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Abstract

Probing signal waveforms play a central role in the signal processing performance of a MIMO radar. In practice,

for a given desired beam pattern, we need to design a probing signal waveform whose beam pattern closely matches

the desired one and whose auto-correlation and cross-correlation sidelobes are kept low. The latter properties are

important to mitigate undesirable interference caused by multiple targets or scatterers. In this paper, we present

an efficient optimization method to design a constant modulus probing signal which can synthesize a desired

beam pattern while maximally suppressing both the auto-correlation and cross-correlation sidelobes at/between

given spacial angles. We formulate this problem as an unconstrained minimization of a fourth order trigonometric

polynomial and propose an efficient quasi-Newton iterativealgorithm to solve it. Besides, we give an analysis of the

local minima of the fourth order trigonometric polynomial and prove that any local minima is a 1/2-approximation

of its global optimal solution. Numerical examples show that the proposed approach compares favorably with the

existing approach.
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I. INTRODUCTION

Multi-input and multi-output (MIMO) transmission and reception is a promising paradigm for the

next generation radar systems [1] - [4]. Unlike the phased-array radar, a MIMO radar allows independent

probing signals at different antennas. Through this additional diversity, a MIMO radar can deliver a higher

detection performance and a better spatial resolution. In particular, if the transmitters are widely separated

in space (called the uncollocated configuration), then eachof them can provide an independent view of the

target, which, when appropriately combined, will improve detection performance [5] - [7]. Alternatively,

if the antennas are placed in close proximity, different probing signals from various collocated transmitters

can generate various desired beam patterns, leading to an improved directional resolution. Besides, the

collocated MIMO radar has other advantages such as interference rejection capability [8] - [10]. In this

paper, we focus on the collocated system.

A central signal processing challenge in MIMO radar research is to design probing signals that are

constant modulus [11] and satisfy certain beam pattern specifications. The existing design approaches can

be classified into three categories: (1) maximizing the mutual information between the received signal and

the impulse response of the target [12] - [14]; (2) optimizing the range, angular, and doppler resolution

based on radar ambiguity function [15] - [17]; (3) matching adesired beam pattern using independent

constant modulus signals while suppressing the spacial auto-correlation and cross-correlation sidelobes

[18]- [20].

This paper considers the third design approach for MIMO waveform design. In [18], Fuhrmannn showed

how to create high directionality or omni-directionality beam pattern through waveform covariance matrix

R. In [19], Stoica exploited semidefinite programming technique to designR, where suppressing spacial

cross-correlation levels at temporal delay zero was considered. In [20], Ahmed proposed two algorithms

to design constant modulus waveforms, which satisfy the specifications ofR in [19]. In [21], Li proposed

a cyclic algorithm to synthesize constant modulus signals as well as pursuing the desired auto-/cross-

correlation characteristics. In [22], an alternating approach is proposed for jointly optimizing constant

modulus probing signal and receiver filter bank.

Different from the existing approaches [18] - [22], we propose to optimize probing signal waveforms to

meet the beam pattern specification directly. We formulate this problem as an unconstrained fourth-order

trigonometric polynomial minimization model and propose aquasi-Newton iterative algorithm to solve

it approximately. Simulation results demonstrate that theresulting design procedure compares favorably
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Fig. 1. MIMO radar transceiver equipped withM antennas (uniform linear array and half wavelength inter-element spacing,λ/2). θ is the
spacial direction of interest.

with the existing approach in terms of both the algorithm speed and the quality of the obtained waveforms.

II. PROBLEM FORMULATION AND ANALYSIS

A. System parameters

Consider a MIMO radar equipped withM transmitting antennas as shown in figure 1. The probing

signal matrixX ∈ CL×M and the steering vectora ∈ CM are

X =








x11 · · · x1M

...
. . .

