Principles of Communications Chapter IV: Digitization of Analog Signal

Yongchao Wang Email: ychwang@mail.xidian.edu.cn

Xidian University State Key Lab. on ISN

November 14, 2018

<ロト < 回 > < 目 > < 目 > 目 2000 1/23

4.1 Introduction

In the nature, most signals, such as audio, image, are analog. One wants to transmit analog signal using digital techniques.

<ロ > < 回 > < 臣 > < 臣 > < 臣 > 臣 2/23

Analog to Digital

- ▶ Step 1. Sampling: from the continuous to the discrete.
- Step 2. Quantization: digital signal.
- Step 3. Code: data compression.

4.2 Sampling of Analog Signal Low-Pass Signal

4.2.1 Sampling of Low-Pass Signal

Figure: Scheme of sampling of analog signal

Low-pass sampling theorem:

If the highest frequency of a continuous analog signal m(t) is less than f_H , and if its sampled by interval time $T_s \leq 1/2f_H$, then m(t) can be completely decided by these samples.

Discussions

国家重点

4.2.2 Sampling of Band-Pass Signal

A sufficient no-loss condition for sampling signals that do not have baseband components exists that involves the width of the non-zero frequency interval as opposed to its highest frequency component. The sufficient condition is that the frequency band of m(t) is within the range

$$\left(\frac{N}{2}f_{\rm s},\frac{N+1}{2}f_{\rm s}\right),\,$$

where N is some nonnegative integer. The reconstruction filter is an ideal bandpass filter with cutoffs at the upper and lower edges of the specified band, which is the difference between a pair of low-pass impulse responses

$$(N+1)f_s \operatorname{sinc} \left((N+1)\pi f_s t \right) - Nf_s \operatorname{sinc} \left(N\pi f_s t \right).$$

See details in the webpage:

http://en.wikipedia.org/wiki/Sampling-theorem.

4.3 Quantization of Sampled Signal 1 Uniform Quantization

re. Quantization of sampled signal

Uniform quantization (quantizer parameters)

- the input max/min values are a and b, respectively.
- the number of quantization levels is M.
- the ith quantization interval is (m_{i-1}, m_i) . Then quantization interval $\Delta_i = \Delta = (b-a)/M$ and the quantized output level $q_i = (m_{i-1} + m_i)/2$.

- Quantization error e_q :
 - If the sample $m(kT_s) \in [a, b]$, quantization error $e_q \leq \Delta/2$.
 - If the sample m(kT_s) ∉ [a, b] (overload area), quantization error e_a may be larger than Δ/2.
 - When designing the quatizer, we always avoid the overload phenomenon.
- Quantization noise: Assume that m(t) is stable random process with zero expect value and probability density function f(x), and $m(t) \in [a, b]$. The quantization noise

$$N_q = E[|m(kT_s) - m_q(kT_s)|^2] = \sum_{i=1}^M \int_{m_{i-1}}^{m_i} (x - q_i)^2 f(x) dx.$$

Quantization signal-to-noise ratio:

$$\frac{S}{N_q} = \frac{E[|m(kT_s)|^2}{E[|m(kT_s) - m_q(kT_s)|^2]}$$

► Example. The number of quantization levels is M, the pdf of m(t) U[-a, a]. Determine the S/Nq?

$$N_{q} = \sum_{i=1}^{M} \int_{m_{i-1}}^{m_{i}} (x - q_{i})^{2} \frac{1}{2a} dx$$

= $\sum_{i=1}^{M} \int_{-a + (i-1)\Delta}^{-a + i\Delta} (x + a - i\Delta + \frac{\Delta}{2})^{2} \frac{1}{2a} dx$
= $\sum_{i=1}^{M} \frac{1}{2a} \frac{\Delta^{3}}{12}$
= $\frac{(\Delta)^{2}}{12}$ (since $M\Delta = 2a$).

$$S = E[m(kT_s)^2] = \int_{-a}^{a} x^2 \frac{1}{2a} dx$$
$$= \frac{a^2}{3} = \frac{M^2}{12} \Delta^2$$

- ▶ Result: $(\frac{S}{N_q})_{dB} = 20 \log M = 6N$. Usually, we say, if the quantization bits are increased by 1, the $(\frac{S}{N_q})_{dB}$ increases 6dB.
- Drawbacks: uniform quantizer is not good for small signals. However, in the nature, such as speech signal, most cases are small.

