Chapter 6: Residue Theory

Li, Yongzhao
State Key Laboratory of Integrated Services Networks, Xidian University
June 7, 2009

Introduction

- In the previous chapters, we have seen how the theory of contour integration lends great insight into the properties of analytic functions.
- The goal this chapter is to explore another dividend of this theory, namely, its usefulness in evaluating certain real integrals.
- We shall begin by presenting a technique for evaluating contour integrals that is known as residue theory.
- Then we will introduce some application of the theory to the evaluating the real integrals.

The Residue Theorem

- If \(f(z) \) is analytic on and inside a simple closed positively oriented contour \(\Gamma \) except a single isolated singularity, \(z_0 \), lying interior to \(\Gamma \), \(f(z) \) has a Laurent series expansion
 \[
 f(z) = \sum_{j=-\infty}^{\infty} a_j (z - z_0)^j
 \]
 converging to some punctured neighborhood of \(z_0 \).
- In particular, the above equation is valid for all \(z \) on the small positively oriented circle \(C \) continuously deformed from \(\Gamma \) (as shown in Fig. 6.1).
The Residue Theorem (Cont’d)

According to the Continuous Deformation Invariance Theorem (page 231), we have
\[\int_{\Gamma} f(z) \, dz = \int_{C} f(z) \, dz \]

The last integral can be computed by termwise integration of the series along \(C \). For all \(j \neq -1 \) the integral is zero, and for \(j = -1 \) we obtain the value \(2\pi i a_{-1} \)

Consequently we have
\[\int_{\Gamma} f(z) \, dz = 2\pi i a_{-1} \]

Thus the constant \(a_{-1} \) plays an important role in contour integration. Accordingly, we adopt the following terminology

Definition
If \(f \) has an isolated singularity at the point \(z_0 \), then the coefficient \(a_{-1} \) of \((z - z_0)^{-1} \) in the Laurent expansion for \(f \) around \(z_0 \) is called the **residue** of \(f \) at \(z_0 \) and is denoted by
\[\text{Res}(f; z_0) \text{ or Res}(z_0) \]

How to Compute the Residue (Cont’d)

- If \(f \) has a **removable singularity** at \(z_0 \), all the coefficients of the negative powers of \((z - z_0) \) in its Laurent expansion are zero, and so, in particular, the residue at \(z_0 \) is zero
- If \(f \) has an **essential singularity** at \(z_0 \), we have to use its Laurent expansion to find the residue at \(z_0 \) (See Example 1 on page 308)
- If \(f \) has a pole of order \(m \) at \(z_0 \), we have the following theorem to find the residue

Theorem
If \(f \) has a pole of order \(m \) at \(z_0 \), then
\[\text{Res}(f; z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)] \]

Example 2 gives us another way to compute the residue when \(f \) is a rational polynomial
- Let \(f(z) = P(z)/Q(z) \), where the functions \(P(z) \) and \(Q(z) \) are both analytic at \(z_0 \) and \(Q \) has a simple zero at \(z_0 \), while \(P(z_0) \neq 0 \). Then we have
\[\text{Res}(f; z_0) = \frac{P(z_0)}{Q'(z_0)} \]
How to Compute the Residue (Cont’d)

- When there are a finite number of isolated singularities inside the simple closed positively oriented contour \(\Gamma \), we have the following theorem

Theorem

If \(\Gamma \) is a simple closed positively oriented contour and \(f \) is analytic inside and on \(\Gamma \) except at the points \(z_1, z_2, \ldots, z_n \) inside \(\Gamma \), then

\[
\int_{\Gamma} f(z) \, dz = 2\pi i \sum_{j=1}^{n} \text{Res}(z_j)
\]

Trigonometric Integrals Over \([0, 2\pi]\) (Cont’d)

- Also taking \(dz = ie^{i\theta}d\theta = izd\theta \) into account, Eq. (1) can be transformed into a complex contour integration as

\[
\int_{0}^{2\pi} U(\cos \theta, \sin \theta) d\theta = \oint_{|z|=1} F(z) dz
\]

where the new integrand \(F \) is

\[
F(z) := U \left[\frac{1}{2} \left(z + \frac{1}{z} \right), \frac{1}{2i} \left(z - \frac{1}{z} \right) \right] \cdot \frac{1}{iz}
\]

