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Abstract

In broadcast encryption system certain users may leak their decryption keys
to build pirate decoders, so traitor tracing is quite necessary. There exist
many codes based traitor tracing schemes. As pointed out by Billet and
Phan in ICITS 2008, these schemes lack revocation ability. The ability of
revocation can disable identified malicious users and users who fail to fulfill
the payments, so that the broadcast encryption system can be more practi-
cal. Recently, Zhao and Li presented a construction of codes based tracing
and revoking scheme which achieves user revocation as well as traitor trac-
ing. However, their scheme is only secure against chosen plaintext attacks
under selective-adversary model with random oracle. In this paper, we ob-
tain a new construction of codes based tracing and revoking scheme which
is proved secure against chosen ciphertext attacks under adaptive-adversary
model without random oracle. Our idea is to insert codeword into Boneh and
Hamburg’s identity based broadcast encryption scheme to retain the ability
of user revocation and use Boneh and Naor’s method to trace traitors. Our
fully secure scheme is roughly as efficient as Zhao and Li’s scheme while the
security is enhanced.
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1. Introduction

Broadcast encryption is efficient in distributing encrypted content to sub-
scribers via an insecure open channel so that only the qualified receivers can
recover the messages. It is very useful and enjoys many applications such
as pay-TV systems, distribution of copyrighted digital content via CD and
DVD. In these applications, certain users (called traitors) may leak their
decryption keys to build pirate decoders, so the ability of traitor tracing is
necessary.

Chor et al. [1] presented the first traitor tracing scheme against pirate
decoders. Since then, many traitor tracing schemes against pirate decoders
have been proposed and among them there is a kind of traitor tracing schemes
called codes based schemes (such as [2, 3, 4, 5, 6, 7, 8]). In these schemes, each
user is assigned decryption keys according to each bit of his/her codeword.
When a pirate decoder is captured, the tracer analyzes the keys used in
each bit position and recovers the codeword embedded in the decoder. The
recovered codeword can be used to trace back to at least one of the traitors.
However, Billet and Phan stated in [6] that it is still an open problem whether
the revocation ability can be achieved in codes based traitor tracing scheme.

Recently, Zhao and Li [9] presented a construction of codes based tracing
and revoking scheme. They embed collusion secure code into each user’s
decryption key of Park et al.’s public key broadcast encryption scheme [10],
so the sender can send messages to a set of designated receivers. The users
outside the set are revoked. When traitor tracing is needed, their scheme
recovers the embedded codeword from the pirate decoder by using the method
by Boneh and Naor [5]. Their scheme achieves user revocation as well as
traitor tracing. Moreover, their scheme is constant in ciphertext length and
resistant to public collaboration attacks [11]. However, their scheme is only
secure against chosen plaintext attacks under selective-adversary model with
random oracle.

1.1. Our Contributions

We describe a new construction of codes based tracing and revoking
scheme which is secure against chosen ciphertext attacks under adaptive-
adversary model without random oracle. Our idea is to insert codeword into
each decryption key of Boneh and Hamburg’s identity based broadcast en-
cryption scheme [12] and use the idea of Gentry [13] to achieve fully security
with a tight reductio. The ability of user revocation is inherit from Boneh
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and Hamburg’s scheme and traitor tracing is achieved by using the method
by Boneh and Naor [5] where only one tracing position is considered in each
broadcasting. Our scheme is almost as efficient as Zhao and Li’s scheme [9].

1.2. Related Works on Traitor Tracing against Pirate Decoders

Many traitor tracing schemes against pirate decoders have been proposed
since the introduction of traitor tracing in [1], we can roughly classify them
into three categories.

