
Soft Comput (2017) 21:3713–3721
DOI 10.1007/s00500-015-2025-6

METHODOLOGIES AND APPLICATION

A protocol-free detection against cloud oriented reflection DoS
attacks

Le Xiao1,2 · Wei Wei2 · Weidong Yang2 · Yulong Shen3 · Xianglin Wu1

Published online: 18 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Distributed denial of service (DDoS) attack
presents a critical threat to cloud infrastructure, where many
manipulated hosts flood the victim cloudwith plenty of pack-
ets, which will lead to the exhaustion of bandwidth and other
system resources. As one type of DDoS attack, in reflection
DoS (RDoS) attack, legitimate servers (reflectors) are fooled
into sending a large number of packets to the victim cloud.
Most of the existed RDoS attack detection mechanisms are
protocol-specific, thus low in efficiency. It is inspected that
because of being triggered by the same attacking flow, intra-
unite correlation exists among the packet rate of attacking
flows. Based on the phenomenon, a flow correlation coeffi-
cient (FCC)-based protocol-free detection (PFD) algorithm
is proposed. The simulation results show that PFD can detect
attacking flows efficiently and effectively and is not protocol-
specific, thus can be used as effective supplement to existed
algorithms.
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1 Introduction

The cloud computing technology provides a solid foundation
for cloud based application.A cloud platformmakes resource
provisioning elastic, reliable and cost-effective, thus signifi-
cantly alleviates the effort of building dynamic and scalable
network services (Wei et al. 2014a, b; Liu and Wei 2015).
However, even with huge amount of resources, cloud is still
vulnerable to many kinds of attacks. As one of them, denial
of service (DoS) attack constitutes a critical threat to cloud
infrastructure. DoS attack is the kind of attack to make a
service unavailable to target users, e.g. make a server dis-
connected from Internet, or make a network link congested
by a large number of packets. Distributed denial of service
(DDoS) is the kind of attack where attacking packets come
from thousands of computers. Usually, there are many par-
alleled attacking flows be used to exhaust the resource in
targeted server or network. To initialize the attack, a lot of
computers are compromised to be used as attacking source.
In one occurrence of attack, computers in a botnet receive
attacking order from remote attacker and send attacking
packets to victim. If the target is a network, the incoming
bandwidth will be exhausted and future incoming packets
will be dropped, and if the target is a server, the comput-
ing/memory resource of the server will be exhausted by the
network stack module in the server.

The computers involved in DDoS are often organized as
botnet. Botnet is usually constructed using malware, the key
step of installing malware on target computer is breaking
into systems. E.g., by scanning target computer’s ports, the
attacker can break into the target computer by exploiting the
vulnerability of the software listening on the given port, then
install malware to help take further action.

One well-known malware is MyDoom. Before the launch
of one attack, a new version of malware is produced by
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including target information and attacking date in the source
code. Another kind of malware is trojan, which allow the
attacker to manipulate the compromised computer as his
will, e.g., the attacker can order the compromised computer
to download another malware agent software. In addition to
previous ones, Stacheldraht can be viewed as a classic tool to
organize botnet. In Stacheldraht, all compromised comput-
ers are organized to form a layered structure. The attacker
connect to handlers, and handlers connect to compromised
computers. The intrusion to compromised computers is
implemented via the handlers. Thenumber of computers each
handler controls can be up to more than one thousand.

After botnet is ready, many kinds of attacks can be
launched, e.g., resource starvation attacks like SYN flood,
DNS targeted attack like DNS base DoS, or bandwidth con-
sumption attacks like IP spoofing or smurf. In SYN flood, a
small number of compromised computers send a lot of TCP
SYN packets with a large number of faked source IP address,
when these packets arrived at victim server, it will consume
memory and computer resource, for the victim server to sus-
tain the state information for the connection linked with each
TCP SYN packet. When further TCP packet will not arrive
for these links, a lot of system resources are wasted. Com-
mon countermeasure for SYN flood is SYN cookie, but it
can only defend attack not saturating incoming bandwidth.
Furthermore, computers can be compromised intentionally
by their owners, just trading for economic returns. If only
one computer is involved to launch attack, the attack can be
classified as DoS, or if more than one computer is involved,
the attack can be classified as DDoS.