...

xL1 · · · xLM







, (1)

aθ = [1 ejπsin(θ) · · · ejπ(M−1) sin(θ)]T , (2)

whereθ belongs to an angle setΘ representing the spacial direction and L is the temporal length of the

probing signal. The beam pattern, which describes the powerdistribution of the probing signals in the

spacial domain, is defined as

P (θ) = aH
θ X

HXaθ. (3)
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For any integersd, ℓ with 0 < d < L, −d≤ ℓ ≤d, we define anL× L matrix

Sℓ =

ℓ zeros

︷ ︸︸ ︷













0 · · · 0 1 0
. . .

1

0













.

Then the time delayed probing signal matrix can be describedas SH
ℓ X, and the spacial auto-/cross-

correlation functions for the probing signalX and its delayed version become

Pc(ℓ, θi, θj) = aH
θi
XHSℓXaθj , (4)

whereθi, θj ∈ Θ̂ = {θ1, ..., θK} and Θ̂ is an angle set of beam pattern locations. Naturally,Θ̂ ⊂ Θ. If

θi = θj = θk, we denotePc(ℓ, θk, θk) by

Pac(ℓ, θk) = aH
θk
XHSℓXaθk , (5)

which is the spacial auto-correlation function. Ifθi 6= θj , the Pc(ℓ, θk, θk) becomes the spacial cross-

correlation function which we denote by

Pcc(ℓ, θi, θj) = aH
θi
XHSℓXaθj . (6)

B. Model formulation

To maximize the efficiency in a MIMO radar system, power amplifiers typically have to operate in the

saturation mode. As a result, it is important that the probing signals for a MIMO radar have constant

modulus, which mathematically means

|xℓm| = 1, ℓ = 1, · · · , L;m = 1, · · · ,M.

Because the beam pattern (3) describes the spacial power distribution of probing signals, we can specify

a desired beam pattern that focuses the signal power along the directions of interest. This can effectively

reduce the clutters’ impact and extend the detection distance. Moreover, we can use the desired beam
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pattern to set an upper bound for the auto-correlation sidelobes (Pac(ℓ, θk), ℓ 6= 0) and cross-correlation

levels (Pcc(ℓ, θi, θj)). The former aims to minimize the effects of clutters and thelatter decrease the

interference between signals from different directions. For these reasons, we propose the following

optimization model

min
α,X

w2
beb(α,X) + w2

aceac(X) + w2
ccecc(X), (7a)

s.t. |xij | = 1, i = 1, · · · , L; j = 1, · · · ,M, (7b)

where

eb(α,X) =
∑

θ∈Θ

|αp(θ)− aH
θ X

HXaθ|
2, (8a)

eac(X) =

d∑

ℓ=1

∑

θk∈Θ̂

|aH
θk
XHSℓXaθk |

2, (8b)

ecc(X) =
d∑

ℓ=0

∑

θi 6=θj

θi,θj∈Θ̂

|aH
θi
XHSℓXaθj |

2. (8c)

In the optimization model (7), the termeb in the objective function captures the beam pattern mismatching

error, while the minimization of the other two termseac, eac represents the suppression of the auto-/cross-

correlation sidelobe levels, respectively. More specifically, in the definition ofeb (cf. (8)),α is an unknown

scaling factor to be optimized,p(θ) is the desired beam pattern. The weightswb, wac andwcc are positive

(chosen by the user), which can make trade-off of performances amongst matching desired beam pattern

and suppressing auto-/cross- correlation sidelobe levels. Parameterd denotes the considered maximum

temporal delay. BecauseP ∗
ac(−ℓ, θk) = Pac(ℓ, θk) andP ∗

cc(−ℓ, θi, θj) = Pac(ℓ, θj, θi), correlation measures

for ℓ < 0 are not included.

The optimization model (7) involves minimizing a nonconvexfourth-order polynomial with some

nonlinear equality constraints, which is numerically difficult handle. Notice that the constant modulus

constraints are equivalent to every entry ofX lying on the unit circle, i.e.,xℓm = ejφℓm. Using φℓm

as optimization variables and writingX asX(φ) whereφ is anL × M real matrix, we can drop the

constant modulus constraints and formulate (7) as an unconstrained fourth order trigonometric polynomial

minimization problem

f(α,φ) = w2
beb(α,X(φ)) + w2

aceac(X(φ)) + w2
ccecc(X(φ)). (9)
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Then we obtain

min
α,φ

f(α,φ), (10)

where bothα and each entryφℓm ∈ φ are real valued variables.