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > (23)

4.3.3 Non-uniform Quantization

In the non-uniform quantization, the interval of quantization varies with samples of a signal. It means that the response, y = f(x), of the quantizer is nonlinear. In practice, ITU recommend two kinds of quantizer:

A-law compression:
$$y = \begin{cases} \frac{Ax}{1+\ln A}, & 0 < x \le \frac{1}{A}, \\ \frac{1+\ln Ax}{1+\ln A}, & \frac{1}{A} \le x \le 1. \end{cases}$$

• μ -law compression: $y = \frac{\ln(1+\mu x)}{\ln(1+\mu)}$, $0 \le x \le 1$. In America and Japan, μ -law 15 broke line compression $\mu = 255$ is exploited; In our country and Europe, A-law 13 broke line compression (A=87.6) is exploited.

A-law Broke Line Compression Characteristics

The above characteristics is named A-law compression when A=87.6. See the pp.95, table 4.3.2.

Why is 13 broke line?

4.4 Pulse Code Modulation - PCM

Polarity	Nature	Folded	Levels
+	1111	1111	15
	1110	1110	14
	1101	1101	13
	1100	1100	12
	1011	1011	11
	1010	1010	10
	1001	1001	9
	1000	1000	8
_	0111	0000	7
	0110	0001	6
	0101	0010	5
	0100	0011	4
	0011	0100	3
	0010	0101	2
	0001	0110	1
	0000	0111	0

Table: Folded binary code and nature binary code

► Folded binary code is good for small signals.

4.4.1 Principles of Pulse Code Modulation (PCM)

The PCM consists of three steps: sampling, quantization, and **coding**.

- ► A-law 13 broke line: the input range [0,1] is non-uniformly divided into 8 segments, [0, 1/128], ..., [1/4, 1/2], [1/2, 1].
- Each segment is uniformly divided into 16 smaller segments.

Coding rules: Folded binary code

- ▶ Polarity bit, named c₁, to denote the positive or negative of the pulse, e.g., positive - c₁ = 1 and negative - c₁ = 0.
- Segment bits, named c₂c₃c₄, to denote which segment the pulse locates.

<ロト < 副 ト < 臣 ト < 臣 ト 三 2000 13/23

► Inner-segment bits, named c₅c₆c₇c₈, to denote which quantization level the pulse is.

Define the minimum quantization interval $\Delta=\frac{1}{2048}$ as the quantization unit. Then, we have the table

No. of segment	beginning level	quantization interval
1 000	0	Δ
2 001	16Δ	Δ
3 010	32Δ	2Δ
4 011	64Δ	4Δ
5 100	128Δ	8Δ
6 101	256Δ	16Δ
7 110	512Δ	32Δ
8 111	1024Δ	64Δ

▶ Exe: pulse $I_s = 1260\Delta$, determine the A-law 13 broke line code.

PCM Encoder

To determine c_i , set $\hat{c}_i=1$

Encoder Rate

- Assume the speech signal [0, 4kHz].
- Sampling rate $f_s = 8k$ samples/s.
- ► PCM A-law 13 broke line rule: $R_b = 64 \ kbit/s$.

Quantization Noise in PCM System

- The output of the LPF: $\hat{m}(t) = m(t) + n_q(t) + n_e(t)$.
- ▶ The output SNR: $\frac{S_o}{N_o} = \frac{E[m^2(t)]}{E[n_a^2(t) + E[n_e^2(t)]}$.
- ► Assume the input signal m(t) ~ U[-a, a] and quantizer is with N bit (M levels) uniform quantization. Determine So No C = > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B

- ► Signal to quantization noise ratio: $\frac{S_o}{N_a} = \frac{E[m^2(t)]}{n_a^2(t)} = M^2 = 2^{2N}.$
- Signal to noise ratio (error bits):
 - Noise power (error bits):

$$N_e = E[n_e^2(t)] = P_e \sum_{i=1}^{N} (2^{i-1}\Delta)^2 = \frac{2^{2N} - 1}{3} \Delta^2 P_e \approx \frac{2^{2N}}{3} \Delta^2 P_e$$

- We obtain the output SNR: $\frac{S_o}{N_o} = \frac{1}{\frac{N_q}{S_o} + \frac{N_e}{S_o}} = \frac{2^{2N}}{1 + 4P_e 2^{2N}}.$
- Discussions: (From the viewpoint of the practice)
 - High SNR: P_e is very small, $4P_e 2^{2N} \ll 1$, $\frac{S_o}{N_o} \approx \frac{S_o}{N_a}$.
 - ▶ Low SNR: P_e is is large, $4P_e 2^{2N} >> 1$, $\frac{S_o}{N_o} \approx \frac{S_o}{N_e}$.