The inherent power of DDoS is the huge difference
between the resource owned by the attacking side and the
victim side, i.e., the number of attacking computers is signif-
icantly larger than the number of victim. And since attacking
computers are distributed sparsely in the Internet, it is hard
to shut down the attacking computers one by one. Actually,
the victim can only wait for the stop of attack. Currently,
there is still no effective defense mechanism for DDoS, e.g.,
increasing the bandwidth of incoming link or adding more
resources in victim will not help since it is easy for attacker
to add more attacking computer from botnet.

Moreover, DDoS can be launched by one attacking com-
puter, which send fake requests of some protocols to a
large number of innocent computers, with the source address
of these faked packets point to victim. Depending on the
request–response mechanism in the given protocol, these
innocent computers will reply to the requests by sending
response packet to the source address embedded in the faked
request packet, consequently flood the victim. This kind of
attack is called distributed reflection DoS (DRDoS). DRDoS
is more difficult to detect. Due to the inherent mechanism of
RDoS, it can exploit any connectionless request–response-
based protocols. Some common forms of DRDoS include

Smurf, in which the attacker sends ECHO requests to the
broadcast address of the network, each computer in the
network will receive the request and flood ECHO REPLY
packets to victim. A lot of known services can be exploited
by DRDoS. Because the volume of reflected traffic is low in
source network, the detection near single host maybe useless
(Paxson 2001). Since ingress filtering is not largely deployed,
it is also not a hopeful solution (Ferguson 2000).

This paper provide ideas of solving the problem. We
inspect the basic traffic correlation near the victim cloud
underRDoSattack, and present a universal detectionmethod:
the protocol-free detection against cloud oriented reflection
DoS attacks (PFD). PFD is protocol-free and its computa-
tion cost will not be affected by network throughput. In PFD,
packet rate is sampled in upstream router and correlation of
flows are tested using flow correlation coefficient (FCC), the
detection result is given by considering current FCC value
and historical information. As far as we know, it is the first
time that RDoS attack be analyzed and detected by Flow
Correlation Coefficient.

2 Related work

There are many literatures for the topic of cloud based
DoS attacks. One kind of special cloud-related attack is
energy-oriented DoS attack, which is analyzed under dif-
ferent scenarios with different constraints (Palmieri et al.
2011, 2014a, 2015; Ficco and Palmieri 2015). Palmieri et al
first investigated the impacts of network-based DoS attacks
under the energy consumption perspective (Palmieri et al.
2011). Impacts of different DoS attacks are analyzed and
several aspects are revealed to show the inherent affects
of DoS attacks. They then introduced a orchestrated strat-
egy achieve maximal cost-effectiveness ratio (Palmieri et al.
2014a). Palmieri et al analyzed different types of energy-
oriented DoS attack and modeled their behavior (Palmieri
et al. 2015). The introduced model quantified how attack
can manipulate network traffic to raise the target facility
emissions and costs. They focused on attacks that are specif-
ically tailored to originate the worst-case energy demands
by leveraging properly crafted low-rate traffic patterns to
ensure stealth operations. Special kind of DoS attacks, e.g.,
the low-rateDoS, can causeworst-case energy demand. They
identified the strategies attackers use to increase the overall
energy consumption in a fraudulent way, and analyze their
impact within large-scale cloud infrastructures (Ficco and
Palmieri 2015).