Like (7), the unconstrained optimization model (10) is still nonconvex. However, the unconstrained

formulation makes the problem amenable to the use of L-BFGS type iterative procedures which can

implemented efficiently. Moreover, the unconstrained formulation has a strong property that every local

minimum is a 1/2-approximation of the global minimum.

C. Analysis of local minima

Computing the global optimal solution of the minimization problem, either (7) or (10), is difficult due

to the nonconvexity of the objective function. Following the analysis of nonconvex quadratic minimization

problem in [23], we show below that any local minima of a 4-th order trigonometric polynomial (11)

is a 1/2-approximation of its global minimum. In particular, let usconsider the following 4-th order

trigonometric polynomial function minimization problem

min
φ

f(φ) =
1

2
(g(e−jφ)− c)2 (11)

whereg(x) = xHMx is a quadratic function ofx andM is a Hermitian matrix,c is a real-valued number.

This optimization problem (11) is clearly in the form of the unconstrained minimization problem (10). So

analyzing the local minima of (11) can provide useful insight on the quality of optimal design of constant

modulus waveforms based on (10).

Lemma: Let φ̂ be a local minimizer of (11). Then̂φ is a 1
2
-approximation of the global minimum of

(11) in the sense that
f(φ̂)− fmin

fmax − fmin
≤

1

2
, (12)

wherefmin andfmax are respectively the global minimum and global maximum value of (11).

Proof: Let φ̂ be a local minimizer of (11). Then

0 = ∇f(φ̂) = −j(g(e−jφ̂)− c)∇g(e−jφ̂).

If g(e−jφ̂)− c = 0, then clearlyφ̂ is a global minimizer, so (12) trivially. Now consider the case where

g(e−jφ̂) − c 6= 0, in which case we have∇g(e−jφ̂) = 0. Then the second order necessary optimality
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condition implies that

0 � ∇2f(φ̂)

= (g(e−jφ̂)− c)
[

∇2g(e−jφ̂)
]

+∇g(e−jφ̂)(∇g(e−jφ̂))T

= (g(e−jφ̂)− c)
[

∇2g(e−jφ̂)
]

,

where we have used chain rule and the property∇g(e−jφ̂) = 0. Let x ∈ Cn be any vector with|xi| = 1

for all i. The proof of [23, Thm. 3] implies

(g(e−jφ̂)− c)
(

xHMx+ (x∗)HM(x∗)− 2g(e−jφ̂)
)

≥ 0,

x ∈ Cn with |xi| = 1, ∀ i,

where x∗ denotes the complex conjugation ofx. Specializing this inequality to the global minimizer

x̃ = e−jφ̃ = argmin
φ

f(φ). Then we obtain

(g(e−jφ̂)− c)
(

g(x̃) + g(x̃∗)− 2g(e−jφ̂)
)

≥ 0.

Since the left hand side can be written as

(g(e−jφ̂)− c) (g(x̃) + g(x̃∗)− 2c)− 2(g(e−jφ̂)− c)2,

it follows that

2(g(e−jφ̂)− c)2 ≤ (g(e−jφ̂)− c) (g(x̃) + g(x̃∗)− 2c) .

This further implies

4(g(e−jφ̂)− c)4

≤ (g(e−jφ̂)− c)2(g(x̃) + g(x̃∗)− 2c)2

≤ 2(g(e−jφ̂)− c)2
(
(g(x̃)− c)2 + (g(x̃∗)− c)2

)

≤ 2(g(e−jφ̂)− c)2 (fmin + fmax)

where we have used(g(x̃) − c)2 = fmin and (g(x̃∗) − c)2 ≤ fmax. Canceling the factor2(g(e−jφ̂) − c)2

yields

f(φ̂) = (g(e−jφ̂)− c)2 ≤ (fmin + fmax) /2,
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which establishes (12).

