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e Digital processing of a continuous-time signal
involves the following basic steps:

(1) Conversion of the continuous-time signal
into a discrete-time signal,

(2) Processing of the discrete-time signal,

(3) Conversion of the processed discrete-time
signal back into a continuous-time signal

e Conversion of a continuous-time signal into
digital form is carried out by an analog-to-
digital (A/D) converter

e The reverse operation of converting a digital
signal into a continuous-time signal is
performed by a digital-to-analog (D/A)
converter

e Since the A/D conversion takes a finite
amount of time, a sample-and-hold (S/H)
circuit is used to ensure that the analog signal
at the input of the A/D converter remains
constant in amplitude until the conversion is
complete to minimize the error in its
representation

e To prevent aliasing, an analog anti-aliasing
filter is employed before the S/H circuit.
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e S/H circuit often consists of a capacitor to
store the analogue voltage, and an electronic
switch or gate to alternately connect and
disconnect the capacitor from the analogue
input.

e An anti-aliasing filter is a filter used before a signal
sampler, to restrict the bandwidth of a signal to
approximately satisfy the sampling theorem. Since
the theorem states that unambiguous interpretation of
the signal from its samples is possible only when the
power of frequencies outside the Nyquist bandwidth
is zero, the anti-aliasing filter would have to have
perfect stop-band rejection to completely satisty the
theorem. Every realizable anti-aliasing filter will
permit some aliasing to occur; the amount of aliasing
that does occur depends on how good the filter is.
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e To smooth the output signal of the D/A
converter, which has a staircase-like
waveform, an analog reconstruction filter is
used.

e The complete block-diagram is shown blew

Anti-aliasing
filter
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2. Sampling of Continuous-Time §
Signals :

e Since both the anti-aliasing filter and the
reconstruction filter are analog lowpass
filters, we will review the theory behind the
design of such filters in this chapter

e Also, the most widely used IIR digital filter
design method is based on the conversion of
an analog lowpass prototype

e As indicated earlier, discrete-time signals in
many applications are generated by sampling
continuous-time signals

e It is obvious that identical discrete time
signals may result from the sampling of more
than one distinct continuous-time function

e In fact, there exists an infinite number of
continuous-time signals, which when sampled

lead to the same discrete-time signal
"

2. Sampling of Continuous-Time §
Signals :

Amplitude
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e However, under certain conditions, it is
possible to relate a unique continuous-time
signal to a given discrete-time signals

e If these conditions hold, then it is possible to
recover the original continuous-time signal
from its sampled values

e We next develop this correspondence and the
associated conditions
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e Let g (7) be a continuous-time signal that is
sampled uniformly at # = n7, generating the
sequence g(n) where g(n)= g, (nT) with T
being the sampling period

e The reciprocal of 7 'is called the sampling
frequency Fr,ie., F, =1/T

e Now, the frequency-domain representation of
g,(?) is given by its continuous-time Fourier
transform (CTFT):
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G,(jQ) = g, (e ™dr
e The frequency-domain representation of g(#)
is given by its discrete-time Fourier transform

(DTFT): ooy i e

e To establish the relation between G,(jQ) and
G(e'”), we treat the sampling operation
mathematically as a multiplication of g (¢) by
a periodic impulse train p(?):

2.1 Effect of Sampling in the Frequency
Domain

e p(f) consists of a train of ideal impulses with a
period 7T as shown below
p(0)

S e TR

7T |0 T 2T

e The multiplication operation yields an
impulse train:

g, (0=g.(0p()= Y g, (nT)5(t~nT)

n=—0n

2.1 Effect of Sampling in the Frequency
Domain

e g (?) is a continuous-time signal consisting of
a train of uniformly spaced impulses with the
impulse at 7 = nT weighted by the sampled
value g (nT) of g () at that instant
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\
e There are two different forms of G, (jQ2):

e One form is given by the weighted sum of the
CTFTs of 6(t—nT): - .
G,(jQ) = g,(nT)e ™"

e To derive the second farm, we note that p(7)
can be expressed as a Fourier series:

1 & fz—”k/ 1 & .
p t)=— e T —_ e‘/QTk!
where () T k;o ) T ,Z;
T
QT = 18

T




2.1 Effect of Sampling in the Frequency
Domain

e The impulse train g,(7) therefore can be

expressed as | &=

jQp ki

5015 e
k=—o

e From the frequency-shifting property of the
CTFT, the CTFT of ¢/*"g (¢) is given by
G, (j(Q-kQy))
e Hence, an alternative form of the CTFT of
is given by | &
G, ()= 2, G,((Q-k))
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o Therefore, G (jQ)is a periodic function of ()
consisting of'a sum of shifted and scaled
replicas of G, (jQ) , shifted by integer
multiples of ), and scaled by 1/T

e The term on the RHS of the previous equation
for k=0 is the baseband portion of G, (jQ),
and each of the remaining terms are the
frequency translated portions of G, ()
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e The frequency range - /2<Q<Q_/2is
called the baseband or Nyquist band

e The above result is more commonly known as
the sampling theorem:

o Let g (¢) be a band-limited signal with G, (jQ) =0
for|Q| > Q, , then g (7) is uniquely determined
by 1its samples g (n7), —o0 < 5 < c0,if
Q'I' Z 2Qm Where QT = 277[
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2.1 Effect of Sampling in the Frequency
Domain

\
e Illustration of the frequency-domain effects of
time-domain sampling
G,(j), ‘ P(jQ)
1

@ 1T e

Q
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G, (/)
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G,(j)
1T Q,-Q,
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2.1 Effect of Sampling in the Frequency
Domain

o m=mp If QO >20Q) ,g,(f) canbe recovered
exactly from g (7) by passing it through an
ideal lowpass filter /() with a gain 7 and
a cutoff frequency () greater than (3 and
less than 3, — Q) as shown below

2,(0) ;
2.0 X &t H.(jQ) 2,0

()

23
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e The spectra of the filter and pertinent signals

are shown below
G,(j)

1T Q.-0,

\ ‘ S

.
0 9, Q; 20,

H.(jQ)

Q,
T
Q,<Q <(Q,-Q,)
Q
0 .

0 <
N o
o, 24
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e On the other hand, if Q, <2Q , due to the
overlap of the shifted replicas of G (;Q) , the
spectrum G (jC2) cannot be separated by
filtering to recover because of the distortion
caused by a part of the replicas G _(jQ)
immediately outside the baseband folded back
or aliased into the baseband.

e Several terms:
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2.1 Effect of Sampling in the Frequency | %%

Domain
\
Q220 Nyquist condition
Q,/2 Folding frequency
Q, Nyquist frequency
20, Nyquist rate
When Q,>2Q Oversampling
When Q <2Q Undersampling

When O, =20

Critical sampling

Note: A pure sinusoid may not be recoverable from its

critically sampled version
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2.1 Effect of Sampling in the Frequency | %%
Domain H

Example 1

e In high-quality analog music signal
processing, a bandwidth of 20 kHz has been
determined to preserve the fidelity (PR3 %)

e Hence, in compact disc (CD) music systems,
a sampling rate of 44.1 kHz, which is slightly
higher than twice the signal bandwidth, is
used
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2.1 Effect of Sampling in the Frequency | #¢¢
Domain :

Example 2

e Consider the three continuous time sinusoidal
signals:

g,(t) =cos(67t), g, (t) = cos(14rt), g,(t) = cos(267t)

e Their corresponding CTFTs are:

G,(JQ) = 7[5(Q—67)+5(Q+67)]
G,(jQ) = 7[6(Q-147) + 5(Q+147)]
G,(jQ) = 7[5(Q-267)+5(Q+267)|
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2.1 Effect of Sampling in the Frequency | #2:°
Domain
\
e These three transforms are plotted below
G.(/)
: Q
-6 0 61
G,
s
: Q
—14x 0 14z
G,
s
: { Q
267 0 26 29

2.1 Effect of Sampling in the Frequency | %%
Domain :

e These continuous-time signals sampled at a
rate of 7= 0.1 sec, i.e., with a sampling
frequency Q. =207 rad/sec

e The sampling process generates the
continuous-time impulse trains, g,,(7), &, (1),
and g, (7)

e Their corresponding CTFTs are given by

G,(jQ) =10 G,(j(Q-kQ,)), 1<I<3

f—s
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2.1 Effect of Sampling in the Frequency | %%
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e Plots of the 3 CTFTs are shown below

G,UM i
L jdoz ,(/?)