Trigonometric Integrals Over \([0, 2\pi]\)

- Our goal of this section is to apply the residue theory to evaluate real integrals of the form

\[
\int_{0}^{2\pi} U(\cos \theta, \sin \theta) d\theta \quad (1)
\]

- We use \(z = e^{i\theta} \) \((0 \leq \theta \leq 2\pi)\) to parameterize the closed positively oriented contour \(|z| = 1 \). Then a contour integral can be transformed into a real integral

- According to Euler’s equation, we have

\[
\begin{align*}
\cos \theta &= \frac{e^{i\theta} + e^{-i\theta}}{2} = (z + z^{-1})/2 \\
n\sin \theta &= \frac{e^{i\theta} - e^{-i\theta}}{2i} = (z - z^{-1})/2i
\end{align*}
\]

- Of course, the function \(F \) must be a rational function of \(z \)

- Hence, it has only removable singularities (which can be ignored in evaluation integrals) or poles

- Consequently, by the residue theorem, our trigonometric integral equals \(2\pi i \) time the sum of the residues at those poles of \(F \) that lie inside the unite circle
Improper Integrals of Certain Functions Over \((\infty, \infty)\)

- Given any function \(f\) continuous on \((\infty, \infty)\), the limit
 \[
 \lim_{\rho \to \infty} \int_{-\rho}^{\rho} f(x) \, dx
 \]
 is called the Cauchy principal value of the integral of \(f\) over \((\infty, \infty)\), and we write
 \[
 \text{p.v.} \int_{-\infty}^{\infty} f(x) \, dx := \lim_{\rho \to \infty} \int_{-\rho}^{\rho} f(x) \, dx
 \]

- We shall now show how the theory of residue can be used to compute p.v. integrals for certain functions of \(f\).
- See Example 1 on page 319 to learn the basic idea of the algorithm.

Lemma

If \(f(z) = P(z)/Q(z)\) is the quotient of two polynomials such that

\[
\text{degree } Q \geq 2 + \text{degree } P
\]

then

\[
\lim_{\rho \to \infty} \int_{C_\rho^+} f(z) \, dz = 0
\]

where \(C_\rho^+\) is the upper half-circle of radius \(\rho\) defined in Eq. (4) on page 320 as shown in Figure 6.4.

Improper Integrals Involving Trigonometric Functions

- The purpose of this section is to use residue theory to evaluate integrals of the general forms:
 \[
 \text{p.v.} \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos mx \, dx, \quad \text{p.v.} \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin mx \, dx
 \]

- If we obtain the value of the integral
 \[
 \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{imx} \, dx
 \]
 the above two integrals can be obtained by computing the real and imaginary parts.
Lemma

If \(m > 0 \) and \(P/Q \) is the quotient of two polynomials such that

\[
\text{degree } Q \geq 1 + \text{degree } P
\]

then

\[
\lim_{\rho \to \infty} \int_{C_\rho^+} e^{imx} \frac{P(x)}{Q(x)} \, dz = 0
\]

where \(C_\rho^+ \) is the upper half-circle of radius \(\rho \)

Then the improper integral \(\int_{-\infty}^{\infty} f(x) \, dx \) can be computed as follows

\[
p.v. \int_{-\infty}^{\infty} e^{imx} \frac{P(x)}{Q(x)} \, dx = \lim_{\rho \to \infty} 2\pi i \sum (\text{residues inside } \Gamma_\rho)
\]

Thus

\[
p.v. \int_{-\infty}^{\infty} \cos mx \frac{P(x)}{Q(x)} \, dx = \Re \left\{ p.v. \int_{-\infty}^{\infty} e^{imx} \frac{P(x)}{Q(x)} \, dx \right\}
\]

\[
p.v. \int_{-\infty}^{\infty} \sin mx \frac{P(x)}{Q(x)} \, dx = \Im \left\{ p.v. \int_{-\infty}^{\infty} e^{imx} \frac{P(x)}{Q(x)} \, dx \right\}
\]