III. I MPLEMENTING A QUASI-NEWTON METHOD

The unconstrained minimization model (10) can be solved, approximately but effectively, using a

quasi Newton algorithm, for example L-BFGS (Limited-Memory Broyden Fletcher Goldfarb and Shanno

algorithm, see the details in [25]). The outline of this algorithm is given in Figure 2.

In the L-BFGS algorithm, the computational cost of each L-BFGS iteration is dominated by the

evaluation off(α,φ) and ∇f(α,φ). Direct computation off and ∇f according to (8) is inefficient,

especially for larged. In what follows, we describe an efficient method to computef(α,φ) and∇f(α,φ).

Define
bθθ = vec(aθa

H
θ ), A1 =

∑

θ∈Θ

p(θ),

A2 = −
∑

θ∈Θ

p(θ)bθθ, A3 =
∑

θ∈Θ

bθθb
H
θθ.

where vec(·) vectorizes a matrix by stacking its columns on top of one another. We can rewrite the

objective function in the matrix form. Foreb(α,X(φ)), we can derive it as'

&

$

%

Initialize the number of L-BFGS updates,m, and the
iteration indexk = 1. Choose the initial point(α,φ)1
and compute the correspondingf1, ∇f1. Set the initial
search directiong1 = −∇f1. To be simple, we denote
(α,φ) by x.
Repeat
1 Usefk, ∇fk, andgk to determine the step lengthµk

satisfying the specific line search rule.
2 Computesk = µkgk andxk+1 = xk + µkgk.
3 Compute∇fk+1 andyk = ∇fk+1 −∇fk.
4 Let q = ∇fk+1.
5 for i = k, k − 1, · · · , k −m+ 1

ti =
sHi q

yH
i si

, q = q− tiyi.
end (for)

6 r =
sH
k
yk

yH
k
yk
q.

7 for i = k −m+ 1, k −m+ 2, · · · , k

β =
yH
i r

yH
i si

, r = r+ (ti − β)si.
end (for)

8 gk+1 = −r.
9 k = k + 1.
until a pre-set termination condition is satisfied.

Fig. 2. Outline of L-BFGS algorithm.
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w2
beb(α,X(φ)) = v(α,φ)HQv(α,φ), (13)

where

v(α,φ) =




α

vec(X(φ)HX(φ))



 ,

Q = w2
b




A1 AH

2

A2 A3



 ,

and superscript(·)H denotes conjugate transpose. Letcθk(φ) = X(φ)aθk and c̄θk is obtained by reversing

the order of the entries ofcθk . We have

L−1∑

ℓ=−L+1

∑

θk∈θ

|aH
θk
X(φ)HSℓX(φ)aθk |

2

=
∑

θk∈θ

L−1∑

ℓ=−L+1

|cθk(φ)
HSℓcθk(φ)|

2

=
∑

θk∈θ

‖c∗θk(φ)⊗ c̄θk(φ)‖
2
2,

(14)

where the superscript(·)∗ denotes complex conjugation,⊗ is the convolution operator, and‖ · ‖ is the

2-norm operator. Truncatingc∗θk(φ)⊗ c̄θk(φ) from 1 to d and denoting it asdθkθk(φ), we obtain

eac(X(φ)) = w2
ac

∑

θk∈Θ

‖dθkθk(φ)‖
2
2. (15)

Through similar derivations, we get

ecc(X(φ)) = w2
cc

∑

θi,θj∈Θ

‖dθiθj(φ)‖
2
2. (16)

Combining (13), (15), and (16), we obtain the following reformulation off(α,φ) as

f(α,φ) = v(α,φ)HQv(α,φ) + u(φ), (17)

where

u(φ) = w2
ac

∑

θk∈Θ

‖dθkθk(φ)‖
2
2 + w2

cc

∑

θi 6=θj
θi,θj∈θ

‖dθiθj (φ)‖
2
2.