Spectrum ! The cutoff

lines painted ~a! o frequency

by Red and 20 of the

Green colors lowpass

designate . . "oz H,(jQ) filter is

aliases : : 01 chosen as
; s B ‘ el ‘ o Q =107

207 14z -6z ol 67 147 207 3ar

G"‘(‘/Qio” 1,69

SR AN

N

2.1 Effect of Sampling in the Frequency | %%
Domain H

2.1 Effect of Sampling in the Frequency | %%
Domain H

407 267 20r 670l o1 207 267 407 31 Q

e We now derive the relation between the
DTFT of g(n) and the CTFT of g,(7)

e To this end we compare

Ge)= Y glme

with n=—0
G,(jQ) = g,(nT)e’™"
and make use of "7
gn)=g,(nT) —o<n<w
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e Observation: We have
G(e”) =G, (jQ)|
or, equivalently,
GP (JQ) = G(ejw)L):QT
e From the above observation and

G, (/)= 3 G,(/@-k0,)

Q=w/T
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2.1 Effect of Sampling in the Frequency
Domain

e We arrive at the desired result given by

G(ef‘”):% 3 Ga(jQ—ijT)

Q=w/T
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2.1 Effect of Sampling in the Frequency | %%
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Domain :

e The relation derived on the previous slide can
be alternately expressed as

G(e™") =% i G, (jQ- jkQ,)
k=-

form G(e”)=G, (jQ)‘Q:fu/T

or from G,, (jQ) = G(e-’”)

0=QT
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e It follows that G(¢/”)is obtained from G (jQ2)
by applying the mapping Q = /T

e Now, the CTFT G, (jQ)is a periodic function
of O with a period Q, =27/T

e Because of the mapping, the DTFT G(e’”) is
a periodic function of ¢ with a period 2

36




2.2 Recovery of the Analog Signal

e We now derive the expression for the output
g,(?) of the ideal lowpass reconstruction
filter H_(;jQ)as a function of the samples g(r)

e The impulse response /,(7) of the lowpass
reconstruction filter is obtained by taking the
inverse DTFT of :

, T, |9<Q,
H,(jQ)=

0, >0,
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2.2 Recovery of the Analog Signal

e Thus, the impulse response is given by

1 p» . T o
ht)=—| H.(jQ)e™™dQ=—|" &dQ
(1) ML,U) MJL

—

sin(Q2 1)
=) _w<t<w
Q.t/2
e The input to the lowpass filter is the impulse
train g (f) o
" g, )= g(ms(t—nT)
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2.2 Recovery of the Analog Signal

o Therefore, the output g (7)of the ideal
lowpass filter is given by:

8,0 =g,(0)xh(t)= Y gmh,(t-nT)
e Substituting 4 (1) =sin(Q,7)/Q,/2 in the
above and assuming Q =Q /2 =7 /T for
simplicity, we get

5 (N S (Sl —nT)/T]
g(,(t)f';cg(n) 2 —nT)/T
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2.2 Recovery of the Analog Signal

e [t can be shown that when QO =), /2 in

h () = sinQ ¢
Q.t/2
h,(0)=1 and h,(nT)=0 for n#0
e As aresult, from © .
> sin[z(t—nT)/T
g,(0= g(nSnr=rT)/T]
o z(t—-nT)/T

we observe ¢ (rT) = g(r)=g,(T)
for all integer values of  in the range —o < r < o0
40

2.2 Recovery of the Analog Signal

e The relation g, (vT) = g(r) = g,(rT) holds
whether or not the condition of the sampling
theorem is satisfied

e However, g (¢)=g,(¢) for all values of # only
if the sampling frequency () satisfies the
condition of the sampling theorem
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2.3 Implication of the Sampling Process

e Consider again the three continuous-time
signals: g, (¢) = cos(671) , g, (¢) = cos(14xt) ,
and g,(¢) = cos(267t)

e The plot of the CTFTG, , (j€2)of the sampled
version of g,(7) is shown below

) G;,,(IQ)II() H (jQ)

