Principles of Communications Chapter III: Analog Modulation System

Yongchao Wang Email: ychwang@mail.xidian.edu.cn

Xidian University State Key Lab. on ISN

October 29, 2018

<ロト < 回 > < 臣 > < 臣 > 三 29.00 2/14

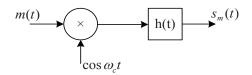
Introduction

Purposes and Classification

- Frequency spectrum of baseband signal can be moved near the desired frequency and we can combine several signals for multichannel transmission.
- The anti-jamming ability for the signal transferred through channels can be improved by modulations.
- Modulation mode affects the utilization of transmission bandwidth.
- A cosine waveform is mathematically expressed as $c(t) = A\cos(\omega_c t + \varphi)$. Modulation enable parameter A, ω_c , and φ vary with the baseband signal.
 - Amplitude modulation: Linear Modulation.
 - Frequency/phase modulation: Nonlinear Modulation.
 - Question: What is the difference between the Linear Modulation and the Nonlinear Modulation?

<ロト < 副 ト < 差 ト < 差 ト 差 2/14

Linear Modulation



- Temporal expression: $s_m(t) = [m(t) \cos \omega_c t] * h(t)$.
- Frequency domain expression: $S_m(f) = \frac{1}{2}[M(f - f_c) + M(f + f_c)]H(f).$
- According to the setting H(f) and the characteristic, linear modulation can be divided as: AM, DSB-SC, SSB, and VSB.

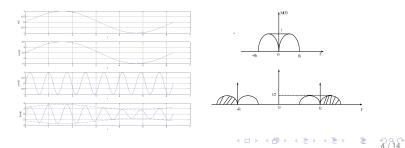
<ロト < 回 > < 目 > < 目 > 目 2900 3/14

AM

Signal $m(t), [0, f_H]$ consists of direct component A and alternating component m'(t). And H(f) = 1 allows the signal pass through without distortion.

- ► Temporal expression: $s_m(t) = [A + m'(t)] \cos \omega_c t$ and $A > \max_t |m'(t) .$
- ► Frequency domain expression: $S(f) = \frac{1}{2}[M(f - f_c) + M(f + f_c)] + A\pi[\delta(f - f_c) + \delta(f + f_c)].$ ► $B = 2f_H$. $P = \frac{A^2}{2} + \frac{|m'(t)|^2}{2}$. DC component doesn't carry

any information and power efficiency is low.



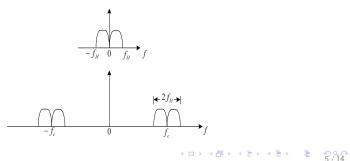
DSB-SC: Double-sideband Modulation - Suppressed Carrier

Signal m(t) is only with alternating component. And H(f) = 1 allows the signal pass through without distortion.

- Temporal expression: $s_m(t) = m(t) \cos \omega_c t$.
- Frequency domain expression: $C_{1}(f) = \frac{1}{M}(f - f) + M(f + f)$

 $S_m(f) = \frac{1}{2}[M(f - f_c) + M(f + f_c)].$

▶ $B = 2f_H$. Two sidebands (Upper-side and Lower-side) in DSB modulation contain the same information. (Frequency band efficiency is low.)



SSB/VSB

Signal m(t) is only with alternating component. And H(f) are low-pass filter or high-pass filter to allow only the upper-side or the lower-side signal pass through.

- Temporal expression: $s_m(t) = m(t) \cos \omega_c t \mp \hat{m}(t) \sin \omega_c t$.
- $\hat{m}(t)$ is the Hilbert transform of m(t). Its definition is

$$\hat{M}(\omega) = -j \mathrm{sgn}(\omega) M(\omega) \text{ and } \mathrm{sgn}(\omega) = \begin{cases} 1, \ \omega > 0 \\ -1, \omega < 0 \end{cases}$$
.

$$2S_m(f) = \left[M(\omega + \omega_c) + M(\omega - \omega_c) \right] - j \left[\hat{M}(\omega + \omega_c) - \hat{M}(\omega - \omega_c) \right]$$

