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Abstract

Probing signal waveforms play a central role in the signatpssing performance of a MIMO radar. In practice,
for a given desired beam pattern, we need to design a prolgnglsvaveform whose beam pattern closely matches
the desired one and whose auto-correlation and crosskatioresidelobes are kept low. The latter properties are
important to mitigate undesirable interference caused hitipte targets or scatterers. In this paper, we present
an efficient optimization method to design a constant maglyitobing signal which can synthesize a desired
beam pattern while maximally suppressing both the auteetation and cross-correlation sidelobes at/between
given spacial angles. We formulate this problem as an uti@ned minimization of a fourth order trigonometric
polynomial and propose an efficient quasi-Newton iteragigmrithm to solve it. Besides, we give an analysis of the
local minima of the fourth order trigonometric polynomiaidaprove that any local minima is a 1/2-approximation
of its global optimal solution. Numerical examples showt tthee proposed approach compares favorably with the

existing approach.

Index Terms

Multiple-input multiple-output (MIMO) radar, Beam patterConstant modulus probing signal, Spacial auto-

/cross-correlation.
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I. INTRODUCTION

Multi-input and multi-output (MIMO) transmission and rgx®n is a promising paradigm for the
next generation radar systems [1] - [4]. Unlike the phageayaradar, a MIMO radar allows independent
probing signals at different antennas. Through this aolaii diversity, a MIMO radar can deliver a higher
detection performance and a better spatial resolutionattiqular, if the transmitters are widely separated
in space (called the uncollocated configuration), then efthem can provide an independent view of the
target, which, when appropriately combined, will improw&ettion performance [5] - [7]. Alternatively,
if the antennas are placed in close proximity, differentyomg signals from various collocated transmitters
can generate various desired beam patterns, leading to moved directional resolution. Besides, the
collocated MIMO radar has other advantages such as inéederrejection capability [8] - [10]. In this
paper, we focus on the collocated system.

A central signal processing challenge in MIMO radar redeascto design probing signals that are
constant modulus [11] and satisfy certain beam patternifsg®ns. The existing design approaches can
be classified into three categories: (1) maximizing the mlunformation between the received signal and
the impulse response of the target [12] - [14]; (2) optingezthe range, angular, and doppler resolution
based on radar ambiguity function [15] - [17]; (3) matchinglesired beam pattern using independent
constant modulus signals while suppressing the spacial@utelation and cross-correlation sidelobes
[18]- [20].

This paper considers the third design approach for MIMO v@awe design. In [18], Fuhrmannn showed
how to create high directionality or omni-directionalitgdm pattern through waveform covariance matrix
R. In [19], Stoica exploited semidefinite programming tecjua to desigrR, where suppressing spacial
cross-correlation levels at temporal delay zero was censd In [20], Ahmed proposed two algorithms
to design constant modulus waveforms, which satisfy theipations ofR. in [19]. In [21], Li proposed
a cyclic algorithm to synthesize constant modulus signalsvall as pursuing the desired auto-/cross-
correlation characteristics. In [22], an alternating aggh is proposed for jointly optimizing constant
modulus probing signal and receiver filter bank.

Different from the existing approaches [18] - [22], we prepdo optimize probing signal waveforms to
meet the beam pattern specification directly. We formullai problem as an unconstrained fourth-order
trigonometric polynomial minimization model and proposeuasi-Newton iterative algorithm to solve

it approximately. Simulation results demonstrate thatrdsaulting design procedure compares favorably
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Fig. 1. MIMO radar transceiver equipped willi antennas (uniform linear array and half wavelength intement spacing)/2). ¢ is the
spacial direction of interest.

with the existing approach in terms of both the algorithmespand the quality of the obtained waveforms.
[I. PROBLEM FORMULATION AND ANALYSIS
A. System parameters

Consider a MIMO radar equipped with/ transmitting antennas as shown in figure 1. The probing

signal matrixX € CX*™ and the steering vectar ¢ CM are

T11 Tim
X = : 1)
Tr1 - TLM
ag = [1 ejﬂsin(@) . ejﬂ(Mfl) sin(@)]T’ (2)

wheref belongs to an angle séi representing the spacial direction and L is the temporajtienf the

probing signal. The beam pattern, which describes the paligtribution of the probing signals in the

spacial domain, is defined as

P(#) = al! X" Xay. (3)



