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1. Introduction

� Digital processing of a continuous-time signal 
involves the following basic steps:involves the following basic steps:
(1) Conversion of the continuous-time signal 
into a discrete-time signal,
(2) Processing of the discrete-time signal(2) Processing of the discrete time signal,
(3) Conversion of the processed discrete-time 
i l b k i t ti ti i lsignal back into a continuous-time signal
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1. Introduction

� Conversion of a continuous-time signal into 
digital form is carried out by an analoganalog totodigital form is carried out by an analoganalog--toto--
digital (A/D) converterdigital (A/D) converter

� The reverse operation of converting a digital 
signal into a continuous-time signal is 
performed by a digitaldigital--toto--analog (D/A) analog (D/A) 
converterconverter
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1. Introduction

� Since the A/D conversion takes a finite 
amount of time a samplesample andand hold (S/H)hold (S/H)amount of time, a samplesample--andand--hold (S/H) hold (S/H) 
circuitcircuit is used to ensure that the analog signal 
at the input of the A/D converter remainsat the input of the A/D converter remains 
constant in amplitude until the conversion is 

l t t i i i th i itcomplete to minimize the error in its 
representation

� To prevent aliasingaliasing, an analog antianti--aliasing aliasing 
filterfilter is employed before the S/H circuit.
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1. Introduction

� S/H circuit often consists of a capacitor to 
store the analogue voltage and an electronicstore the analogue voltage, and an electronic 
switch or gate to alternately connect and 
di h i f h ldisconnect the capacitor from the analogue 
input.
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1. Introduction

� An anti-aliasing filter is a filter used before a signal 
sampler, to restrict the bandwidth of a signal to p , g
approximately satisfy the sampling theorem. Since 
the theorem states that unambiguous interpretation of 
h i l f i l i ibl l h hthe signal from its samples is possible only when the 

power of frequencies outside the Nyquist bandwidth
is zero the anti aliasing filter would have to haveis zero, the anti-aliasing filter would have to have 
perfect stop-band rejection to completely satisfy the 
theorem Every realizable anti-aliasing filter willtheorem. Every realizable anti aliasing filter will 
permit some aliasing to occur; the amount of aliasing 
that does occur depends on how good the filter is. 
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1. Introduction

� To smooth the output signal of the D/A 
hi h h i likconverter, which has a staircase-like 

waveform, an analog reconstruction filteranalog reconstruction filter is 
dused.

� The complete block-diagram is shown blewp g

Anti-aliasing S/H A/D D/ADigital Reconstruction
filter S/H A/D D/AProcessing filter
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1. Introduction

� Since both the anti-aliasing filter and the 
i fil l ll lreconstruction filter are analog lowpassanalog lowpass

filtersfilters, we will review the theory behind the 
d i f h fil i hi hdesign of such filters in this chapter

� Also, the most widely used IIR digital filter , y g
design method is based on the conversion of 
an analog lowpassanalog lowpass prototypeprototypean analog lowpassanalog lowpass prototypeprototype
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2. Sampling of Continuous-Time 
Signals

� As indicated earlier, discrete-time signals in 
many applications are generated by samplingmany applications are generated by sampling 
continuous-time signals

� It is obvious that identical discrete time 
signals may result from the sampling of more 
than one distinct continuous-time function

� In fact there exists an infinite number of� In fact, there exists an infinite number of 
continuous-time signals, which when sampled 
lead to the same discrete-time signal
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lead to the same discrete-time signal

2. Sampling of Continuous-Time 
Signals
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2. Sampling of Continuous-Time 
Signals

� However, under certain conditions, it is 
possible to relate a unique continuous timepossible to relate a unique continuous-time 
signal to a given discrete-time signals

� If these conditions hold, then it is possible to 
recover the original continuous-time signal 
from its sampled values