= $\left[M(\omega + \omega_c) + M(\omega - \omega_c) \right]$
- $\left[\operatorname{sgn}(\omega + \omega_c) M(\omega + \omega_c) - \operatorname{sgn}(\omega - \omega_c) M(\omega - \omega_c) \right]$
= $M(\omega + \omega_c) \left[1 - \operatorname{sgn}(\omega + \omega_c) \right]$
+ $M(\omega - \omega_c) \left[1 + \operatorname{sgn}(\omega - \omega_c) \right]$
= $S(\omega) H(\omega) - \operatorname{high} - \operatorname{pass}$ filter

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > (14)

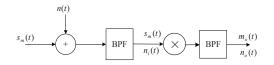
Similar derivations for lower-side case. $\sin \omega_c t \leftrightarrow j\pi [\delta(\omega + \omega_c) - \delta(\omega - \omega_c)]).$ ► $B = f_H$.

Generate SSB signal: Filtering or Hilbert transform. (not easy)

VSB

If $H(f + f_c) + f(f - f_c) = c$, $|f| < f_H$, the receiver can recover the baseband signal without distortion.

Coherent Demodulation



Assume that the modulation is AM.

► Step 1. Signal:
$$s_m(t) = (A + m(t)) \cos \omega_c t$$
;
Noise: $n_i(t) = n_c(t) \cos \omega_c t - n_s(t) \sin \omega_c t$.

► Step 2. Signal:

$$s_m(t)\cos\omega_c t = (A + m(t))\cos^2\omega_c t$$

= $\frac{1}{2}A^2 + \frac{1}{2}m(t) + \frac{1}{2}(A + m(t))\cos 2\omega_c t \underline{LPF} + \frac{1}{2}A^2 + \frac{1}{2}m(t).$

Noise:

$$\begin{split} n_i(t)\cos\omega_c t &= \frac{1}{2}n_c(t) + \frac{1}{2}n_c(t)\cos 2\omega_c t - \frac{1}{2}n_s(t)\cos 2\omega_c t \\ & \underbrace{LPF}_{} \frac{1}{2}n_c(t). \end{split}$$

Output SNR (Signal Noise Ratio):

$$\frac{S_o}{N_o} = \frac{\overline{m^2(t)}}{\sigma^2} = \frac{\overline{m^2(t)}}{n_0 B}.$$

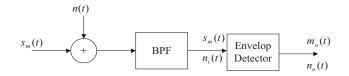
• Modulation Gain: $G = \frac{S_o/N_o}{S_i/N_i}$

$$\frac{S_i}{N_i} = \frac{\frac{1}{2}(A^2 + \overline{m^2(t)})}{\sigma^2} = \frac{\frac{1}{2}(A^2 + \overline{m^2(t)})}{n_0 B}$$

$$G = \frac{S_o/N_o}{S_i/N_i} = \frac{2m^2(t)}{A^2 + \overline{m^2(t)}},$$
$$G_{\max} = \frac{2}{3} \quad (m(t) = A\cos\omega_c t)$$

Can we apply the coherent scheme to DSB and SSB?

Non-coherent Demodulation



Assume that $s_m(t) = [A + m(t)] \cos \omega_c t$, $A \ge |m(t)|_{\text{max}}$, and noise $n_i(t) = n_c(t) \cos \omega_c t - n_s(t) \sin \omega_c t$. We have

$$s_m(t) + n_i(t) = [A + m(t) + n_c(t)] \cos \omega_c t - n_s(t) \sin \omega_c t$$
$$= E(t) \cos[\omega_c t + \varphi(t)].$$

where

$$\begin{split} E(t) &= \sqrt{[A+m(t)+n_c(t)]^2 + n_s(t)^2} \\ &= \sqrt{[A+m(t)]^2 + 2n_c(t)[A+m(t)] + n_c(t)^2 + n_s(t)^2}. \end{split}$$