For detection of DoS, many packet-level defense meth-
ods already exist in traditional and emerging cloud platform.
Blocking all incoming responsive packets is not applicable,
since as a result, the protected server can not actively connect
to any remote servers (Paxson 2001). It is also computation-
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ally expensive to examine packet content and record protocol
status, and the detection itself is also vulnerable to attacks
(CHKP 2010; Rooj 2011; Tsunoda et al. 2008). And more
application-level information is utilized for detection, such
as the user browsing dynamics based detection (Xie and Yu
2009a, b; Kandula et al. 2005). With more new protocols can
be utilized to launch RDoS attack (Drakos 2002), the list
of protocols need to be considered with each protocol tack-
led specifically for detecting RDoS attack, and the length of
list will grow rapidly. Moreover, reflectors can be controlled
to send traffic mimicking flash crowds, which are legitimate
traffic in the form of dramatic surges of access to a server, and
are inclined to be detected as attacking traffic due to similarity
with attacking traffic (Jung et al. 2002; Scherrer et al. 2007).
Flash crowds were differentiated from attacking traffic by
inspecting user browsingdynamics (Xie andYu2009a, b) and
human behavior (Oikonomou and Mirkovic 2009; Yu et al.
2013), but thesemethods are inherently protocol-specific. As
a result,weurgently expect to discover protocol-freemethods
to enable universal detection of RDoS attack, and differen-
tiate flash crowds from attacking traffic. There are already
somepreliminaryworks. Palmieri et al developed a two-stage
anomaly detection strategy based onmultiple distributed sen-
sors located throughout the network (Palmieri et al. 2014b).
By solving a Blind Source Separation problem, fundamen-
tal traffic components are extracted from network traffic.
Using the baseline trafficprofile built from these components,
detection is transformed into an anomalous/normal classi-
fication problem and solved by machine learning-inferred
decision trees. Wei et al found linear correlation existed
among attacking flows, they use a rank correlation-based
detection algorithm to locate and filter incoming attacking
packets (Wei et al. 2013). Since correlation can be classified
as one kind of distance measurement, to further investigate
correlation-based method, we list several kinds of related
distance measurement as follows:

2.1 Hellinger distance

(1) Definition based on measure theory
Based on a probability measure χ , we define two con-

tinuous probability measures A and B, with the Hellinger
distance between A and B is defined as below.

H(A, B) =
√
√
√
√1

2

∫
(√

dA

dχ
−

√

dB

dχ

)2

dχ. (1)

We can see that in above definition, if χ is replaced with
another probability measure, the Hellinger distance between
A and B will not change. As a result, in most circumstances,
the definition can be rewritten as

H(A, B) =
√

1

2

∫ (√
dA − √

dB
)2

. (2)

(2) Definition based on elementary probability theory
If we deduce definition from elementary probability the-

ory, χ is assumed to be a Lebesgue measure, the dA/dχ and
dB/dχ can be viewed as probability density functions,which
can be rewritten as f a(·) and f b(·). Accordingly, since inte-
gral of a probability density is 1, the definition of Hellinger
distance can be reformed as a standard calculus integral

H(A, B) =
√

1

2

∫ (
√

f a(x) −
√

f b(x)

)2

dx (3)

=
√

1 −
∫ √

f a(x) f b(x)dx

Based on Cauchy Schwarz inequality, the value of H(A, B)

follows between the range [0,1]:

0 ≤ H(A, B) ≤ 1. (4)

(3) Definition based on discrete distributions
Set A = (a1, . . . , ak) and B = (b1, . . . , bk) as two

discrete probability distributions, the definition of Hellinger
distance can be formed as

H(A, B) = 1√
2

√
√
√
√

k
∑

i=1

(
√
ai − √

bi )2, (5)

which can be rewritten as:

H(A, B) = 1√
2

∥
∥
√
A − √

B
∥
∥
2. (6)

2.2 Kullback-Leibler distance

Kullback-Leibler distance is also known as relative entropy
(also known as KL divergence, KLIC, information diver-
gence, information gain), which is just a special case of a
broader class of divergences called f-divergences, and can
be derived from a Bregman divergence.