The first category is called combinatorial, as presented in [1, 14, 15, 16]. In
these schemes, certain subsets of decryption keys are carefully selected to be
put in each decoder. It is possible for the tracer to identify one of the traitors,
by analyzing what keys are used in the captured pirate decoder. The second
category is called algebraic, as described in [17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. In these schemes, algebraic methods are employed when assigning
private keys to users, and public broadcasting is allowed since public-key
techniques are employed. The third category is called codes (e.g. collusion
secure codes [5] and IPP codes [27]) based schemes, in which the ideas of
two previous classes are combined. For instance, the schemes presented in
[2, 3, 4, 5, 6, 7, 8, 9] belong to this category. In these schemes, each key
is assigned to certain user according to each bit of his/her codeword. The
tracer analyzes the keys used in each bit positions, and recover the codeword
embedded in the captured decoder. The recovered codeword can trace back
to at least one of the traitors.

Some schemes [3, 23, 24, 25] allow public traceability, which means that
the tracing action is not limited to the tracing authority and it can be per-
formed by anyone.

When traitors are identified, it is highly desirable to render them useless.
We notice that not all traitor tracing schemes support revocation. Many
schemes only care about the tracing of traitors, and they do not consider the
revocation of traitors. The tracing and revoking abilities are combined in
some schemes [19, 16, 23, 24, 9] so the schemes may be more practical.

Some works [28, 11] concentrate on attacks against traitor tracing schemes.
Kiayias and Pehlivanoglu [28] described pirate evolution attack against subset-
cover [16] based traitor tracing schemes. Pirate evolution attack means that
a traitor with a number of keys can build many generations of pirate decoders
(such behavior is called pirate evolution) and it is costly for the system to
disable them generation by generation. Billet and Phan described a new at-
tack in [11] named “Pirates 2.0” (called public collaboration in this paper)
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mainly against traitor tracing schemes based on traceability codes (such as
collusion secure codes and IPP codes) and schemes based on subset-cover
framework [16]. Their work shows that malicious users can leak certain part
of their decryption keys in a public place, so pirate decoders can be built
from the public information. Each traitor cannot be identified because many
users also hold the same partial keys that are leaked in public.

There are two schemes [29, 30] that are resistant to pirate evolution at-
tack. In scheme of [29], the subsets are partitioned more quickly than [16] so
that the colluding traitors can be detected and disabled in 2 generations of
media key block. In scheme of [30], wildcarded identity based encryption [31]
is used to link the decryption key for each user. Each set of decryption key
is no longer separated as in [16], so the key evolution attack to subset-cover
based scheme is prevented. There are several schemes [4, 8, 32, 30, 9] that are
resistant to public collaboration attacks. In schemes of [4, 8, 30], wildcarded
identity based encryption [31] is used to connect all separated parts of each
user’s decryption key so the decryption key should be leaked as a whole in
order for the key to be useful. The traitor will be immediately located if he
leaks decryption key as a whole. In scheme of [32, 9], the decryption keys are
bound to each user’s distinct identity. Thus, leaking any partial decryption
key will also identify the traitor immediately.

2. Preliminaries

2.1. Collusion Secure Codes

The definition of collusion secure codes required for constructing our trac-
ing and revoking scheme is described, which is similar to that in [5].

• For a codeword w̄ ∈ {0, 1}L we write w̄ = w̄1 . . . w̄L, where w̄i ∈ {0, 1}
is the ith bit of w̄ for i = 1, . . . , L.

• Let W = {w̄(1), . . . , w̄(t)} be a set of codewords in {0, 1}L. For a code-
word w̄ ∈ {0, 1}L, if for all i = 1, . . . , L there is a j ∈ {1, . . . , t}
satisfying that w̄i = w̄

(j)
i , We say that the codeword w̄ is feasible for

W . For example, if W consists of the two words (01
1
0

1
1

0
1

0
0), then all

codewords of the form [(01) (
1
0) 1 (01) 0] are feasible for W .

• For a set of codewords W ⊆ {0, 1}L we use F (W ) to denote the feasible
set of W , which is the set containing all codewords that are feasible for
W .
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We use a pair of polynomial time algorithms (G, T ) to denote the collusion
secure code. They are defined as follows:

• The code generating algorithm G is a probabilistic algorithm that takes
a pair (N , ϵ) as input, where N is the number of codewords to output
and ϵ ∈ (0, 1) is a security parameter. A pair (Γ, TK) is output. Here Γ
(called a code) contains N codewords in {0, 1}L for some L > 0 (called
the code length). TK is called the tracing key.