Non-coherent Demodulation

$$\begin{array}{l} \text{For the case of } (A+m(t))^2 >> n_c(t)^2 + n_s(t)^2, \\ \bullet \ E(t) \approx A + m(t) + n_c(t) \\ \bullet \ \frac{S_o}{N_o} = \frac{\overline{m^2(t)}}{n_c^2(t)} = \frac{m^2(t)}{n_o B}. \\ \bullet \ G_{AM} = \frac{\overline{m^2(t)}}{A^2 + m^2(t)}. \end{array} \\ \end{array}$$

For the case of
$$(A + m(t))^2 >> n_c(t)^2 + n_s(t)^2$$
,

$$E(t) \approx R(t) + [A + m(t)] \cos \theta$$

, where $R(t)=\sqrt{n_c^2(t)+n_s^2(t)}$ and $\cos\theta=\frac{n_c(t)}{R(t)}.$

► Threshold effect: when the input S_i/N_i decreases to some special value (threshold), the output S_o/N_o decreases dramatically. The phenomenon is named as "threshold effect".

Can we apply the non-coherent scheme to the DSB or SSB?

Nonlinear Modulation – Basic Concepts

Parameters: $S_m(t) = A \cos[\omega_c t + \varphi(t)]$

- $\omega_c t + \varphi(t)$ instant phase.
- $\varphi(t)$ instant phase shift with respect to $\omega_c t$.
- $\frac{d[\omega_c t + \varphi(t)]}{dt}$ instant angular frequency.
- $\frac{d\varphi(t)}{dt}$ instant angular frequency shift with respect to ω_c .
- ▶ Phase modulation (PM): For any t, $\varphi(t)$ is proportional to the signal m(t), i.e., $\varphi(t) = K_p m(t)$ and

$$s_{PM}(t) = A\cos[\omega_c t + K_p m(t)].$$

Frequency modulation (FM): $\frac{d\varphi(t)}{dt}$ is proportional to the signal m(t), i.e., $\frac{d\varphi(t)}{dt} = K_f m(t)$. So we have

$$s_{PM}(t) = A \cos \left[\omega_c t + \int_{-\infty}^t K_f m(\tau) d\tau \right].$$

Narrowband FM and Wideband FM

Assume that modulating signal $m(t) = A_m \cos \omega_H t$. The corresponding FM signal is

$$s_{FM}(t) = A \cos \left[\omega_c t + \int_{-\infty}^t K_f A_m \cos \omega_H \tau d\tau\right]$$
$$\approx A \cos[\omega_c t + \frac{K_f A_m}{\omega_H} \sin \omega_H t]$$

- The maximum instant angular frequency shift Δf with respect to ω_c is $K_f A_m$.
- Define the modulation index as $m_f = \frac{K_f A_m}{\omega_H} = \frac{\Delta f}{f_H}$.
- ▶ For signal $m(t) [0, f_H]$, its corresponding bandwidth could be roughly regarded as $B_{FM} = 2(m_f + 1)f_H$. (Every frequency component f_H could be shifted to $f_H + \Delta f$)
 - Narrowband FM ($m_f \ll 1$): $B_{FM} \approx 2 f_H$.
 - Wideband FM $(m_f >> 1)$: $B_{FM} \approx 2m_f f_H = 2\Delta f$.

► Generally, one can find that the anti-noise performance of the system is better while m_f , or B_{FM} , is bigger.

Comparisons

Table: Comparisons of the Different Analog Modulation

Mods	Frequency Band	Anti-noise	Complexity	Applications
				Medium/short
AM	$2f_H$	not good	simple	wave
				broadcasting
DSB	$2f_H$	medium	medium	—-
				Short wave
SSB	f_H	medium	complex	broadcasting,
				audio
VSB	$[f_H, 2f_H]$	medium	medium	TV broadcasting
FM	$2(m_f + 1)f_H$	good	medium	Audio
				broadcasting

< ≣ ► ≡ 228°

$$G_{AM} = \frac{2}{3}, \ G_{DSB} = 2, \ G_{SSB} = 1, \ G_{FM} = 3m_f^2(m_f + 1).$$