Principles of Communications Chapter I: Introduction – Homework

October 29, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1.1 The probability of occurrence for letter E in English alphabet is maximal, and equals 0.105. Find its information content? **1.2** An information source consists of A, B, C and D. Assume each symbol occurs in dependently, and the occurrence probabilities are respectively 1/4, 1/4, 3/16, and 5/16. Find the information content for each symbol in information source. **1.3** An information source consists of A. B. C and D. The symbols are represented by binary codeword 00, 01, 10, and 11. If each binary symbol is transmitted by the pulse with width 5 ms, then find the average information rates respectively under the following conditions:

(1) The 4 symbols have equal probability of occurrence.

(2) The 4 symbols have the probabilities of occurrence as given in Exercise 1.2

1.4 What is the symbol rate in the above exercise?

1.5 Assume an information source consists of 64 different symbols, the occurrence probability of 16 symbols among them is 1/32, and the occurrence probability of other 48 symbols is 1/96. If there are only thousand independent symbols per second sent out, find the average information rate of the information source.

1.6 Assume a signal source produces 4-ary signals with equal probability, and the width of its symbol is 125 μ s. Find its symbol rate and information rate.

1.7 Assume the equivalent resistance of the input circuit of a receiver is 600 Ω , the bandwidth of input circuit is equal to 6 MHz, and the environment temperature is 23°C. Find the effective thermal noise voltage produced by the circuit.

1.8 Assume a wireless link uses line-of-sight propagation for communication, and the heights of the transmitting antenna and receiving antenna are both 80 m. Find the maximum communication distance.

1.9 已知某四进制数字传输系统的传信率为2400 b/s, 接收端在半小时内共收到216 个错误码元,试计算该系统的误码率 P_e 。 **1.10** 某系统经长期测定,它的误码率为 $P_e = 10^{-5}$,该系统码元速率为1200 Bd,问在多长时间内可能收到360 个误码元。 **1.11** 若两个电阻的阻值为 $R_1 = 1000\Omega$, $R_2 = 2000\Omega$,它们的温度分别为270 K 和290 K,试分别计算两个电阻串联和并联后两端的噪声功率谱密度。

1.12 已知有线电话信道的带宽为3.4 kHz:

(1) 试求信道输出信噪比为30 dB 时的信道容量;

(2) 若要在该信道中传输33.6 kb/s 的数据,试求接收端要求的最 小信噪比为多少。

1.13 已知每张静止图片含有6×10⁵ 个像素,每个像素具有16 个亮度电平,且所有这些亮度电平等概率出现。若要求每秒钟传 输24 幅静止图片,试计算所要求信道的最小带宽(设输出信噪比 为30 dB)。