• The tracing algorithm T is a deterministic algorithm that takes a pair
(w̄∗, TK) as input, where w̄∗ ∈ {0, 1}L. A subset S of {1, . . . , N} is
output. Informally, the elements in S are accused of constructing the
codeword w̄∗.

We define the collusion resistant property of collusion secure code (G, T )
using the following game between a challenger and an adversary. Let N be an
integer and ϵ ∈ (0, 1). Let C be a subset of {1, . . . , N}. Both the challenger
and adversary are given (N , ϵ, C) as input. Then the game proceeds as
follows:

1. The challenger runsG(N , ϵ) to obtain (Γ, TK) where Γ = {w̄(1), . . . , w̄(N)}.
It sends the set W := {w̄(i)}i∈C to the adversary.

2. The adversary outputs a word w̄∗ ∈ F (W ).

We say that the adversary A wins the game if T (w̄∗, TK) is empty or not

a subset of C. We denote Adv
A,G(N,ϵ),T,C
CR as the advantage that A wins the

collusion resistant game.
A collusion secure code (G, T ) is said to be fully collusion resistant if for

all polynomial time adversaries A, all N > 0, all ϵ ∈ (0, 1), and all C ⊆
{1, . . . , N}, we have Adv

A,G(N,ϵ),T,C
CR is less than ϵ.

A collusion secure code (G, T ) is said to be t-collusion resistant if for
all polynomial time adversaries A, all N > t, all ϵ ∈ (0, 1), and all C ⊆
{1, . . . , N} of size at most t, we have Adv

A,G(N,ϵ),T,C
CR is less than ϵ.

2.2. Bilinear Pairings and Complexity Assumption

We review the definition of bilinear pairings [33], the decisional v-modified
bilinear Diffie-Hellman assumption [10] and the decisional q-truncated bilin-
ear Diffie-Hellman exponent assumption [13] in brief.
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Bilinear Pairings: Let G be a (multiplicative) cyclic group of prime order
p and g is a generator of G. A one-way map e : G × G → GT is a bilinear
pairing if the following conditions hold.

• Bilinear: For all u, v ∈ G, and a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

• Non-degeneracy: e(g, g) ̸= 1, i.e., if g generates G, then e(g, g) gener-
ates GT .

• Computability: There exists an efficient algorithm for computing e(u, v),
∀u, v ∈ G.

The decisional q-Truncated Bilinear Diffie-Hellman Exponent As-
sumption: Given a vector of 2q + 2 elements (g′, g, gα, gα

2
, . . ., gα

q
,

Z) ∈ Gq+2 ×GT to decide whether Z = e(g′, g)α
q+1

.
We call it the q-TBDHE [13] problem for convenience. Actually, this is

the truncated decisional version of q-BDHE problem [34] as described in [13].
The q-BDHE problem can be solved once the q-TBDHE problem is solved
whereas not, so the q-TBDHE problem is at least as difficult as the q-BDHE
problem. We refer our reader to [13] for detailed description.

2.3. Protocol Model

The protocol model consists of five algorithms (Setup, KeyGen, Encrypt,
Decrypt, Trace) that are described as follows.

• Setup(1λ, M , N). On inputting 1λ, the maximum number of receivers
allowed in each broadcast M and the total number of users in the
system N , the algorithm outputs the public parameter PK, the private
key of the system SK and a secret trace-key TK.

• KeyGen(IDu, SK). On inputting an identity IDu with system index
u ∈ {1, . . . , N} and the private key of the system SK, the algorithm
outputs the corresponding private decryption key SKu.

• Encrypt(PK, S, TSK). On inputting the public parameter PK, a
set of designated receivers S and a temporary session key TSK, the
algorithm generates a broadcast ciphertext header Hdr. The messages
are symmetrically encrypted using TSK to generate ciphertext body
C. We refer to the ciphertext length as the length of Hdr in which
a session key is protected and distributed by the tracing and revoking
scheme.
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• Decrypt(SKu, S, Hdr, PK). On inputting the set of private keys SKu

of user u, the set of designated receivers S, a broadcast ciphertext
header Hdr and the public parameter PK, the algorithm returns the
recovered temporary session key TSK or ⊥. TSK is used to decrypt
the messages from ciphertext body C.