For any integersl, ¢ with 0 < d < L, —d< ¢ <d, we define anl. x L matrix

{ zeros

Sy =

Then the time delayed probing signal matrix can be descrié®8/X, and the spacial auto-/cross-

correlation functions for the probing signXl and its delayed version become
Pe(€,0;,6;) = ag XS, Xay,, (4)

whered;,0; € © = {6;,....0x} and© is an angle set of beam pattern locations. Naturaly_ ©. If

0, = 0; = 0, we denoteF, (¢, 6, 6;) by
Poc(£,0;) = aj X"'S,Xay,, (5)

which is the spacial auto-correlation function.df # 6;, the P.(¢, 0, 6,) becomes the spacial cross-

correlation function which we denote by

Puo(£,6;,0;) = all XS, Xay,. (6)

B. Modda formulation

To maximize the efficiency in a MIMO radar system, power affigsk typically have to operate in the
saturation mode. As a result, it is important that the prglsignals for a MIMO radar have constant

modulus, which mathematically means
|om| =1,0=1,---  Lim=1,--- M.

Because the beam pattern (3) describes the spacial povebution of probing signals, we can specify
a desired beam pattern that focuses the signal power alendiriections of interest. This can effectively

reduce the clutters’ impact and extend the detection distaNloreover, we can use the desired beam



pattern to set an upper bound for the auto-correlation i ¢, (¢, 0;), ¢ # 0) and cross-correlation
levels (P..(¢,6;,60;)). The former aims to minimize the effects of clutters and khter decrease the
interference between signals from different directioner Ehese reasons, we propose the following

optimization model

ml)? w%eb(a, X) + wiceaC(X) + wfceCC(X), (7a)
st |zgl=1, i=1,---,L; j=1,--- M, (7b)
where
en(a, X) =) " ap() — aj' X" Xay|?, (8a)
0co
d
(X)) =Y > |afl XS, Xay, |, (8b)
(=1 9k€é
d
ceX) =D Y |aff X8, Xay,[* (8c)
(=0 0;#6;
6;,0;€6

In the optimization model (7), the term in the objective function captures the beam pattern misnagc
error, while the minimization of the other two termg, e, represents the suppression of the auto-/cross-
correlation sidelobe levels, respectively. More spedifican the definition ofey, (cf. (8)), « is an unknown
scaling factor to be optimizegh(0) is the desired beam pattern. The weights w.. andw,.. are positive
(chosen by the user), which can make trade-off of performammongst matching desired beam pattern
and suppressing auto-/cross- correlation sidelobe lefrgsameter! denotes the considered maximum
temporal delay. Because! (—/,6;) = P,.(¢,0;) and P (—¢,6;,60;) = P, (¢,0;,6;), correlation measures
for ¢ < 0 are not included.

The optimization model (7) involves minimizing a nonconviaurth-order polynomial with some
nonlinear equality constraints, which is numerically dili handle. Notice that the constant modulus
constraints are equivalent to every entry Xflying on the unit circle, i.e.;, = ¢/, Using ¢,
as optimization variables and writing. as X(¢) where¢ is an L x M real matrix, we can drop the
constant modulus constraints and formulate (7) as an utreamsd fourth order trigonometric polynomial

minimization problem

fla, @) = wien(a, X(@)) + Wieeac(X (D)) + wiceee(X(¢h)). (9)



Then we obtain

min f(e, $), (10)

where botha and each entry,,, € ¢ are real valued variables.

Like (7), the unconstrained optimization model (10) islstibnconvex. However, the unconstrained
formulation makes the problem amenable to the use of L-BF@® iterative procedures which can
implemented efficiently. Moreover, the unconstrained falation has a strong property that every local

minimum is a 1/2-approximation of the global minimum.

