,
a contradiction.

Case 3. T,, dominates a 3-vertex at x but S1(T,, y) # @ (the case when S{(Ty, z) # @ is similar).

Select u € S3(T,, x), then by the definition of V3, there exists another triangle, say Tg = abca, such that u € S3(Tg, a).
That is, xa, xu, au € E(G). Choose y; € S{(T,,y). Then a(w,T,) < % for any w € S3(Ty, X) | S3(Ta, ). Suppose
max{|S1(Tg, b)|, IS1(Tg, ¢)|} > 1. Without loss of generality, we assume [S1(Tg, b)| > 1and by € S;1(Tg, b). Then by the
definition of Vy, there exist a vertex y, € N(y) and b, € N(b) such that y1y, € E(G), b1b, € E(G).

Set U = {y1, y2} [U{b1, b2}. Then by the maximality of s, we have

(@ul =3

(b) There is no vertex v € V(H) \ U such that vx, vz € E(G) or vy, vz € E(G). In particular, Sy(Ty, ) [ ) S2(Ta, z) = ¥ and
SZ(TO(’ y) ﬂ SZ(TCH Z) = @-

(&) {zZ}UNu) \ U, {z} UNu () \ {b1, b2}, {x} UNu(z) \ U are three independent sets. In particular, max{|Ny(x) \

Ul, INu@) \ {b1, bo}l, INy(2) \ U} <t — 2.
Next, we claim that |S;(T,)| < t — 1. First, we consider the case when |U| = 2. Suppose S1(T,, x) # @ (the case when
S1(Ty, z) # @ is similar). If S1(T,,y) \ U # @ or S1(T,, z) # ), then every vertex in S;(T,) \ U must be adjacent to the
same vertex in U. Since A(H) < t — 1by(1)and b; & S$1(Ty), [S1(Ty)| < t — LU S1(Te,y) \ U = S1(Ty,2) = 0,
then by (c) we have [Ny(x) \ U| < t — 2 since G is a Kj(-free graph. Note again that b; ¢ 5;(T,), we also have
IS1(Ty)] <t —2+1 =t — 1.So we assume S;(T,, x) = S1(Ty,z) = @. Then by (c), we have [Ny(y) \ {b1, b2} <t —2
which implies [S1(Ty)] < t —2+4+ 1 = t — 1since by ¢ S1(T,). Second, we consider the case when |[U| = 3. Since
U] = 3, [{y1,¥2} ({b1, b2}| = 1. Let v € {y1,y2} [ \{b1, b2}. Then by the maximality of s, every vertex in S;(T,) \ U must
be adjacent to v. Since dy(v) <t — 1by(1)and by & S1(T,), |S1(Ty)| <t — 1.

Let |S1(Ty,x) \ U| = by, [S1(Ty,y) \ Ul = by, |S1(Ty,z) \ U] = b, and |S2(T,)| = m. Note that by ¢ S1(T,) and
Ul < 3, we have |U()S1(T,)| < 2. This implies |S1(Ty)| — 2 < by + by + b, < |S1(Ty)| — 1. By (b) and (c), we have
[S3(Te, X)| < t —2 —m — byand [S3(Ty,2)| < t — 2 — b,. Suppose by + b, + b, = [S1(T,)| — 1, then by (c), we also
have [S5(T,.y)| < t —2 — m — by. This implies ca(T,) < [S;(T,)| +m + =2 4 (¢ —2 —m — b)) + =2 <
% +142(t—-2) < %t — 4 < g(t) — 3 by Lemma 6, a contradiction. So by + b, + b, = [S1(T)| — 2 which
implies |[U| = 3. By (c), we have [Ny(y) \ U| < [Ny() \ {b1,b2}| —1 <t — 3 and then |S3(T,,y)| <t —3 —m — b,.So
ca(Ty) < IS1(T)| +m+ 5250t 4 (¢ =3 —m— b))+ 5P < =2 4 94 2t 5 < 3t — 4 < g(t)— 3byLemma6,a
contradiction.

So for any 3-vertex v € S3(Ty, x) where T, = xyzx, max{|S1(Ty, ¥)|, |S1(Ty, z)|} > 1 and there must exist a triangle
Tg = abca such that v € S3(Tg, a) and |S1(Tg, b)| = [S1(Tg, c)| = 0. Then for any v € S3(Ty), a(v, To) = 0. By the similar
proof as in Case 1, we also have ca(T,) < g(t) — 3, a contradiction.

Hence, for each integer t > 4,

hit. k) < (R3,t—1)+t—1)(k—1), ifR@3,t—1)andt are both even;
= 1R@B, t—=1)+t)(k—1), for otherwise.

We complete the proof of the theorem. O

By Theorems 3, 4 and 7, we have the following result.

Corollary 8. h(4, k) = 9(k — 1) and h(5, k) = 14(k — 1).
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4. Conclusions

In Section 2, we constructively obtain a lower bound of h(t, k). We firstly construct a K; ;-free graph (in fact, a graph
with independent number no more than t — 1) with minimum degree at least t but containing at most one vertex-disjoint
triangle, then we make k — 1 copies of it. The resulting graph just implies the lower bound of h(t, k). In view of this, consider
a (3, t)-Ramsey graph R (that is a triangle-free graph with its independent number no more than t — 1). The join graph
K7 vV Rmust be a K; ;-free graph on R(3, t) vertices but containing at most one vertex-disjoint triangle. But we do not know
whether §(K; vV R) > t or not. In particular, we have the following question.

Question 1. Does there exist a (3, t)-Ramsey graph R such that §(R) >t — 1?

If such a graph R do exist, then (k — 1)(K; V R) is a Ky (-free graph on R(3, t)(k — 1) vertices but containing at most k — 1
vertex-disjoint triangles. This implies h(t, k) > R(3, t)(k — 1). This lower bound seems more beautiful and reasonable, but
whether it is proper is still unknown. Note that R(3, 3) = 6, R(3,4) = 9and R(3,5) = 14 (see [1] on page 106). Wang [5]
proved h(3, k) = 6(k — 1) = R(3, 3)(k — 1). In Section 3, we prove h(4, k) = R(3, 4)(k — 1) and h(5, k) = R(3, 5)(k — 1).
These results imply that the answer of the above question is “yes” for 3 < t < 5. Thus we pose the following conjecture to
end this paper.

Conjecture 2. For each integer t > 3, h(t, k) = R(3,t)(k — 1).
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