• TraceD(TK). Given a captured pirate decoder D and private trace-key
TK, the algorithm queries D as a black box and then outputs a set of
traitors T ⊆ {1, . . . , N}.

2.4. Security Requirements

• Correctness. If a user is included in the set of designated receivers,
he/she can recover the message from the ciphertext if the sender and
the receiver operate honestly.

• Semantic Security. Any users that are not included in the set of
designated receivers, cannot obtain any information of messages from
in the ciphertext.

We define the IND-ID-CCA2 security (security against chosen cipher-
text attack under adaptive-adversary model) of our tracing and revok-
ing system using the following game between an adversary A and a
challenger B.

– Setup. B runs G(N , ϵ) to obtain (Γ, TK) where Γ = {w̄(1), . . . ,
w̄(N)} and w̄(i) is the codeword for user with system index i. The
challenger also generates public parameters PK. It sends Γ and
PK to the adversary.

– Phase 1. The adversary A adaptively issues key generation query
on IDi and decryption query on (IDi, S,Hdr).

– Challenge. A sends (S∗, K0, K1) to B, where S∗ ⊆ U and the
identities of S∗ have never been queried the private keys in Phase
1. The challenger randomly chooses β ∈ {0, 1} and runs algorithm
Encrypt to obtain (Hdr∗, Kβ). It then gives Hdr∗ to adversary
A.

– Phase 2. A issues additional key generation query IDi, where
IDi ̸∈ S∗ and decryption query Hdr ̸= Hdr∗, for any identity of
S∗. In both cases, A responds as in Phase 1. These queries may
be adaptive.
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– Guess. Finally, A outputs a guess β′ ∈ {0, 1} and wins if β = β′.

The advantage of the adversary A in the above game is defined as
|Pr[β = β′]− 1/2|.

Definition 1. The tracing and revoking system is (t, ϵ, qk, qd) IND-
ID-CCA2 secure if all t-time IND-ID-CCA2 adversaries making at most
qk key generation queries and at most qd decryption queries have ad-
vantage at most ϵ in winning the IND-ID-CCA2 security game.

• Collusion Resistant. The collusion resistant property of the proposed
scheme is defined using the following game between a challenger B and
an adversary A. Let (G, T ) be a collusion secure code. Let N be an
integer and ϵ ∈ (0, 1). Then the game proceeds as follows:

1. B runs G(N , ϵ) to obtain (Γ, TK) where Γ = {w̄(1), . . . , w̄(N)} and
w̄(i) is the codeword for user i. B also generates public parameters
PK. It sends Γ and PK to A.

2. A selects a set of identities S∗ with the corresponding subset of
system indexes denoted as C (C ⊂ {1, . . . , N}). A can query B
for decryption keys of the users in C. B generates the keys and
gives them to A.

3. B selects a set of system indexed S ⊆ {1, . . . , N} for which A can
recover the messages, and asks A to decrypt ciphertexts for S a
number of times. Finally the challenger recovers a codeword w̄∗.

We say that A wins the game if the output of T (w̄∗, TK) is empty or
not a subset of C ∩ S.

• Public Collaboration Resistant. It is required by the property of
public collaboration resistance that if any user releases any partial key
in public, the identity of the corresponding user will be surely detected
though we cannot prevent him from giving out his decryption key.

3. CCA2 Secure Scheme Under Adaptive-Adversary Model with-
out Random Oracle

We describe our construction of codes based tracing and revoking scheme
in this section, by embedding codeword into the decryption key of IBBE
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scheme by Boneh and Hamburg [12] (similar IBBE scheme can also be found
in [35]). The scheme is proved secure against chosen ciphertext attacks un-
der adaptive-adversary model. The scheme achieves O(m) public keys size,
O(mL) private keys size, and O(1) ciphertext length, where L is the length
of codeword and m is the maximum number of receivers allowed in each
broadcast. We describe construction idea firstly and then the details of the
new scheme.