C. Analysis of local minima

Computing the global optimal solution of the minimizatioroplem, either (7) or (10), is difficult due
to the nonconvexity of the objective function. Followingetanalysis of nonconvex quadratic minimization
problem in [23], we show below that any local minima of a 4-tldey trigonometric polynomial (11)
is a 1/2-approximation of its global minimum. In particular, let esnsider the following 4-th order

trigonometric polynomial function minimization problem
: | 2
min  f(¢) = 5(9(c™) — o) (11)

whereg(x) = x¥Mx is a quadratic function of andM is a Hermitian matrix¢ is a real-valued number.
This optimization problem (11) is clearly in the form of theaonstrained minimization problem (10). So
analyzing the local minima of (11) can provide useful insigh the quality of optimal design of constant
modulus waveforms based on (10).

Lemma: Let ¢ be a local minimizer of (11). Thep is a %-approximation of the global minimum of

(11) in the sense that

~

f(d)) - fmin

1
g a) (12)
fmax - fmin 2

where f.i, and f.... are respectively the global minimum and global maximum eat (11).

Proof: Let ¢ be a local minimizer of (11). Then

0=Vf(})=—j(gle?®) —)Vg(e7?).

If g(e*j‘i) — ¢ =0, then clearlyé is a global minimizer, so (12) trivially. Now consider theseawhere

g(e73®) — ¢ # 0, in which case we hav&g(e /%) = 0. Then the second order necessary optimality



condition implies that
0= V*f()
= (g(e7%) = ) [ V2g(e7%)| + Vg(e7®)(Vg(e 7))
= (gle %) = ) [V2g(e %),
where we have used chain rule and the prop&Hye %) = 0. Let x € C" be any vector withx;| = 1

for all i. The proof of [23, Thm. 3] implies
(9(e %) = o) (xMx + (x")M(x") — 2g(c /%)) 2 0,
x € C" with |z;] =1, V i,

where x* denotes the complex conjugation ®f Specializing this inequality to the global minimizer

%X =cI% = argminf(¢). Then we obtain
¢

(9(e77%) = &) (9(%) + 9(%) = 29(e %)) > 0.
Since the left hand side can be written as

(g(e™9%) — ¢) (9(X) + g(X*) — 2¢) — 2(g(e %) — ),

it follows that

2(g(e79%) — ¢)? < (g(e77%) — ¢) (9(%) + g(X*) — 2¢).
This further implies
4(g(e™9%) — o)
(g(e77%) — ¢)%(g(%) + g(X*) — 2¢)?

2(g(e79%) — )2 ((9(%) — ) + (9(X*) — ¢)?)

2(g(e ) = €)% (furin + froax)

INIA

IN

where we have uset(X) — ¢)2 = fum and (¢(X*) — ¢)? < fumax. Canceling the facto?(g(e7¢) — ¢)?
yields
(@) = (9(e7%) = &) < (fmin + finax) /2.



which establishes (12).

[1l. I MPLEMENTING A QUASI-NEWTON METHOD

The unconstrained minimization model (10) can be solvegyr@apmately but effectively, using a
guasi Newton algorithm, for example L-BFGS (Limited-Memd@royden Fletcher Goldfarb and Shanno
algorithm, see the details in [25]). The outline of this alton is given in Figure 2.

In the L-BFGS algorithm, the computational cost of each L&®-iteration is dominated by the
evaluation of f(a, ¢) and V f(a, ¢). Direct computation off and V f according to (8) is inefficient,

especially for largel. In what follows, we describe an efficient method to compifie, ¢) andV f(«, ¢).

Define
bg@ = VeC(aeagI)v Al = Zp(@),
9co
Ay=— p(O)bs, As= bybf.
00 0cO

where vec(-) vectorizes a matrix by stacking its columns on top of one laotWe can rewrite the

objective function in the matrix form. Far,(«, X(¢)), we can derive it as

Initialize the number of L-BFGS updates,, and the
iteration indexk = 1. Choose the initial poinf«, ¢);
and compute the correspondirfg V f;. Set the initial
search directiorg; = —V f1. To be simple, we denote
(v, ) by x.

Repeat
1 Usef:, Vfi, andg, to determine the step lengih.
satisfying the specific line search rule.