� We next develop this correspondence and the� We next develop this correspondence and the 
associated conditions
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� Let ga(t) be a continuous-time signal that is 
sampled uniformly at t = nT generating thesampled uniformly at t  nT, generating the 
sequence g(n) where g(n)= ga(nT) with T
being the sampling periodsampling periodbeing the sampling periodsampling period

� The reciprocal of T is called the sampling sampling 
ff F ifrequencyfrequency FT , i.e.,

� Now, the frequency-domain representation of 
1/TF T�

, q y p
ga(t) is given by its continuous-time Fourier 
transform (CTFTCTFT):
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transform (CTFTCTFT):

2.1 Effect of Sampling in the Frequencyp g q y
Domain

( ) ( ) j t
a aG j g t e dt

� � �

��
� � �

� The frequency-domain representation of g(n) 
is given by its discrete-time Fourier transform 
(DTFTDTFT): ( ) ( )j j n

n
G e g n e� �

�
�

� �

� �
� To establish the relation between              and 

, we treat the sampling operation 

n���
( )aG j�

( )jG e � , p g p
mathematically as a multiplication of ga(t) by 
a periodic impulse trainperiodic impulse train p(t):

( )G e
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a pe od c pu se t ape od c pu se t a p(t):

2.1 Effect of Sampling in the Frequencyp g q y
Domain

� p(t) consists of a train of ideal impulses with a 
i d T h b lperiod T as shown below

(t) g (t)

p(t)

ga(t)

p(t)

gp(t) … …
t

0 T 2T2T T

� The multiplication operation yields an 
impulse train:

p(t) 0 T 2T2T T

impulse train:
( ) ( ) ( ) ( ) ( )p a ag t g t p t g nT t nT	

�

� � ��
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� ga(t) is a continuous-time signal consisting of 
i f if l d i l i h ha train of uniformly spaced impulses with the 

impulse at t = nT weighted by the sampled 
l ( T) f ( ) h ivalue ga(nT) of ga(t) at that instant

ga(t)
gp(t)

ga(t)

0 t 0 t
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� There are two different forms of             :
� One form is given by the weighted sum of the

( )pG j�
� One form is given by the weighted sum of the 

CTFTs of                :( )t nT	 �
( ) ( ) j nTG j g nT e

�
� �� � �

� To derive the second form, we note that p(t)

( ) ( )p a
n

G j g nT e
���

� � �
, p( )

can be expressed as a Fourier series:


 �
21 1j kt j kt
�
� 
�

�� �
where


 � 1 1
T

j j ktT

k k
p t e e

T T
�

��� ���

� �� �
2�
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� The impulse train gp(t) therefore can be 
expressed as 1 
�� �p

F h f hif i f h

1( ) ( )Tj kt
p a

k
g t e g t

T
�

���

� �� � �
� �

�
� From the frequency-shifting property of the 

CTFT, the CTFT of is given by( )Tj kt
ae g t�

� Hence an alternative form of the CTFT of
( ( ))a TG j k�� �

� Hence, an alternative form of the CTFT of             
is given by 1( ) ( ( ))G j G j k

�

� � ��
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( ) ( ( ))p a T
k

G j G j k
T ���

� � �� ��

2.1 Effect of Sampling in the Frequencyp g q y
Domain

� Therefore, is a periodic function of 
i ti f f hift d d l d

�( )pG j�
consisting of a sum of shifted and scaled 
replicas of               , shifted by integer 

lti l f d l d b 1/T�
( )aG j�

multiples of       and scaled by 1/T
� The term on the RHS of the previous equation 

T�
p q

for k = 0 is the basebandbaseband portionportion of               , 
and each of the remaining terms are the 

( )pG j�
g

frequency translated portionsfrequency translated portions of ( )pG j�
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� The frequency range                                 is 
called the basebandbaseband or Nyquist bandNyquist band

/ 2 / 2T T�� � � � �
called the baseband baseband or Nyquist bandNyquist band

� The above result is more commonly known as 
the sampling theorem:sampling theorem:

� Let g (t) be a band-limited signal with ( ) 0G j� �� Let ga(t) be a band limited signal with                    
for              , then ga(t) is uniquely determined 
by its samples g (nT) if

( ) 0aG j� �
m� � �

n� � � �by its samples ga(nT),                    ,if
where

n�� � � �
2T m� � �

2
T T

�
� �
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� Illustration of the frequency-domain effects of 
time-domain sampling

( )aG j�

1 … …

( )P j�

1�
0

�
m�m��

… …
0T�� T� 2 T� 3 T�

�

( )pG j�

…
0T��

T m� ��

T� 2 T�m�m��

…
�

1/T

T T

T m� ��
( )pG j�

1/T
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� If , ga(t) can be  recovered 2T m� � �
exactly from gp(t) by passing it through an 
ideal lowpass filter              with a gain T and ( )rH j�
a cutoff frequency greater than       and 
less than     as shown  below

r

c� m�
T m� ��T m

ga(t)
gp(t) ( )rH j� ˆ ( )ag tga( )

p(t)

( )r j ( )ag
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� The spectra of the filter and pertinent signals 
are shown beloware shown below

( )pG j�

T m� ��1/T …
0T�� T� 2 T�m�m��

…
�

( )H j�( )rH j�


 �m c T m� � � � � ��

�

T

0 c�
�

c��
ˆ ( )aG j�

1
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� On the other hand, if , due to the 
overlap of the shifted replicas of the

2T m� � �
( )G j�overlap of the shifted replicas of , the 

spectrum cannot be separated by 
filtering to recover because of the distortion

( )aG j�
( )aG j�

filtering to recover because of the distortion 
caused by a part of the replicas              
i di t l t id th b b d f ld d b k

( )aG j�
immediately outside the baseband folded back 
or aliasedaliased into the baseband.

� Several terms:
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

Nyquist conditionNyquist condition
Folding frequencyFolding frequency/ 2�

2T m� � �

Folding frequencyFolding frequency
Nyquist frequencyNyquist frequency

/ 2T�

m�
Nyquist  rateNyquist  rate

WhenWhen OversamplingOversampling
2 m�

2� � �WhenWhen OversamplingOversampling
WhenWhen UndersamplingUndersampling

2T m� � �

2T m� � �

WhenWhen Critical samplingCritical sampling
Note:Note: A pure sinusoid may not be recoverable from its

2T m� � �
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Note:Note: A pure sinusoid may not be recoverable from its 
critically sampled version

2.1 Effect of Sampling in the Frequencyp g q y
Domain

Example 1Example 1
� In high-quality analog music signal 

processing, a bandwidth of 20 kHz has been 
determined to preserve the fidelity ( )

� Hence in compact disc (CDCD) music systems� Hence, in compact disc (CDCD) music systems, 
a sampling rate of 44.1 kHz, which is slightly 
higher than twice the signal bandwidth ishigher than twice the signal bandwidth, is 
used
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

Example 2Example 2
C id th th ti ti i id l� Consider the three continuous time sinusoidal 
signals:

� Their corresponding CTFTs are:
1 2 3( ) cos(6 ), ( ) cos(14 ), ( ) cos(26 )g t t g t t g t t� � �� � �
� Their corresponding CTFTs are:

� �1( ) ( 6 ) ( 6 )G j � 	 � 	 �� � �� 
 �
� �
� �
� �

1

2

( ) ( ) ( )
( ) ( 14 ) ( 14 )
( ) ( 26 ) ( 26 )

j
G j
G j

� 	 � 	 �
� 	 � 	 �

� � �� 
 �

� � 
 �
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� �3( ) ( 26 ) ( 26 )G j � 	 � 	 �� � �� 
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� These three transforms are plotted below
( )G j�1( )G j�

�

�

0
�

6�6��

2 ( )G j�
�

0
�

14�

�

14�� 0 14�14�
3( )G j�

�

290
�

26�26��

2.1 Effect of Sampling in the Frequencyp g q y
Domain

� These continuous-time signals sampled at a 
rate of T 0 1 sec i e ith a samplingrate of T = 0.1 sec, i.e., with a sampling 
frequency   rad/sec20T �� �

� The sampling process generates the 
continuous-time impulse trains, g1p(t), g2p (t), p g1p( ) g2p ( )
and g3p (t) 

� Their corresponding CTFTs are given by� Their corresponding CTFTs are given by
( ) 10 ( ( )), 1 3lp l TG j G j k l

�

� � �� � � ��
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� Plots of the 3 CTFTs are shown below
1 ( )pG j� ( )H j�1 ( )p j

�
6

10�

6 2020

0.1

( )rH j�

c�c��

SpectrumSpectrum
lines painted lines painted 
byby RedRed andand

The cutoff The cutoff 
frequencyfrequency
of theof the0 6�6�� 20�20��byby RedRed andand

GreenGreen colorscolors
designatedesignate
aliasesaliases

of theof the
lowpasslowpass
filter is filter is 
chosen aschosen as

2 ( )pG j� 10�

0 1

( )rH j�

aliasesaliases
10c �� �

chosen aschosen as

0
�

14�14�� 20�20��

0.1

6�6��
c�c��

34�

3 ( )pG j�
10�

0.1

( )rH j�

���

310 �20�20�� 6�6��40�� 40�
c�c��

26�26��

2.1 Effect of Sampling in the Frequencyp g q y
Domain

� We now derive the relation between the 
DTFT f ( ) d th CTFT f (t)DTFT of g(n) and the CTFT of gp(t)

� To this end we compare

with
( ) ( )j j n

n
G e g n e� �

�
�

���

� �
with n� �

( ) ( ) j nT
p aG j g nT e

�
� �� � �

and make use of
( ) ( )g n g nT n� �� � � �

n���
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( ) ( )ag n g nT n� �

2.1 Effect of Sampling in the Frequencyp g q y
Domain

� Observation: We have

or equivalently
/

( ) ( )j
p T

G e G j�

���
� �

or, equivalently,
( ) ( )j

p T
G j G e �

���
� �

� From the above observation and
1( ) ( ( ))G j G j k

�

� � ��( ) ( ( ))p a T
k

G j G j k
T ���

� � �� ��
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� We arrive at the desired result given by


 �1( )j
a TG e G j jk

T
�

�

� �� �� 
 �
/

1
k TT

G j jk

�

�
��� ��

� � ��� �

�

� a T
k

G j jk
T T���

� �� � �� �
� �
� �

�
1 2

a
k

kG j j
T T T

� ��

� �

� �� �� �
� �

�
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� The relation derived on the previous slide can 
be alternately expressed as


 �1( )j TG e G j jk
�

� � ��
form


 �( )j
a T

k
G e G j jk

T ���

� �� ��
( ) ( )jG e G j� �form                                            

or from
/

( ) ( )j
p T

G e G j
���

� �

( ) ( )jG j G e ��or from ( ) ( )j
p T

G j G e
���

� �
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2.1 Effect of Sampling in the Frequencyp g q y
Domain

� It follows that            is obtained from              ( )jG e � ( )pG j�
by applying the mapping

� Now the CTFT is a periodic function

( ) ( )p j
/T�� �

( )G j�� Now, the CTFT is a periodic function 
of      with a period
B f h i h DTFT i

( )pG j�
2 /T T�� �

j�
�

� Because of the mapping, the DTFT             is 
a periodic function of     with a period

( )jG e �

� 2�
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2.2 Recovery of the Analog Signal

� We now derive the expression for the output       
f df f th id l l t tiˆ ( )tfsdf of the ideal lowpass reconstruction 
filter as a function of the samples g(n)

( )ag t
( )rH j�

� The impulse response hr(t) of the lowpass 
reconstruction filter is obtained by taking the y g
inverse DTFT of :