For two probability distribution A and B, when B is used
to approximate A, theKullback-Leibler distance of B from A
canbeused tomeasure information lost causedby the approx-
imation. One important feature is that Kullback-Leibler
distance is non-symmetric, which means that DKL(A‖B) �=
DKL(BA). Here DKL(A‖B) is used to represent Kullback-
Leibler between A and B. Fortunately, Fisher information
metric is symmetric, which is the infinitesimal form of
Kullback-Leibler distance. Suppose in a common scenario
that we use a theoretical distribution B to approximate the
real distribution A of observed data, the Kullback-Leibler
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distance represented the extra bits needed to precisely recon-
struct samples of A from B.

The definition of Kullback-Leibler distance of B from A
is given by:

DKL(A‖B) =
∑

i

A(i) ln
A(i)

B(i)
. (7)

As shown in equation above, the Kullback-Leibler distance
canbeviewed as the expected logarithmic difference between
A and B, and if A(i) is zero, the i-th part of Kullback-Leibler
distance is zero. Note that A(i) = 0 is true only if B(i) = 0.

If A and B are distribution of continuous random vari-
able, the Kullback-Leibler distance can be defined as the
integration of functions of A and B’s PDF (probability den-
sity function) (i.e., pa(x) and pb(x)):

DKL(A‖B) =
∫ ∞

−∞
pa(x) ln

pa(x)

pb(x)
dx, (8)

In general, if for a set S, we get its probability measures
A and B, with A is continuous with respect to B, then the
Kullback-Leibler distance can be defined as:

DKL(A‖B) =
∫

S
ln

dA

dB
dA, (9)

where dA
dB is the Radon-Nikodym derivative, and above defi-

nition can be rewritten as follows:

DKL(A‖B) =
∫

S
ln

(
dA

dB

)
dA

dB
dB, (10)

where above definition can be views as the entropy of A
relative to B. Consequently, if there is a measurement ν on
S, and we define a = dA

dν and b = dB
dν , and if p and q exists,

the Kullback-Leibler distance can be finally defined as:

DKL(A‖B) =
∫

S
a ln

a

b
dν. (11)

If we want to measure information in units of bits, we can
use a logarithms of 2. Similarly, if we want to measure in
nats, we can use logarithms e.

3 System model

For length limits, two typical scenarios are considered here,
which involves many reflectors and one attacker:

(a) Constant rate attack (CA): the attacker send faked
requests to reflectors randomly, following uniform distri-
bution, at a constant rate, e.g., the outgoing bandwidth.

(b) Variable rate attack (VA): the attacker send faked requests
to reflectors randomly, following uniform distribution, at
a varying and low rate.

3.1 Definition of network flow

For a given sampling point in network (e.g., a community
network), one network flow is defined as all packets with
same destination IP address and the sampling period is T .
Set the start time of a sampling period is t , then for a pair
of flows Xa and Xb in the time span [t, t + T ], their corre-
sponding set of reflectors are defined as Ra and Rb, and the
corresponding numbers of reflectors are Ma and Mb. The set
of other reflectors is defined as R0 as shown in Fig. 1. where
corresponding set of reflectors of one flow is all the reflectors
that send responsive packets to the victim cloud.

If the length of Xa is N , then we define network flow as
follows:

Xa = {xa[1]; xa[2]; ...; xa[N]} (12)

In Eq. 12, xa [k] (1 ≤ k ≤ N ) is the number of packets sam-
pled in the k−th time interval.

Let Xa and Xb be two network flows with the same length
N , then correlation is defined as:

rXa ,Xb = 1

N

N
∑

n=1

xa [n] xb [n] (13)

Correlation is usually used to describe the relation of two
flows. But in sometime, correlation value is zero for two
correlated flows due to their phase difference. Therefore, a
new definition is given by considering phase difference:

rXa ,Xb [k] = 1

N

N
∑

n=1

xa [n] xb [n + k] (14)

Where k = 1, 2, 3, N −1 is the phase shift of flow Xb. Then
to erase the magnitude difference, it is necessary to make
some unification, as shown in Sect. 3.2.