7

ofF [/
1 —Qé, ‘ EQJ 1
207 -6z ol 6z 207
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2.3 Implication of the Sampling Process

e From the plot, it is apparent that we can
recover any of its frequency-translated
versions cos| (20k % 6) 71 |outside the
baseband by passing through an ideal analog
bandpass filter g, (7) with a passband centered
at QO =(20k+6)x

e For example, to recover the signal cos(34 1),
it will be necessary to employ a bandpass
filter with a frequency response

0.1, G4-Az<|QLB4+HA)
Hr(jg)_{ (34-A)z <[ < (3444

0 otherwise A small nudhber
b

2.3 Implication of the Sampling Process

e Likewise, we can recover the aliased
baseband component cos(67¢) from the
sampled version of either g, (7) or g; (1) by
passing it through an ideal lowpass filter with
a frequency response:

H. () = {0.1, 0<|Q<(6+HA)x

0, otherwise
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2.3 Implication of the Sampling Process

e There is no aliasing distortion unless the
original continuous-time signal also contains
the component cos(67¢)

e Similarly, from either g, () or g;,(7) we can
recover any one of the frequency-translated
versions, including the parent continuous-time
signal cos(14mf) or cos(26mr) as the case may
be, by employing suitable filters
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3. Sampling of Bandpass Signals
[

e The conditions developed earlier for the
unique representation of a continuous-time
signal by the discrete-time signal obtained by
uniform sampling assumed that the
continuous-time signal is bandlimited in the
frequency range from dc to some frequency

e Such a continuous-time signal is commonly
referred to as a lowpass signal

46

3. Sampling of Bandpass Signals
[

e There are applications where the continuous-
time signal is bandlimited to a higher
frequency range QQ, < |Q| <Q,with Q, >0

e Such a signal is usually referred to as the
bandpass signal

e To prevent aliasing a bandpass signal can of
course be sampled at a rate greater than twice
the highest frequency, i.e. by ensuring
Q, 220,
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3. Sampling of Bandpass Signals
[

e However, due to the bandpass spectrum of the
continuous-time signal, the spectrum of the
discrete-time signal obtained by sampling will
have spectral gaps with no signal components
present in these gaps

e Moreover, if Q) , is very large, the sampling
rate also has to be very large which may not
be practical in some situations
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3. Sampling of Bandpass Signals | :

e A more practical approach is to use under-
sampling

o Let AQ=0Q, —Q, define the bandwidth of the
bandpass signal

e Assume first that the highest frequency ),
contained in the signal is an integer multiple
of the bandwidth, i.e.,

Q, = M(AQ)
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3. Sampling of Bandpass Signals | :

e We choose the sampling frequency Q) to
satisfy the condition
20,

Q, =2(A0) ==

which is smaller than 20

the Nyquist rate

H’
e Substitute the above expression for Q) in

N R D
GP(JQ):?ZGH(]Q—]kQI.)

k=—0
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3. Sampling of Bandpass Signals | :
[

e This leads to G (j€2) :% DG, (jQ- j2k(AQ))

e As before, G (/) consists of a sum of G,(jQ)
and replicas of G, (jQ) shifted by integer
multiples of twice the bandwidth AQ and
scaled by 1/T

e The amount of shift for each value of &
ensures that there will be no overlap between
all shifted replicas w120 aliasing
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3. Sampling of Bandpass Signals | :
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e Figure below illustrates the idea behind

G,(JQ)
/ \ Q
-0, - 0 Q 9
G,(jQ)
Q
-Q, -Q 0 o, Q
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3. Sampling of Bandpass Signals | :
[

e As can be seen, g (f) can be recovered from
g,(?) by passing it through an ideal bandpass
ilter with a passband given by Q, <|Q[< Q)
and a gain of 7
e Note: Any of the replicas in the lower
frequency bands can be retained by passing
g,(t) through bandpass filters with passbands
Q, —k(AQ) < iQ‘ <Q, —k(AQ), providing a
translation to lower frequency ranges 1 <k < M —1
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