2 Computes; = jugr andxy 1 = Xp, + [1x8k-
3 ComputeV fr.1 andy, = V fii1 — Vi
4 Let q = ka+1.
5 for i:lg,k—l,-~- Jk—m+1
s:'q
t; = y:HSi’ q=q—ty;.

end (for)

6 r = S}}{i

Yi Y

7 for i:lka—m—Fl,k—m—FQ,--- k
B = ;’H;, r=r+ (t; — B)s;.
end (for)
8 gri1=-—T.
9 k=k+1.
wntil a pre-set termination condition is satisfied. J

Fig. 2. Outline of L-BFGS algorithm.



wzeb(avx(d))) = V<aa¢)HQV(aa¢)a (13)

where
V(a> ):
vec(X(¢)"X ()
Q- | M|
A2 A3

and superscript:)” denotes conjugate transpose. tgt(¢) = X(¢)ag, andcy, is obtained by reversing

the order of the entries afy,. We have

Z > lag X(9)"SX(¢)ay,|*

@—*LJrl@kE@

=) Z [ca,(9)"Seco, (9)[* (14)
0r€0 (=—L+1

= llcs, (@) @ &, (D)5,

0,.€0

where the superscrift)* denotes complex conjugatiom, is the convolution operator, and- || is the

2-norm operator. Truncating; (¢) ® ¢4, (¢) from 1 tod and denoting it agly,, (¢), we obtain
eaC - wac Z Hd9k9k ”2 (15)
0,€0
Through similar derivations, we get
ece(X (@) = w? D" [|das, ()3 (16)
0;,0;,€0

Combining (13), (15), and (16), we obtain the following mefulation of f(«, ¢) as

fla, @) = v(a, )" Qv(a, @) +u(e), (17)

where

_wac ZHdOka ”2+wcc Z ”d99 ”2

0,€0 0.0,
0:,0;€0
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According to (17), we can compulé f(«, ¢) as follows

W = 2Re ([1 071Qv(a, d))) , (18a)
Lf(ao;q&) = 2Re<[7avgzb’ ¢)} Qv(oz,cb)) + 67;(;){)), (18b)

where the entries n‘?v((;‘i’) and 24 ¢) are

o g) [ oveX(@x(@)]" 19)
im Obum ’
H 8d6k9k)
3¢zm aCGZ€92R (d9k9k 8(b
20
+w?, ZRe(deoaee) 0
070 %9
0;,0;€0

Exploiting special structures such as convolution andspamwe can computg and V f efficiently.

Let us first consider the computation 6o, ¢). Recall that the entries aX(¢) can be written ag®eom
for some angleb,,,. Exploiting this structure, we can write the entriesXf¢)” X (¢ asz el (Pre=¢ei)

wherei, k = 1,--- ,m are the row and column indices respectively. Because thmwn‘l emm can be
obtained by table look-up, computing(¢)”X (o) or v(a, ¢) can be free of multiplication operations.
Similarly, bothc,, = X(¢)ag, andcy, = X(¢)ay, are also free of complex multiplications. Also, since
v(a, @) € CEM+1 Q e COPP+Dx(M*+1) 'we can computer(a, ¢)7Qv(a, ¢) using (M2 +1)2 + M2 + 1
complex multiplications. If we use FFT to evaluaigy, = cy, ® ¢y, (1,5 = 1,---, K) and notice that the
size off is K, all of the termsdy,, (i,j = 1,---, K) can be computed wWitBK?*(2L — 1) log,(2L — 1)
complex multiplications. Sincé < L, we conclude that the total number of complex multiplicasio

required to compute (a, @) is O(M* + 6 K2 Llog, 2L).

As for V f(a, ¢), 22 can be obtained for free from the computation %%, which consists
of two terms, (av(W YEQv(«, ¢) and 242 For the first termQv(a, ¢) has been obtained during the

computation off(«, ¢). Notice thatav(“ ¢ has only2)M — 1 none-zero entries, so it takés\/ (20 — 1)

complex multiplications to obtal(la"(o‘"’ 1Qv(a, ¢). In the second terng‘g%, dy,s, has been obtained

during the computatlon of (o, ¢). Its derlvatlve, %1 % can be computed by truncatlrc@ ® 0 L +Cy, ®

has only one none-zero constant modulus enga,L can be |mplemented

e,

9, Because’: or
D1 Obtm > Obim

using only additions. Foaie 0, aq; % it takesO(d) complex multiplications. 88% requiresO(K?LMd)
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complex multiplications. In all, the total number of complmultiplications to computéV f(«, ¢) is
O(2LM? + K*LMd).

