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1. Definition

� The concept of transfer function is a 
generalization of the frequency response

� The z-transform H(z) of the impulse 
response h(n) of the filter is called the 
transfer functiontransfer function or the system functionsystem function

� The transfer function is derived through the 
method similar to that of the frequency
response
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1. Definition
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1. Definition

Example 1Example 1

� Consider the M-point moving average FIR
filter with an impulse response

� Its transfer function is then given by
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1. Definition

� The transfer function has M zeros on the unit 
circle at

� There are poles at z = 0 and a single pole at
z = 1

2 / , 0,1, 2, , 1j k Mz e K M�� � ��

The pole at z = 1
exactly cancels the 
zero at z = 1.  The 
ROC is the entire 
z-plane except z =
0
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1. Definition

Example 2Example 2
� A causal LTI IIR digital filter is described 

by a constant coefficient difference equation, 
given by

� Its transfer function is therefore given by
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1. Definition

Note:Note: Poles farthest from z = 0 have a 
magnitude ROC:0.74 0.74z �
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2. Frequency Response from Transfer 
Function

� If the ROC of the transfer function H(z)
includes the unit circle, then the frequency 
response             of the LTI digital filter can
be obtained simply as follows:

� For a real coefficient transfer function H(z) ,
it can be shown that
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2. Frequency Response from Transfer 
Function

� For a stable rational transfer function in the 
form

� The factored form of the frequency response 
is given by
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2. Frequency Response from Transfer 
Function

� It is convenient to visualize the contributions 
of the zero factorzero factor and the polepole
factorfactor from the factored form of 
the frequency response. The magnitude 
function is given by
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2. Frequency Response from Transfer 
Function

� The phase response for a rational transfer 
function is of the form
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3. Geometric Interpretation of 
Frequency Response Computation
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3. Geometric Interpretation of 
Frequency Response Computation

� Thus, an approximate plot of the magnitude 
and phase responses of the transfer function 
of an LTI digital filter can be developed by 
examining the pole and zero locations

� Now, a zero (pole) vector has the smallest 
magnitude when =
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3. Geometric Interpretation of 
Frequency Response Computation

� To highly attenuate signal components in a 
specified frequency range, we need to place
zeros very close to or on the unit circle in
this range.

� Likewise, to highly emphasize signal
components in a specified frequency range, 
we need to place poles very close to or on 
the unit circle in this range.
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4. Stability Condition in Terms of 
Poles Locations

� A causal LTI digital filter is BIBO stable if 
and only if its impulse response h(n) is
absolutely summable, i.e.,

� We now develop a stability condition in terms 
of the pole locations of the transfer function 
H(z)
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4. Stability Condition in Terms of 
Poles Locations

� The ROC of the z-transform H(z) of the 
impulse response sequence h(n) is defined by 
values of |z|=r for which h(n)r-n is absolutely 
summable

� Thus, if the ROC includes the unit circle |z|= 1,
then the digital filter is stable, and vice versa

� For LTI system causality we require that 
h(n)=0,for n <0. This implies that the ROC of 
H(z) must be outside some circle of radius Rx-
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4. Stability Condition in Terms of 
Poles Locations

TheoremTheorem
A causality LTI system is stable if and only if the A causality LTI system is stable if and only if the 
system function system function H(z) has all its poles inside the unit has all its poles inside the unit 
circle. It is a easy way to judge the causality and circle. It is a easy way to judge the causality and 
stability of an LTI system. So, the ROC will include stability of an LTI system. So, the ROC will include 
the unit circle and entirethe unit circle and entire zz--plane including the pointplane including the point

� An FIR digital filter with bounded impulse 
response is always stable

z � �
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4. Stability Condition in Terms of 
Poles Locations

Proof:Proof: (reduction to absurdity)
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4. Stability Condition in Terms of 
Poles Locations

ExampleExample
Under what conditions, the following system is
stable or causal ?

� Solution:

Step 1Step 1-----Determine the zeros and poles of H(z)
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4. Stability Condition in Terms of 
Poles Locations

Step 2----plot the zeros and poles on the z-plane

ROC1={|z|<0.5}
—Blue Area

ROC2={0.5<|z|<2}
—yellow Area

ROC3={|z|>2}
—Green Area

1
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1/2 2

zero poles

Step 3Step 3-----Determine
all possible ROCs
according to the 
distribution of the 
zeros and poles
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4. Stability Condition in Terms of 
Poles Locations

Step4Step4-----Discuss the system’s stability and causality

Case 1: ROC1={|z|<0.5} Because the unit circle does 
not lie in this area and the ROC is inside of the 
circle with radius 0.5, the system is anti-causal and 
unstable.

Case 2: ROC2={0.5<|z|<2} Because the unit circle lies 
in this area and the ROC is an annulus bounded by 
0.5 and 2 , the system is anti-causal and stable.

Case 3: ROC3={|z|>2} Because the unit does not lie in 
this area and the ROC is outside of the circle with 
radius 2, the system is causal and unstable.


