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4.1 Introduction
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In the nature, most signals, such as audio, image, are analog. One
wants to transmit analog signal using digital techniques.

Analog to Digital

I Step 1. Sampling: from the continuous to the discrete.

I Step 2. Quantization: digital signal.

I Step 3. Code: data compression.
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4.2 Sampling of Analog Signal Low-Pass Signal

4.2.1 Sampling of Low-Pass Signal
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Figure: Scheme of sampling of analog signal

Low-pass sampling theorem:�
�

�
�

If the highest frequency of a continuous analog signal m(t) is less
than fH , and if its sampled by interval time Ts ≤ 1/2fH , then
m(t) can be completely decided by these samples.
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Discussions

I Ts ≤ 1/2fH ⇔ fs ≥ 2fH .

I m(t) =
∞∑

n=−∞
m(nTs)sincωH(t− nTs). One can recover m(t)

utilizing m(nTs) through filtering.

I How about fs ≤ 2fH? Aliasing? Can you draw a picture?
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4.2.2 Sampling of Band-Pass Signal

A sufficient no-loss condition for sampling signals that do not have
baseband components exists that involves the width of the
non-zero frequency interval as opposed to its highest frequency
component. The sufficient condition is that the frequency band of
m(t) is within the range(

N

2
fs,

N + 1

2
fs

)
,

where N is some nonnegative integer. The reconstruction filter is
an ideal bandpass filter with cutoffs at the upper and lower edges
of the specified band, which is the difference between a pair of
low-pass impulse responses

(N + 1)fs sinc ((N + 1)πfst)−Nfs sinc (Nπfst) .

See details in the webpage:
http://en.wikipedia.org/wiki/Sampling-theorem.
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4.3 Quantization of Sampled Signal

1 Uniform Quantization
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Figure: Quantization of sampled signal

Uniform quantization (quantizer
parameters)

I the input max/min values are a
and b, respectively.

I the number of quantization
levels is M.

I the ith quantization interval is
(mi−1,mi). Then quantization
interval ∆i = ∆ = (b− a)/M
and the quantized output level
qi = (mi−1 +mi)/2.
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I Quantization error eq:
I If the sample m(kTs) ∈ [a, b], quantization error eq ≤ ∆/2.
I If the sample m(kTs) /∈ [a, b] (overload area), quantization

error eq may be larger than ∆/2.
I When designing the quatizer, we always avoid the overload

phenomenon.

I Quantization noise: Assume that m(t) is stable random
process with zero expect value and probability density function
f(x), and m(t) ∈ [a, b]. The quantization noise

Nq = E[|m(kTs)−mq(kTs)|2] =

M∑
i=1

∫ mi

mi−1

(x− qi)2f(x)dx.
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I Quantization signal-to-noise ratio:

S

Nq
=

E[|m(kTs)|2

E[|m(kTs)−mq(kTs)|2]

.

I Example. The number of quantization levels is M, the pdf of
m(t) U [−a, a]. Determine the S

Nq
?

I

Nq =

M∑
i=1

∫ mi

mi−1

(x− qi)2 1

2a
dx

=

M∑
i=1

∫ −a+i∆

−a+(i−1)∆
(x+ a− i∆ +

∆

2
)2 1

2a
dx

=

M∑
i=1

1

2a

∆3

12

=
(∆)2

12
(since M∆ = 2a).
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I

S = E[m(kTs)
2] =

∫ a

−a
x2 1

2a
dx

=
a2

3
=
M2

12
∆2

I Result: ( S
Nq

)dB = 20 logM = 6N . Usually, we say, if the

quantization bits are increased by 1, the ( S
Nq

)dB increases
6dB.

I Drawbacks: uniform quantizer is not good for small signals.
However, in the nature, such as speech signal, most cases are
small.
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4.3.3 Non-uniform Quantization

In the non-uniform quantization, the interval of quantization varies
with samples of a signal. It means that the response, y = f(x), of
the quantizer is nonlinear. In practice, ITU recommend two kinds
of quantizer:

I A-law compression: y =

{
Ax

1+lnA , 0 < x ≤ 1
A ,

1+lnAx
1+lnA ,

1
A ≤ x ≤ 1.

I µ-law compression: y = ln(1+µx)
ln(1+µ) , 0 ≤ x ≤ 1.

In America and Japan, µ-law 15 broke line compression µ = 255 is
exploited; In our country and Europe, A-law 13 broke line
compression (A=87.6) is exploited.
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A-law Broke Line Compression Characteristics
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I The above characteristics is named A-law compression when
A=87.6. See the pp.95, table 4.3.2.

I Why is 13 broke line?
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4.4 Pulse Code Modulation - PCM

Table: Folded binary code and nature binary code

Polarity Nature Folded Levels

+

1111 1111 15
1110 1110 14
1101 1101 13
1100 1100 12
1011 1011 11
1010 1010 10
1001 1001 9
1000 1000 8

–

0111 0000 7
0110 0001 6
0101 0010 5
0100 0011 4
0011 0100 3
0010 0101 2
0001 0110 1
0000 0111 0

I Folded binary code is good for small signals.
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4.4.1 Principles of Pulse Code Modulation (PCM)

The PCM consists of three steps: sampling, quantization, and
coding.

I A-law 13 broke line: the input range [0, 1] is non-uniformly
divided into 8 segments, [0, 1/128], ..., [1/4, 1/2], [1/2, 1].

I Each segment is uniformly divided into 16 smaller segments.