Fig. 1 Attacking scenario
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3.2 Definition of flow correlation coefficient (FCC)

Then the correlation coefficient between two flows can be
defined as:

ρXa ,Xb [k] = rXa ,Xb [k]

1
N

[
N∑

n=1
x2a [n]

N∑

n=1
x2b [n]

]1/2 (15)

Based on FCC, we can construct the protocol-specific detec-
tion algorithm, which is introduced in Sect. 4.

4 Algorithm

Ideally, for two attackingflow Xa and Xbwith no background
noise, the correlation coefficient ρa,b should be 1. Although
background noise is not avoidable in Internet, after some
kind of denoising, correlation between two attacking flows
should be significantly high compared with non-correlated
flow pairs.

Then in RDoS attack scenario, we can use thresholds δ

to judge whether both flows are malicious or not. If it exists
ρa,b > δ for flow pair (a, b), it means that both flows are
reflection flows and attack is detected. And thenwe canmake
the final decision R by inspecting all flow pairs.

R =
{

0, ρa,b < δ ∀ (a, b)
1, ρa,b > δ ∃ (a, b)

(16)

There is no universal threshold for all scenarios, a feasible
way is to calculate thresholds from history data of different
scenarios. We will give an example of threshold calculation
in our simulations in Sect. 5.

The accuracy of PFD can be improved by using multiple
flow pairs. Set the false negative rate per flow pair is q, by
using multiple flow pairs, q can be decreased further, e.g.,
when the number of flow pairs is m then the false negative
rate will be decreased towards qm . And when q = 0.1 and
m = 3, qm = 0.1%,which is low enough. The PFD algorithm
is shown in Table 1.

The time complexity of PFD algorithm is given as follows.
For i-th flow pairs, N coefficients need be calculated with
each one is given by Eq. 15 using different k(1 ≤ k ≤ N ),
where N is the length of sampling vector. Then the time
complexity is O(N 2) for each flow pairs, and the total time
complexity will be O(mN 2) if m flow pairs are tested.

In cloud environment, the detection algorithm can be
deployed to the entrance of a protected virtual LAN, i.e.,
only paid custom can deploy the algorithm to protect them-
selves. Toget large processing throughput, the entrance needs
to be a virtual switch with all packets stored in memory.
And the detection algorithm runs on a distributed computing

Table 1 Steps of PFD algorithm

Input: sampling sequence of each flow

Output: a binary value indicating whether the victim cloud is under
attack.

For (each network entry){

Get recent average flow rate of background traffic,

which can be calculated from history data.

}

If ( alarm raised from pre-deployed detection method){

// pre-deployed detection method can be efficient

// burst-based detection method.

Sample incoming flows and get packet rate of each flow;

For ( each sampling time interval){

Convert sampled data into value sequence for each flow;

Subtract their value sequence by their respect recent average
flow rate;

Enumerate each flow pairs and calculate FCC

for each pair;

Make decision by inspecting all flow pairs;

}

}

infrastructure likeMapReduce platform. By exploiting cloud
flexibility, high throughput can be achieved easily with low
cost.

5 Analysis

With the presence of transmitting latency, attacking packets
arrived at the victim cloud was generated a little earlier at
source reflectors. Set latency as τ , if per unit of time T is far
greater than τ , then Ca,t and Cb,t , the number of packets at
victim cloud in period [t, t + T ] can be approximated by the
number of sent packets in reflectors in [t − τ, t + T − τ ]:
Ca,t−τ and Cb,t−τ , which is shown as follows:

Ca,t ≈ Ca,t−τ (17)

Cb,t ≈ Cb,t−τ (18)