10

According to (17), we can compute∇f(α,φ) as follows

∂f(α,φ)

∂α
= 2Re

(
[1 0T ]Qv(α,φ)

)
, (18a)

∂f(α,φ)

∂φ
= 2Re

([
∂v(α,φ)

∂φ

]H

Qv(α,φ)

)

+
∂u(φ)

∂φ
, (18b)

where the entries in∂v(α,φ)
∂φ

and ∂g(φ)
∂φ

are

∂v(α,φ)

∂φlm

=

[

0
∂vec(X(φ)X(φ)H)

∂φlm

]T

, (19)

∂u(φ)

∂φlm

=w2
ac

∑

θk∈θ

2Re

(

dH
θkθk

∂dθkθk

∂φlm

)

+ w2
cc

∑

θi 6=θj
θi,θj∈θ

2Re

(

dH
θiθj

∂dθiθj

∂φlm

)

.
(20)

Exploiting special structures such as convolution and sparsity, we can computef and∇f efficiently.

Let us first consider the computation off(α,φ). Recall that the entries ofX(φ) can be written aseφℓm

for some angleφℓm. Exploiting this structure, we can write the entries ofX(φ)HX(φ) as
L∑

ℓ=1

ej(φkℓ−φℓi),

where i, k = 1, · · · , m are the row and column indices respectively. Because the value of ejφlm can be

obtained by table look-up, computingX(φ)HX(φ) or v(α,φ) can be free of multiplication operations.

Similarly, bothcθi = X(φ)aθi and cθj = X(φ)aθi are also free of complex multiplications. Also, since

v(α,φ) ∈ CLM+1, Q ∈ C(M2+1)×(M2+1), we can computev(α,φ)HQv(α,φ) using(M2 + 1)2 +M2 + 1

complex multiplications. If we use FFT to evaluatedθiθj = cθi ⊗ c̄θj (i, j = 1, · · · , K) and notice that the

size ofθ is K, all of the termsdθiθj (i, j = 1, · · · , K) can be computed with3K2(2L− 1) log2(2L− 1)

complex multiplications. Sinced < L, we conclude that the total number of complex multiplications

required to computef(α,φ) is O(M4 + 6K2L log2 2L).

As for ∇f(α,φ), ∂f(α,φ)
∂α

can be obtained for free from the computation of∂f(α,φ)
∂φ

, which consists

of two terms,(∂v(α,φ)
∂φ

)HQv(α,φ) and ∂g(φ)
∂φ

. For the first term,Qv(α,φ) has been obtained during the

computation off(α,φ). Notice that∂v(α,φ)
∂φlm

has only2M − 1 none-zero entries, so it takesLM(2M − 1)

complex multiplications to obtain(∂v(α,φ)
∂φ

)HQv(α,φ). In the second term∂u(φ)
∂φ

, dθiθj has been obtained

during the computation off(α,φ). Its derivative,
∂dθiθj

∂φlm
, can be computed by truncatingcθi ⊗

∂c̄θj
∂φlm

+ c̄θj ⊗

∂cθi
∂φlm

. Because
∂c̄θk
∂φlm

or
∂cθk
∂φlm

has only one none-zero constant modulus entry,
∂dθiθj

∂φlm
can be implemented

using only additions. FordH
θiθj

∂dθiθj

∂φlm
, it takesO(d) complex multiplications. So∂u(φ)

∂φ
requiresO(K2LMd)
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complex multiplications. In all, the total number of complex multiplications to compute∇f(α,φ) is

O(2LM2 +K2LMd).

When compared with the original expression off(α, φ) (8)-(9), the new expression (17) offers a

significant computational saving. In particular, the matrix Q in (17) can be obtained in advance and

used in all iterations. In this way, we avoid computingQ for each θ ∈ Θ as would have been the

case for the original expression (8)-(9). This is a major advantage because the size of angle setΘ, i.e.,

|Θ|, is extremely large in practice. Another source of efficiency is that by formulatingeac(X(φ)) and

ecc(X(φ)) as a convolution, we can use FFT algorithm to compute them efficiently. In this way, the

value of the temporal lagd takes no effect on the complexity required to computef(α, φ). Finally, when

using (9) to compute∇f directly, we recognize thatf is of the formf(X) = ‖C−AXBXHAH‖2F , so

that∇f(X) = −AHCHAXB−AHCAXBH +2AHAXBXHAHAXBH +2AHAXBHXHAHAXB,

where‖ · ‖F is the Frobenius norm operator. Table I shows a rough comparison of the complexity to

computef and∇f using (8)-(9) and (17).

