Principles of Communications

Chapter II: Signals - Homework

Yongchao Wang

Email: ychwang@mail.xidian.edu.cn

November 6, 2013
2.1 Assume a random process $X(t)$ can be expressed as

$$
X(t)=2 \cos (2 \pi t+\theta) \quad-\infty<t<\infty
$$

where θ is a discrete random variable, its probability distribution is as follows.

$$
P(\theta=0)=0.5, \quad P(\theta=\pi / 2)=0.5
$$

Find $E[X(t)]$ and $R_{X}(0,1)$.
2.2 Assume a random process $X(t)$ can be expressed as

$$
X(t)=2 \cos (2 \pi t+\theta) \quad-\infty<t<\infty
$$

Judge it is a power signal or energy signal. And find its power spectral density or energy spectral density.
2.3 Assume a signal can be expressed as

$$
x(t)= \begin{cases}4 \exp (-t) & t \geq 0 \\ 0 & t<0\end{cases}
$$

Is it a power signal or energy signal? And find its power spectral density or energy spectral density.
2.4 Assume $X(t)=x_{1} \cos 2 \pi t-x_{2} \sin 2 \pi t$ is a random process, where x_{1} and x_{2} are statistically independent Gaussian random variables, and their mathematical expectations are 0 ,variances are σ^{2}. Find:
(1) $E[X(t)], E\left[X^{2}(t)\right]$;
(2) The probability distribution density of $X(t)$;
(3) $R_{X}\left(t_{1}, t_{2}\right)$.
2.5 Find the autocorrelation function of $X(t)=A \cos \omega t$, and find its power from its autocorrelation function.
2.6 The autocorrelation function of a stationary random process $X(t)$ is given to be a periodic function with period 2 :

$$
R(\tau)=1-|\tau| \quad-1 \leq \tau<1
$$

Find the power spectral density $P_{X}(f)$ of $X(t)$ ，and draw its curve． 2．7 A period signal $x(t)$ is applied on the input of a linear system， and the output signal is

$$
y(t)=\tau[d x(t) / d t]
$$

where τ is constant ．Find the transfer function $H(f)$ of the linear system．
2．8 If a Gaussian white noise passes the filter shown in Fig．2．10．4 Its mean is 0 ，and double－side power spectral density is $n_{0} / 2$ ．Find the probability density of the output noise．
2.9 均值为零的高斯随机变量，其方差 $\sigma_{x}^{2}=4$ ，求 $x>2$ 的概率。
2.10 随机过程 $X(t)$ 的均值为 a ，自相关函数为 $R_{x}(\tau)$ ，随机过程 $Y(t)=X(t)-X(t-T)$ ，T 为常数，求证 $Y(t)$ 是否为平稳随机过程。
2.11 随机过程 $z(t)=x_{1} \cos \omega_{0} t-x_{2} \sin \omega_{0} t$ ，若 x_{1} 和 x_{2} 是彼此独立且均值为 0 ，方差为 σ^{2} 的正态随机变量，试求：
（1）$E[z(t)], E\left[z^{2}(t)\right]$ ；
（2）$z(t)$ 的一维分布密度函数 $f(z)$ ；
（3）$B\left(t_{1}, t_{2}\right)$ 与 $R\left(t_{1}, t_{2}\right)$ 。
2.12 已知一随机过程 $z(t)=m(t) \cos \left(\omega_{0} t+\theta\right)$ ，它是广义平稳随机过程 $m(t)$ 对一载频进行振幅调制的结果。此载频的相位 θ在 $(0,2 \pi)$ 上为均匀分布，设 $m(t)$ 与 θ 是统计独立的，且 $m(t)$ 的自相关函数 $R_{m}(\tau)$ 为

$$
R_{m}(\tau)= \begin{cases}1+\tau, & -1<\tau<0 \\ 1-\tau, & 0 \leq \tau<1 \\ 0, & \text { others }\end{cases}
$$

（1）证明 $z(t)$ 是广义平稳的；
（2）绘出自相关函数 $R_{z}(\tau)$ 的波形；
（3）求功率谱密度 $P_{z}(\omega)$ 及功率S。
2.13 将均值为 0 ，自相关函数为 $\frac{n_{0}}{2} \delta(t)$ 的高斯白噪声加到一个中心角频率为 ω_{c} 带宽为 B 的理想带通滤波器上，如图P－1所示。
（1）求滤波器输出噪声的自相关函数；
（2）写出输出噪声的一维概率密度函数。
2.14 随机过程 $X(t)=A \cos (\omega t+\theta)$ ，式中，A, ω, θ 是相互独立的随机变量，其中 A 的均值为 2 ，方差为 $4, ~ \theta$ 在区间 $(-\pi, \pi)$ 上均匀分布，ω 在区间 $(-5,5)$ 上均匀分布。
（1）随机过程 $X(t)$ 是否平稳？是否各态历经？
（2）求出自相关函数。
2.15 若 $\xi(t)$ 是平稳随机过程，自相关函数为 $R_{\xi}(\tau)$ ，试求它通过如图P－2系统后的自相关函数及功率谱密度。
2.16 设 $x_{1}(t)$ 与 $x_{2}(t)$ 为零均值且互不相关的平稳过程，经过线性时不变系统，其输出分别为 $z_{1}(t)$ 与 $z_{2}(t)$ ，试证明 $z_{1}(t)$ 与 $z_{2}(t)$也是互不相关的。

图P－2