The arrived packets from the attacker will trigger reflectors to
send responsive packets immediately. In most of protocols,
without loss of generality, one arrived request packet will
trigger one responsive packet. So in [t − τ, t + T − τ ], the
number of arrived packets at reflectors are also Ca,t−τ and
Cb,t−τ . Then the total number of reflectors (with reflectors
not included in set Ra and Rb) involved in the attack is Mr ,
with number of reflectors are Ma and Mb for set Ra and Rb,
respectively. The total count of arrived faked request packets
is Cr,t−τ . As faked requests from the attacker are distributed
randomly, there are:
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Ca,t−τ ≈ Ma

Mr
Cr,t−τ (19)

Cb,t−τ ≈ Mb

Mr
Cr,t−τ (20)

Then we have:

Ca,t

Cb,t
≈ Ca,t−τ

Cb,t−τ

≈ Ma

Mb
(21)

It is shown above that in [t, t + T ], for flow Xa and Xb,
the ratio of number of packets is close to the number of their
respective reflectors. If Ra and Rb do not change significantly
between adjacent time units,Ma/Mb can sustain constant for
a short period. Consequently, the packet rates for Xa and Xb

is proportional.
On top of that, if faked requests are sent at full speed,

Cr,t−τ will be limited by the bandwidth of the attacker, then:

Ca,t + Cb,t ≈ Ca,t−τ + Cb,t−τ ≈ Ma + Mb

Mr
Cr,t−τ (22)

So, summationof packet rates for Xa and Xb approximates
a constant. In the two typical scenarios above, the packet rate
of Xa and Xb presents correlation and can be characterized
by FCC.

The task of detection algorithm is to differentiate attacking
and legitimate traffic, and the main challenge is to differen-
tiate legitimate traffic resembling attacking traffic, i.e., the
flash crowds. Flash crowds are legitimate, but unexpected,
plenty of access to a server, such as web requests to a break-
ing event.

We now investigate the FCC of flash crowd flows. It is
shownby previous research that http traffic follows the Pareto
law (Paxson and Floyd 1995; Crovella and Bestavros 1997),
hence, we can judge that whether the abnormal traffic result
from flash crowds or not through observing that whether the
traffic conforms to the Pareto distribution.

Its distribution is defined as follows. With a random vari-
able Z , and minimal time interval β for arrived packets. For
a time interval z, the probability density function (PDF) of
the Pareto distribution is defined as:

Pr [Z = z] = α · βα · z−(α+1) (23)

where β < z and α is the Pareto index. Then it has Theorem
1:

Theorem 1 Given two same length instances, Xa and Xb

(a �= b)with same length N, of a flash crowdproducedby the
same function with same parameters, lim

N→∞ ρXi ,X j [k] = 0.

The proof of Theorems in the paper can be found in appen-
dix. It can be easily deduced from Theorem 1 that:

Corollary 1 For two independent flash crowds Xa and Xb

(a �= b) with same length N ,∀δ (δ < 1), ∃N ′ when N >

N ′, ρXi ,X j [k] < δ.

It is shown by Corollary 1 that the FCC can be low enough
with large enough N . Then we will investigate the FCC of
attacking traffic in RDoS.

Theorem 2 If there is no background noise and network
delay, let Xa and Xb be two traffic flows in VA and CA sce-
narios, there is ρXi ,X j [k] = 1.

Based on Theorem 2, it is probably that we can differenti-
ate RDoS attack flows from flash crowds, as the FCC of these
two kind of traffic are different in perfect condition.However,
the background noise may affect FCC. The strategy in Algo-
rithm 1 is to subtract value sequence by the recent average
rate of the flow, whose effectiveness is stated as follows.

Corollary 2 Let Ya and Yb be the noises for two attacking
flows Xa and Xb with sufficiently large length N ∀δ(δ <

1), ∃	,ρXi ,X j [k] ≥ δ holds when E(Xa)
E(Ya)

> 	 and E(Xb)
E(Yb)

>

	.

Combining Theorems and corollaries above, we can come
to the conclusion in Theorem 3.