TABLE I
COMPARISON OF THE COMPLEXITY TO COMPUTEf AND ∇f

Original expression (8)-(9) New expression (17)

f(α,φ) O(|Θ|L+K2dL) O(M4 + 6K2L log2 2L)

∇f(α,φ) O(3|Θ|LM + 2K2LMd) O(2LM2 +K2LMd)

IV. NUMERICAL RESULTS

We present several numerical examples to illustrate the performance of the proposed, L-BFGS, approach.

Consider MIMO radar system equipped with uniform linear antennas and inter-element spacing of half

a wavelength. The antenna number, waveform length, and temporal delay are denoted by M, L, and d,

respectively. Their pre-set values can be found in the corresponding simulations. The angle setΘ covers

(−90o, 90o] with spacing0.1o, and two interested targets are located in the directions ofθ1 = −40o and

θ2 = 300, i.e., Θ̂ = {−40o, 30o}, and the desired beam pattern is

p(θ) =







1, θ ∈ [θk − 10o, θk + 10o], k = 1, 2,

0, otherwise.

Weightswb, wac, wcc are (1, 1, 1) or (1, 8, 8). We have implemented the L-BFGS algorithm combined

with the Armijo-Goldstein stepsize rule to solve (10). The number of L-BFGS updates that we store is 5,
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and the termination condition is for the maximum iteration number, 200, to be reached or‖∆f(α,φ)‖F

is less than10−4 . We have compared the L-BFGS algorithm with the approach proposed by Li et.al. in

[21]. We also set a maximum iteration number of 200 as the stopping criterion for the Li approach.

The L-BFGS approach and Li approach are implemented in the MATLAB2008a/Windows XP environ-

ment on a 1.7GHz Athlon XII computer with 3GB of RAM. The Matlab package used in our simulations

can be downloaded from the first author’s website [24].

A. Synthesized beam pattern

Using the optimizedX, we plot the corresponding beam pattern in figures 3(a)-3(c)together with the

desired beam pattern. Simulation parameters are shown in the caption of these figures. Table II lists the

mean-squared error (MSE) between the desired beam pattern and the synthesized beam pattern. We can

see that both the Li approach and the L-BFGS approach do a goodjob in approximating the desired beam

pattern. We also see that increasing antenna number can result in better approximation.

TABLE II
MSE COMPARISON

L-BFGS Approach Li approach

(M,L, d) (8, 128, 8) (16, 128, 8) (8, 128, 8) (16, 128, 8)

(wb, wac, wcc)1 (1, 1, 1) (1, 8, 8) (1, 1, 1) (1, 8, 8) � �

MSE 2.94× 10−2 3.01× 10−2 1.56× 10−2 1.61× 10−2 2.95× 10−2 1.57× 10−2

In the Li approach [21], the settings forwb, wac, wcc are fixed as (1, 1, 1) and there is no scheme to

adjust them.

B. Spacial correlation characteristics

Figure 4 shows the normalized spacial auto-correlation characteristics. From the figure, we see that

auto-correlation levels are symmetric with respect to the origin. This means that only takingℓ > 0 into

account are sufficient for suppressing auto-correlation sidelobes. It can be also seen that, for the L-BFGS

approach and the Li approach, increasingL can lower auto-correlation sidelobe levels while increasing

delay parameterd tends to drive up the sidelobe levels. This is reasonable because a largeL or smalld

means more degrees of design freedom. Furthermore, we can see that increasing weightsωac andωcc can

also lower auto-correlation sidelobe levels. Comparing figure 4(a) with 4(c), we can see that the auto-