When compared with the original expression ffo, ¢) (8)-(9), the new expression (17) offers a
significant computational saving. In particular, the mai® in (17) can be obtained in advance and
used in all iterations. In this way, we avoid computify for eachf € © as would have been the
case for the original expression (8)-(9). This is a majoraad&ge because the size of angle @et.e.,
|©], is extremely large in practice. Another source of efficiei that by formulatinge,.(X(¢)) and
e..(X(¢)) as a convolution, we can use FFT algorithm to compute themiezifly. In this way, the
value of the temporal lag takes no effect on the complexity required to compfite, ¢). Finally, when
using (9) to computé/ f directly, we recognize thaf is of the form f(X) = ||C — AXBX”A¥|%, so
that Vf(X) = ~ATCTAXB - ATCAXB” + 2A"AXBX? AP AXB” + 2A7 AXB” X" A" AXB,
where || - | is the Frobenius norm operator. Table | shows a rough cosgarf the complexity to
computef andV f using (8)-(9) and (17).

TABLE |
COMPARISON OF THE COMPLEXITY TO COMPUTEf AND V f

‘ H Original expression (8)-(9D New expression (17) ‘
fla, @) O(|O|L + K?*dL) O(M* + 6K*Llog,2L)
Vila,¢) | OB|O|LM + 2K*LMd) O(2LM?* + K*LMd)

IV. NUMERICAL RESULTS

We present several numerical examples to illustrate thepeance of the proposed, L-BFGS, approach.
Consider MIMO radar system equipped with uniform lineareamias and inter-element spacing of half
a wavelength. The antenna number, waveform length, andaexhpgelay are denoted by M, L, and d,
respectively. Their pre-set values can be found in the spmeding simulations. The angle g@tcovers
(—90°, 90°] with spacing0.1°, and two interested targets are located in the directiortg ef —40° and

0, = 30°, i.e.,© = {—40°,30°}, and the desired beam pattern is

1, 6€l[f —10° 6, +10°, k=1,2,
p(0) =

0, otherwise.
Weightswy, w,., we. are (1, 1, 1) or (1, 8, 8). We have implemented the L-BFGS &lgyorcombined
with the Armijo-Goldstein stepsize rule to solve (10). Thenber of L-BFGS updates that we store is 5,
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and the termination condition is for the maximum iteratiammber, 200, to be reached PpA f(«, @) »
is less thanl0~* . We have compared the L-BFGS algorithm with the approacipgsed by Li et.al. in
[21]. We also set a maximum iteration number of 200 as thepsbgpcriterion for the Li approach.

The L-BFGS approach and Li approach are implemented in th& MM82008a/Windows XP environ-
ment on a 1.7GHz Athlon XII computer with 3GB of RAM. The Mdilpackage used in our simulations

can be downloaded from the first author’s website [24].

A. Synthesized beam pattern

Using the optimizedX, we plot the corresponding beam pattern in figures 3(a){4®@@gther with the
desired beam pattern. Simulation parameters are showreigaption of these figures. Table Il lists the
mean-squared error (MSE) between the desired beam patidrtha synthesized beam pattern. We can
see that both the Li approach and the L-BFGS approach do ajgbad approximating the desired beam
pattern. We also see that increasing antenna number cdh irebetter approximation.

TABLE I
MSE COMPARISON

L-BFGS Approach Li approach
(M, L,d) (8, 128, 8) (16, 128, 8) (8, 128, 8) | (16, 128, 8)
(wp, Wae, wee)* | (1,1, 1) (1, 8, 8) 1, 1,1) 1, 8,8) / /
MSE 294 x 1072 | 3.01 x 1072 | 1.56 x 1072 | 1.61 x 1072 | 2.95 x 1072 | 1.57 x 102

In the Li approach [21], the settings fan,, w.., w.. are fixed as (1, 1, 1) and there is no scheme to

adjust them.