Theorem 3 if the length of the sampled flow is large enough,
and the attack strength is strong enough, then the reflection
DoS attack flow can be discriminated from flash crowds by
the flow correlation under two conditions.

With Theorem 3, if we remove background traffic to
strengthen attack traffic and get sample flow with long
enough length, the FCC between attack flows will be dif-
ferent enough with other flow pairs, thus can be a useful
indicator for detection.

6 Experiments

As shown in Fig. 2, the typical network used in our NS2
simulation topology includes 15 routers and 800 hosts with

Fig. 2 Simulation topology
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750 hosts are reflectors and 50 hosts are innocent ones. Nor-
mal requests to victim cloud follow a Pareto distribution.
The latency in network is between 10 and 200 ms, which is
consistent to the average Internet RTT of 200 ms.

We test the two typical scenarios mentioned in the first
paragraph of Sect. 3. To figure out the effectiveness of PFD,
we compare PFD with relative entropy method (Yu et al.
2008), which detect attacks by inspecting relative entropy
between flowpairs. In relative entropy basedmethod, if intru-
sion detection system (IDS) found existence of attack and
issued an alarm, it can sample suspicious flows fa and fb
for a sufficient long time span T . After accumulating enough
data, IDS can calculate distributions for these two flows:

A(X) = a(x1, x2, x3 . . . xn)
B(X) = b(x1, x2, x3 . . . xn)

(24)

If attackers trigger botnet to use the same function f (·) to
generate attacking flows fa and fb. And suppose the trans-
formation of flows from reflectors to IDS can be views as
some kind of system functions, and if we define the system
functions for fa and fb as ga(·) and gb(·), respectively. Then
we can have:

a(x) = ga( f (x))
b(x) = gb( f (x))

(25)

In ideal situation, if ga and gb are linear, the relative entropy
between fa and fb is zero, i.e., D(A ‖B) = 0. However, the
assumption of linearity may not holds in Internet due to the
existence of background traffic. The relative entropy can be
small enough compared to other unrelated flow pairs. Still,
the existence of attack can be judged using below equation:

Result(A, B) =
{

1 D(A ‖B ) ≤ δ

0 D(A ‖B ) > δ
(26)

We also present steps of relative entropy method for compar-
ison:

1. IDS locate suspicious attacking flows in IDS.
2. Sample flow rate of suspicious flow using time unit t .
3. Collect data for a sufficient time span T , and get sam-

pling data x1, x1 . . . xn , extract distinct values and their
frequencies. Then calculate the approximated distribu-
tion of flows:

p(xi ) = fi
∑n

i=1 fi
, i = 1, 2 . . . n. (27)

4. Use the distribution information to calculate relative
entropy.

Fig. 3 Comparison of methods for constant rate attack

Fig. 4 Comparison of methods for variable rate attack

5. For different flows pairs, make the decision based on Eq.
26.

6. IDS can response to attack by blocking packets in attack-
ing flows.

The comparison result is shown in Figs. 3 and 4, and it is
shown that:

1. In PFD, high correlation between two attacking flows is
clearly captured, even with a high rate of background
traffic, and the correlation is low between one attacking
and one normal flow (the solid circle in Figs. 3 and 4).

2. In relative entropy method, the relative entropy of two
malicious flows (the solid triangle in Figs. 3 and 4)
is similar to the relative entropy of one malicious and
one legitimate flow (the solid diamond in Figs. 3 and
4). Thus RDoS cannot be easily detected by relative
entropy.

3. In PFD, FCCbecomes stable after the sampling has lasted
for about 100 units of time (the solid rectangle in Figs.
3 and 4). When the unit of time is 0.1 s, we need 10 s to
give the final detection result.

It is shown from above experiments that in the typical RDoS
scenario, the correlation between attacking flows can only
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Fig. 5 PDF of correlation coefficient in two typical attacking scenarios

be captured by PFD, and the detection delay is small enough
(10 s), thus PFD can be used as a helpful indicator.