Coding rules: Folded binary code

I Polarity bit, named c1, to denote the positive or negative of
the pulse, e.g., positive – c1 = 1 and negative – c1 = 0.

I Segment bits, named c2c3c4, to denote which segment the
pulse locates.

I Inner-segment bits, named c5c6c7c8, to denote which
quantization level the pulse is.
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Define the minimum quantization interval ∆ = 1
2048 as the

quantization unit. Then, we have the table

No. of segment beginning level quantization interval

1 000 0 ∆

2 001 16∆ ∆

3 010 32∆ 2∆

4 011 64∆ 4∆

5 100 128∆ 8∆

6 101 256∆ 16∆

7 110 512∆ 32∆

8 111 1024∆ 64∆

I Exe: pulse Is = 1260∆, determine the A-law 13 broke line
code.
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Encoder Rate

I Assume the speech signal [0, 4kHz].

I Sampling rate fs = 8k samples/s.

I PCM A-law 13 broke line rule: Rb = 64 kbit/s.
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Quantization Noise in PCM System
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I The output of the LPF: m̂(t) = m(t) + nq(t) + ne(t).

I The output SNR: So
No

= E[m2(t)]
E[n2

q(t)+E[n2
e(t)]

.

I Assume the input signal m(t) ∼ U [−a, a] and quantizer is
with N bit (M levels) uniform quantization. Determine So

No
?
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I Signal to quantization noise ratio:
So
Nq

= E[m2(t)]
n2
q(t)

= M2 = 22N .

I Signal to noise ratio (error bits):
I Noise power (error bits):

Ne = E[n2
e(t)] = Pe

N∑
i=1

(2i−1∆)2 =
22N − 1

3
∆2Pe ≈

22N

3
∆2Pe

.

I Signal power: So = E[m2(t)] =

∫ a

−a
x2 1

2a
dx =

a2

3
=

22N

12
∆2.

(2a = 2N∆)
I We have So

Ne
= 1

4Pe
.

I We obtain the output SNR: So
No

= 1
Nq
So

+Ne
So

= 22N

1+4Pe22N
.

I Discussions: (From the viewpoint of the practice)
I High SNR: Pe is very small, 4Pe2

2N << 1, So

No
≈ So

Nq
.

I Low SNR: Pe is is large, 4Pe2
2N >> 1, So

No
≈ So

Ne
.
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4.6 Delta Modulation

1. Principles of Delta Modulation

Definition: ∆M is to encode
the difference between the
neighboring samples.
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I In the above figure, if ∆t and σ are small enough, staircase
waveform, m′(t), can be arbitrarily close to m(t).

I Encoding: “1” —- m′(t) goes upstair δ and “0” —- m′(t)
goes downstair δ, m′(t) is equivalent to binary sequence.
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2. Encoder and Decoder
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I Decision Rules:

m(t)−m′(t)|t=t−

{
> 0, “1′′

< 0, “0′′.
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3. Overload Characteristic

I Quantization noise: eq(t) = m(t)−m′(t)
I Normal quantization noise: |eq(t)| ≤ σ.
I Overload quantization noise: If the output m′(t) of the local

encoder cannot pace up with variation of m(t), |eq(t)| > σ/2.

I Maximum tracking slope:
I Assume sampling interval ∆t — sampling rate fs = 1

∆t ;
I Quantization step: σ.
I Maximum tracking slope: K = σfs.

I To avoid overload quantization noise:

|dm(t)

dt
| ≤ σfs

.

I To elevate the tracking ability: increase quantization step σ
and sampling rate fs.

I Drawbacks: Increase quantization noise and transmission rate.
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4. Coding Range and Signal to Quantization SNR
Maximum coding level and Minimum coding level

I Maximum coding level: If input signal m(t) = A sinωkt, the
maximum slope K = Aωk. To avoid overload noise,
Aωk ≤ σfs is desired. So Amax = σfs

2πfk
.

I Minimum coding level: If m(t) ∈
[
− σ

2 ,
σ
2

]
, the output coded

sequence is 1010101010 · · · and cannot show the
characteristic of the signal. So Amin = σ

2 .

Assume the input signal m(t) = A sinωkt. Quantization SNR

So
Nq

=
3

8π2

( f3
s

f2
kfm

)
≈ 0.04

f3
s

f2
kfm

= 30 log fs − 20 log fk − 10 log fm − 14(dB).

where fm is the cut-off frequency of the low pass filter.

I fs → 2fs,
(
So
Nq

)
dB
↑ 9dB; fk → 2fk,

(
So
Nq

)
dB
↓ 6dB;

fm → 2fm,
(
So
Nq

)
dB
↓ 3dB;
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5. Comparisons of PCM and ∆M

PCM ∆M

Sampling Rate f ≥ 2fm related to the maximum
tracking slope, usually
larger than Nyquist rate.

Bit rate ≥ 64kbit/s determined by fs
So
Nq

6NdB
So
Nq

= 3
8π2

( f2s
f2kfm

)
Effects of error bits sensitive insensitive, applied to the

system with high BER

Complexity high, but widely
used

low and only used in spe-
cial applications. (why?)
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Assume PCM and ∆M have
the same transmission rate,
Rb.

I ∆M : fs = Rb.

I PCM: fs = 2fm =
Rb
N −→ Rb = 2Nfm

So
Nq
≈ 10 log

(
0.04

f3
s

f2
kfm

)
= 10 log

(
0.32N3 f

2
m

f2
k

)
When fk = 1kHz and
fm = 4kHz,
So
Nq
≈ 30 log 1.72N dB. 1 2 3 4 5 6
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