4.6 Delta Modulation

1. Principles of Delta Modulation

Definition: ΔM is to encode the difference between the neighboring samples.

- ▶ In the above figure, if Δt and σ are small enough, staircase waveform, m'(t), can be arbitrarily close to m(t).
- Encoding: "1" m'(t) goes upstair δ and "0" m'(t) goes downstair δ, m'(t) is equivalent to binary sequence.

2. Encoder and Decoder

Decision Rules:

$$m(t) - m'(t)|_{t=t_{-}} \begin{cases} > 0, \ ``1'' \\ < 0, \ ``0''. \end{cases}$$

3. Overload Characteristic

▶ Quantization noise: $e_q(t) = m(t) - m'(t)$

- Normal quantization noise: $|e_q(t)| \leq \sigma$.
- ► Overload quantization noise: If the output m'(t) of the local encoder cannot pace up with variation of m(t), |e_q(t)| > σ/2.
- Maximum tracking slope:
 - Assume sampling interval Δt sampling rate $f_s = \frac{1}{\Delta t}$;
 - Quantization step: σ.
 - Maximum tracking slope: $K = \sigma f_s$.
- ► To avoid overload quantization noise:

$$|\frac{dm(t)}{dt}| \le \sigma f_s$$

• To elevate the tracking ability: increase quantization step σ and sampling rate f_s .

.

Drawbacks: Increase quantization noise and transmission rate.

4. Coding Range and Signal to Quantization SNR

Maximum coding level and Minimum coding level

- Maximum coding level: If input signal m(t) = A sin ω_kt, the maximum slope K = Aω_k. To avoid overload noise, Aω_k ≤ σf_s is desired. So A_{max} = σf_s/2πf_k.
- Minimum coding level: If m(t) ∈ [^σ/₂, ^σ/₂], the output coded sequence is 1010101010 · · · and cannot show the characteristic of the signal. So A_{min} = ^σ/₂.

Assume the input signal $m(t) = A \sin \omega_k t$. Quantization SNR

$$\frac{S_o}{N_q} = \frac{3}{8\pi^2} \left(\frac{f_s^3}{f_k^2 f_m}\right) \approx 0.04 \frac{f_s^3}{f_k^2 f_m}$$

= 30 log f_s - 20 log f_k - 10 log f_m - 14(dB).

where f_m is the cut-off frequency of the low pass filter.

•
$$f_s \to 2f_s$$
, $\left(\frac{S_o}{N_q}\right)_{dB} \uparrow 9dB$; $f_k \to 2f_k$, $\left(\frac{S_o}{N_q}\right)_{dB} \downarrow 6dB$;
 $f_m \to 2f_m$, $\left(\frac{S_o}{N_q}\right)_{dB} \downarrow 3dB$;

5. Comparisons of PCM and ΔM

	РСМ	ΔM
Sampling Rate	$f \ge 2f_m$	related to the maximum tracking slope, usually
		larger than Nyquist rate.
Bit rate	$\geq 64kbit/s$	determined by f_s
$\frac{S_o}{N_q}$	$6N_{dB}$	$\frac{S_o}{N_q} = \frac{3}{8\pi^2} \left(\frac{f_s^2}{f_k^2 f_m}\right)$
Effects of error bits	sensitive	insensitive, applied to the system with high BER
Complexity	high, but widely used	low and only used in spe- cial applications. (why?)

Assume PCM and ΔM have the same transmission rate, R_b .

►
$$\Delta M$$
: $f_s = R_b$.
► PCM: $f_s = 2f_m = \frac{R_b}{N} \longrightarrow R_b = 2Nf_m$
 $\frac{S_o}{N_q} \approx 10 \log \left(0.04 \frac{f_s^3}{f_k^2 f_m} \right)$
 $= 10 \log \left(0.32 N^3 \frac{f_m^2}{f_k^2} \right)$

When $f_k = 1kHz$ and $f_m = 4kHz$, $\frac{S_o}{N_q} \approx 30 \log 1.72N$ dB.