We use 200 different RDoS cases to get the threshold for
our scenarios, where packet rate of attacking flow is 100–
1000 % of that of legitimate flows, which covers a broad
range of cases with high and low rates. Figure 5 shows the
PDF of correlation coefficient in PFD, it is found that:

1. PFD can clearly distinguish between the two kinds
of correlations with a broad range of different packet
rate.

2. The threshold is chosen using the x-axis of cross point of
fitted curves. As in Fig. 5, we choose the corresponding
threshold δ = 0.5.

7 Conclusion

The paper concentrates on detecting RDoS attack against
cloud without considering the protocol used in attack, and
proposes the Protocol-FreeDetection (PFD) algorithm.Once
suspicious flows are located, PFD calculates the Flow Corre-
lation coefficient (FCC) between flow pairs and issue a final
warning. The simulation results show that it is a helpful indi-
cator for RDoS attack detection. It can also help us to find
and isolate attacking flows.

There are a lot of interesting works to do in the future,
including:

1. More simulations and experiments against real RDoS
attack in Internet. Due to the scarcity of public RDoS
data, we need to investigate how to collect real traffic in
some network test bed.

2. Test our algorithm in more sophisticated scenarios, e.g.,
with more sophisticated topology by modeling real net-
works.

3. The method attackers can use to escape detection and
our countermeasures, i.e., the attackers try to decrease
the FCC of their flows, and what we can do to detect this
kind of Byzantine attack.

4. Investigating how to use PFD algorithm to protect appli-
cation oriented cloud, e.g., the cloud based grain storage
information system.
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8 Appendix

Proof of Theorem 1 Xa and Xb follow the Pareto distribu-
tion if they are flash crowds. The probability of xa[n] =
xb[n] = x is:

Pr([xa[n] = xb[n] = x) =
(

α · βα

xα+1

)2

< 1

If Xa = Xb, i.e., xa[n] = xb[n] for each n(1 ≤ n ≤ N ),
then we have:

Pr(Xa = Xb)=(Pr([xa[n]= xb[n] = x))N =
(

α · βα

xα+1

)2N

It can be concluded that:

lim
N→∞ ρXi ,X j [k] = lim

N→∞ Pr(Xa = Xb) = 0


�
Proof of Theorem 2 With no background noise and net-
work delay, there is xa[n] = kxb[n](1 ≤ n ≤ N ),
where k = Ma/Mb in Eqs. 8 and 9. Then we have:
ρXa ,Xb [k]

=
1
N

N∑

n=1
xa [n]xb[n]

1
N

[
N∑

n=1
x2a [n]

N∑

n=1
x2b [n]

]1/2

=
N∑

n=1
kx2b [n]

[
N∑

n=1
k2x2b [n]

N∑

n=1
x2b [n]

]1/2

=
k

N∑

n=1
x2b [n]

[

(k
N∑

n=1
x2b [n])2

]1/2 = 1


�
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Proof of Theorem.3 Let Xa and Xb be two random flash
crowds, Xc and Xd be two RDoS flooding attack flows, and
	 be a very small real number. Based on Theorem 1, for a
givenN , it has:

Pr(ρXa ,Xb [k] < 	|N ) = 1

Based on Theorem 2, given N and signal-noise-rate (SNR),
the following equation holds. Here SNR is the ratio of attack-
ing traffic rate to background traffic rate.

Pr(ρXc,Xd [k] ≥ 	|N , SN R) = 1

Since ρXa ,Xb [k] is decreasing along with increasing of N (the
length of flow). In perfect condition, ρXc,Xd [k] = 1 and
ρXa ,Xb [k] decreases with increasing of SNR. As a result,
there must exist a point where both above two equations
hold, i.e., ρXa ,Xb [k] < 	 ≤ ρXc,Xd [k], thus reflection DoS
attacking flow can be isolated from flash crowds, and Theo-
rem holds as well. 
�
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