B. Spacial correlation characteristics

Figure 4 shows the normalized spacial auto-correlatiorragiteristics. From the figure, we see that
auto-correlation levels are symmetric with respect to thgim This means that only taking > 0 into
account are sufficient for suppressing auto-correlatidelsbes. It can be also seen that, for the L-BFGS
approach and the Li approach, increasingan lower auto-correlation sidelobe levels while incregsi
delay parameted tends to drive up the sidelobe levels. This is reasonablauseca largd. or smalld
means more degrees of design freedom. Furthermore, we eahaencreasing weights,. andw,.. can
also lower auto-correlation sidelobe levels. Comparingrég4(a) with 4(c), we can see that the auto-

correlation sidelobe levels decrease by about -40dB toB50d both approaches wheh is increased
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Fig. 3. Comparison of the synthesized beam pattern. Antpar@meters M, waveform length L, and temporal delay d ard48, 8) and
(16, 128, 8). Weights,u,, wac, wee) for the L-BFGS approach are (1, 1, 1) and (1, 8, 8).
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from 32 to 128 { is fixed to8). Comparing 4(a) with 4(b), we can also determine the effetiparameter
d quantitatively. For example, whehis increased from 8 to 16 with a fixetl = 32, the sidelobe levels
increase by about 10dB. Furthermore, while increasigpgand w.. from 1 to 8, we can see that auto-
correlation sidelobe levels decrease by about -30dB toB3&ith a fixedd = 8. From these three figures,
we also see that the L-BFGS approach has a comparable or aettecorrelation performance than the
Li approach.

Figure 5 shows spacial cross-correlation characteristessee that cross-correlation levels ef10°, 30°)
in the sectior? > 0 is symmetric to that of30°, —40°) in the section/ < 0. This verifies that, in (7),
it is reasonable to only consider the cross-correlatioeltetor ¢ > 0. Furthermore, we find parameters
L andd have similar effects in figure 4, i.e., increasihg decreasingl, or increasingv,. and w.. will
lead to lower cross-correlation levels. Specifically, cannpg figure 5(a) with 5(c), we have the following
observations: when we increasefrom 32 to 128, the L-BFGS approach and the Li approach camcesd
the cross-correlation levels by about 30dB. Comparing Wt 5(b), we can also determine the qualitative

effects of delay parametet and weightsv,. andw,. on cross-correlation effects in both approaches.

C. Execution time

As mentioned before, the computational complexity of edetation in the L-BFGS approach is depen-
dent on objective functiorf and gradien¥ f, which areO(M* + 3K?Llog,2L) andO(2LM?* + LMd),
respectively. In the Li approach, the main computation,aoheiteration, is to perform the singular value

decomposition, the complexity of which is
4d+L—1)*(Md) +8(d+ L —1)(Md)* +9(Md)?,

or roughO((Md)* + L(Md)* + MdL?).

Table Il lists the execution time (averaged over 100 rung) 2€rations) for the proposed L-BFGS
approach and the Li approach [21], as a function of the amaterumber)/, pulse lengthL, and delay
parameteri. The measurements provide a rough estimate of the efficiehtyo approaches. While the
execution time of both approaches increases WithZ, or d, the rate of increase appears more rapid for
the Li approach. For example, when system paramefdtd., d) change from(8, 16, 8) to (16, 128, 127),
the execution time of the Li's approach grows from 2.18s t@98%. In contrast, the L-BFGS approach

executes very efficiently. Even for large parameters, suschl@ 256, 255), execution time is only 162
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seconds. This low execution time indicates that the L-BF@®@ach is suitable for applications involving
large L andd.

TABLE Il
SIMULATION TIME (SECOND)

| (MLd) [ L-BFGS approach Li Approach [21]]

(8,16,8) 2.72s 2.18s
(8,32,16) 4.43s 11.16s
(8,128,16) 21.25s 19.46s
(8,128,32) 22.04s 81.65s
(8,128,127) 23.01s 3193s
(16,128,127 62.6s 22198s
(16,256,255 162s Y

V. CONCLUDING REMARKS

In this paper, we have considered a direct way to synthesizstant modulus waveforms for a MIMO
radar. Compared to the state-of-the-art design procedergs [21]), the proposed procedure (based on
the L-BFGS algorithm) offers a comparable or better pertoroe and yet is substantially more efficient,

especially for situations involving a large number of sysigarameters.
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Fig. 4. Comparison of auto-correlation characteristicights, (b, wac, wee) for the L-BFGS approach are (1, 1, 1) and (1, 8, 8),
respectively.
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