correlation sidelobe levels decrease by about -40dB to -50dB for both approaches whenL is increased
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(a) L-BFGS approach, (1,1,1)
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Fig. 3. Comparison of the synthesized beam pattern. Antennaparameters M, waveform length L, and temporal delay d are (8,128, 8) and
(16, 128, 8). Weights, (ωb, ωac, ωcc) for the L-BFGS approach are (1, 1, 1) and (1, 8, 8).
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from 32 to 128 (d is fixed to8). Comparing 4(a) with 4(b), we can also determine the effects of parameter

d quantitatively. For example, whend is increased from 8 to 16 with a fixedL = 32, the sidelobe levels

increase by about 10dB. Furthermore, while increasingωac andωcc from 1 to 8, we can see that auto-

correlation sidelobe levels decrease by about -30dB to -35dB with a fixedd = 8. From these three figures,

we also see that the L-BFGS approach has a comparable or better auto-correlation performance than the

Li approach.

Figure 5 shows spacial cross-correlation characteristics. We see that cross-correlation levels of(−40o, 30o)

in the sectionℓ ≥ 0 is symmetric to that of(30o,−40o) in the sectionℓ ≤ 0. This verifies that, in (7),

it is reasonable to only consider the cross-correlation levels for ℓ ≥ 0. Furthermore, we find parameters

L andd have similar effects in figure 4, i.e., increasingL, decreasingd, or increasingωac andωcc will

lead to lower cross-correlation levels. Specifically, comparing figure 5(a) with 5(c), we have the following

observations: when we increaseL from 32 to 128, the L-BFGS approach and the Li approach can reduce

the cross-correlation levels by about 30dB. Comparing 5(a)with 5(b), we can also determine the qualitative

effects of delay parameterd and weightsωac andωcc on cross-correlation effects in both approaches.

C. Execution time

As mentioned before, the computational complexity of each iteration in the L-BFGS approach is depen-

dent on objective functionf and gradient∇f , which areO(M4+3K2L log2 2L) andO(2LM2+LMd),

respectively. In the Li approach, the main computation, in each iteration, is to perform the singular value

decomposition, the complexity of which is

4(d+ L− 1)2(Md) + 8(d+ L− 1)(Md)2 + 9(Md)3,

or roughO((Md)3 + L(Md)2 +MdL2).

Table II lists the execution time (averaged over 100 runs, 200 iterations) for the proposed L-BFGS

approach and the Li approach [21], as a function of the antenna numberM , pulse lengthL, and delay

parameterd. The measurements provide a rough estimate of the efficiencyof two approaches. While the

execution time of both approaches increases withM , L, or d, the rate of increase appears more rapid for

the Li approach. For example, when system parameters(M,L, d) change from(8, 16, 8) to (16, 128, 127),

the execution time of the Li’s approach grows from 2.18s to 22198s. In contrast, the L-BFGS approach

executes very efficiently. Even for large parameters, such as (16, 256, 255), execution time is only 162
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seconds. This low execution time indicates that the L-BFGS approach is suitable for applications involving

largeL andd.

TABLE III
SIMULATION TIME (SECOND)

(M,L,d) L-BFGS approach Li Approach [21]

(8,16,8) 2.72s 2.18s
(8,32,16) 4.43s 11.16s
(8,128,16) 21.25s 19.46s
(8,128,32) 22.04s 81.65s
(8,128,127) 23.01s 3193s
(16,128,127) 62.6s 22198s
(16,256,255) 162s �

V. CONCLUDING REMARKS

In this paper, we have considered a direct way to synthesize constant modulus waveforms for a MIMO

radar. Compared to the state-of-the-art design procedures(e.g., [21]), the proposed procedure (based on

the L-BFGS algorithm) offers a comparable or better performance and yet is substantially more efficient,

especially for situations involving a large number of system parameters.
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Fig. 4. Comparison of auto-correlation characteristics. Weights, (ωb, ωac, ωcc) for the L-BFGS approach are (1, 1, 1) and (1, 8, 8),
respectively.
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Fig. 5. Comparison of cross-correlation characteristics.Weights, (ωb, ωac, ωcc) for the L-BFGS approach are (1, 1, 1) and (1, 8, 8),
respectively.