,T� � � �� ,
( )

0,
c

r
c

T
H j

� � � ��� � � � � ���
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2.2 Recovery of the Analog Signal

� Thus, the impulse response is given by
1 T1( ) ( )

2 2
c

c

j t j t
r r

Th t H j e d e d
� �

� �� �

�� ��
� � � � �� �

sin( ) ,
/ 2

ct t
t
�

� �� � � �
�

� The input to the lowpass filter is the impulse 
t i (t)

/ 2ct�

train gp(t) ( ) ( ) ( )p
n

g t g n t nT	
�

� �

� ��
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n���

2.2 Recovery of the Analog Signal

� Therefore, the output         of the ideal 
l filt i i b

ˆ ( )ag t
lowpass filter is given by:

ˆ ( ) ( ) ( ) ( ) ( )g t g t h t g n h t nT
�

� � � ��
� Substituting                                      in the 

( ) ( ) ( ) ( ) ( )a p r r
n

g t g t h t g n h t nT
���
�

( ) sin( ) / / 2h t t t� � �Subs u g e
above and assuming                               for 
simplicity, we get

( ) sin( ) / / 2r c ch t t t� �
/ 2 /c T T�� � � �

simplicity, we get
sin[ ( ) / ]ˆ ( ) ( ) t nT Tg t g n �� �

� �
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( ) ( )
( ) /a

n
g t g n

t nT T���� ��

2.2 Recovery of the Analog Signal

� It can be shown that when                    in 
sin t�

/ 2c T� � �

h (0) 1 d h ( ) 0 f 0

sin( )
/ 2

c
r

T

th t
t
�

�
�

hr(0)=1 and hr(nT)=0 for n�0
� As a result, from sin[ ( ) / ]t nT T��s a esu , o sin[ ( ) / ]ˆ ( ) ( )

( ) /a
n

t nT Tg t g n
t nT T

�
����

�
�

��
we observe
for all integer values of r in the range

ˆ ( ) ( ) ( )a ag rT g r g rT� �
r�� � � �
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for all integer values of r in the range r� � � �

2.2 Recovery of the Analog Signal

� The relation                                      holds 
h th t th diti f th li

ˆ ( ) ( ) ( )a ag rT g r g rT� �
whether or not the condition of the sampling 
theorem is satisfied

� However,                       for all values of t only 
if the sampling frequency      satisfies the 

ˆ ( ) ( )a ag t g t�
T�p g q y

condition of the sampling theorem
T
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2.3 Implication of the Sampling Process

� Consider again the three continuous-time 
i l ( ) (14 )( ) (6 )signals:                          ,                             ,           

and 3( ) cos(26 )g t t��
2 ( ) cos(14 )g t t��1( ) cos(6 )g t t��

� The plot of the CTFT              of the sampled 
version of g1(t) is shown below

1 ( )pG j�
g1( )

1 ( )pG j�
10� ( )rH j�

0
�

6�6�� 20�20��

0.1

c�c��
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F h l i i h

2.3 Implication of the Sampling Process

� From the plot, it is apparent that we can 
recover any of its frequency-translated 


 ��  versions                              outside the 
baseband by passing through an ideal analog 


 �cos 20 6k t�!�  " #

bandpass filter g1p(t) with a passband centered 
at 
 �20 6k �� � !

� For example, to recover the signal cos(34pt), 
it will be necessary to employ a bandpass


 �
cos(34 )t�

it will be necessary to employ a bandpass 
filter with a frequency response

0 1 (34 ) (34 )� �� �$ � � � 
 $
43

0.1, (34 ) (34 )
( )

0, otherwiserH j
� �� $ � � � 
 $

� � �
� A small number

2.3 Implication of the Sampling Process

� Likewise, we can recover the aliased 
b b d t (6 t) f th(6 )tbaseband component cos(6pt) from the 
sampled version of either g2p(t) or g3p(t) by 

i it th h id l l filt ith

cos(6 )t�

passing it through an ideal lowpass filter with 
a frequency response:

0.1, 0 (6 )
( )

0 otherwiserH j
�� � � � 
 $

� � �
� 0, otherwise�
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2.3 Implication of the Sampling Process

� There is no aliasing distortion unless the 
i i l ti ti i l l t ioriginal continuous-time signal also contains 

the component cos(6 )t�
� Similarly, from either g2p(t) or g3p(t) we can 

recover any one of the frequency-translated y q y
versions, including the parent continuous-time 
signal cos(14�t) or cos(26�t) as the case may g ( ) ( ) y
be, by employing suitable filters
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3. Sampling of Bandpass Signals

� The conditions developed earlier for the 
i t ti f ti tiunique representation of a continuous-time 

signal by the discrete-time signal obtained by 
if li d th t thuniform sampling assumed that the 

continuous-time signal is bandlimited in the 
f f d t ffrequency range from dc to some frequency

� Such a continuous-time signal is commonly g y
referred to as a lowpass signallowpass signal
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3. Sampling of Bandpass Signals

� There are applications where the continuous-
ti i l i b dli it d t hi htime signal is bandlimited to a higher 
frequency range  a withL H� � � � � 0L� �

� Such a signal is usually referred to as the 
bandpass signalbandpass signalp gp g

� To prevent aliasing a bandpass signal can of 
course be sampled at a rate greater than twicecourse be sampled at a rate greater than twice 
the highest frequency, i.e. by ensuring

2� � �
47

2T H� � �

3. Sampling of Bandpass Signals

� However, due to the bandpass spectrum of the 
ti ti i l th t f thcontinuous-time signal, the spectrum of the 

discrete-time signal obtained by sampling will 
h t l ith i l thave spectral gaps with no signal components 
present in these gaps

� Moreover, if       is very large, the sampling 
rate also has to be very large which may not 

H�
y g y

be practical in some situations
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3. Sampling of Bandpass Signals

� A more practical approach is to use underunder--
lilisamplingsampling

� Let                        define the bandwidth of the H L$� � � ��
bandpass signal

� Assume first that the highest frequency �

H L

� Assume first that the highest frequency  
contained in the signal is an integer multiple 
of the bandwidth i e

H�

of the bandwidth, i.e.,
( )H M� � $�
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3. Sampling of Bandpass Signals

� We choose the sampling frequency      to 
i f h di i

T�
satisfy the condition

22( ) H
T M

�
� � $� �

which is smaller than         , the Nyquist rateNyquist rate2 H�

( )T M

� Substitute the above expression for      inT�


 �1( )G j G j jk
�

� � �� 
 �( )p a T
k

G j G j jk
T ���

� � �� ��
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3. Sampling of Bandpass Signals

� This leads to 
 �1( ) 2 ( )p aG j G j j k
T

�

� � �� $��
� As before,              consists of a sum of             

and replicas of shifted by integer

kT ���
( )pG j� ( )aG j�

( )G j�and replicas of               shifted by integer 
multiples of twice the bandwidth DWand 
scaled by 1/T

( )aG j�
$�

scaled by 1/T
� The amount of shift for each value of k

h h ill b l bensures that there will be no overlap between 
all shifted replicas            no aliasingno aliasing
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� Figure below illustrates the idea behind
( )aG j�

�
0

H�L�H�� L��

( )pG j�

�
0

H�L�H�� L��
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� As can be seen, ga(t) can be recovered from 
g (t) by passing it through an ideal bandpassgp(t) by passing it through an ideal bandpass 
filter with a passband given by                       
and a gain of T

L H� � � � �
and a gain of T

� Note: Any of the replicas in the lower 
f b d b t i d b ifrequency bands can be retained by passing 
gp(t) through bandpass filters with passbands

idi, providing a 
translation to lower frequency ranges

( ) ( )L Hk k� � $� � � � � � $�
1 1k M� � �
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