3.1. Construction Idea

Adaptive-Adversary Security. Adaptive-adversary security (also called
full security) means that the simulator in the IND-ID-CCA2 game can freely
answer decryption queries, key generation queries and challenge query, and
does not require the adversary to submit its target identities at the beginning
of the game.

By following the idea of Gentry [13], our scheme achieves a tight re-
duction in security proof. Suppose we are given an M -TBDHE problem,
i.e. given a vector (g′, g, gα, . . . , gα

M
, Z)∈ GM+2 × GT to decide whether

Z = e(g′, g)α
M+1

. We allow the adversary to query at most M -1 times. The
decryption key structure of IBBE scheme in [12] is modified to add new pa-
rameters (g2, g3 and f(x)). In the simulation, we select 2L+2 random polyno-
mials fi,b(x) = aMxM +

∑M−1
j=0 ai,b,jx

j, f2(x) =
∑M

i=0 bix
i, f3(x) =

∑M
i=0 cix

i

from Z∗
p[x] of degree M where i = 1, . . . , L and b = 0, 1. The public ele-

ments wi,b, g2, g3 are defined as wi,b = gfi,b(α) (∀i = 1, . . . , L and b = 0, 1),

g2 = gf2(α), g3 = gf3(α) that can be calculated from {gαi
, i = 0, ...,M}. We

set f(x) = − bM
cM

x− aM
cM

so the equation aM + tIDbM + f(tID)cM = 0 can help

to bring down the exponent of the key element (wgtID2 g
f(tID)
3 )α to a polyno-

mial of degree M , then we can compute it from {gαi
, i = 0, ...,M}. When

generating challenge ciphertext, what the challenger needs to compute are
polynomials of degree M (also can be computed from {gαi

, i = 0, ...,M}),
with the help of Z. If Z = e(g′, g)α

M+1
, the challenging ciphertext is perfectly

simulated, and the simulator has the same advantage in making the right de-
cision to M -TBDHE problem as the adversary in making the right choice to
the security game. If Z is uniformly random, the ciphertext header is uni-
formly random and is independent from the adversary’s view. The random
ciphertext header does not help the adversary to guess the bit choice. Thus,
we obtain a tight reduction for the proof of adaptive-adversary security. Our
readers can refer to [13] for more details of the skill.
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CCA2 Security. Papers [36, 37] presented two methods for ensuring secu-
rity against chosen-ciphertext attacks. In our scheme, we employ the tech-
nique of [37] to achieve security against adaptive chosen-ciphertext attacks
(CCA2 security). As described in [37], we need a secure encapsulation scheme
as (Init, Sencap, Rencap) and a strong one-time message authentication code as
(Mac, Vrfy). Init(1λ) is called to generate pub. When in encryption, Sencap(1

λ,
pub) is called to obtain a new random set of (r, com, dec), and (m ◦ dec) is
encrypted to the new set of receivers S∪ “com” to obtain the ciphertext C.
We use (m ◦ dec) to denote concatenating dec to the message m. By calling
Mac with the input r, the sender generates a message authentication code tag
for C, which can be denoted as tag← Macr(C). Finally, the ciphertext of the
form ⟨com, C, tag⟩ is sent. Each receiver uses his decryption key to recover
(m ◦ dec), and calls Rencap(pub, com, dec) to recover r. If Vrfyr(C, tag)=1,
the receiver outputs m. The related proof for CCA2 security in Theorem 1
is omitted for brevity.

3.2. Detailed Scheme

The proposed tracing and revoking scheme works as follows:

Setup(1λ, M , N). Given security parameter 1λ, the maximal number of re-
ceivers M in each broadcast and the total number of users supported in the
system N , PKG selects ϵ ∈ (0, 1) and runs collusion secure code generation
algorithm G(N , ϵ) to generate a pair (Γ, TK). The set Γ = {w̄(1), . . . , w̄(N)}
contains N codewords in {0, 1}L, where L is the codeword length. TK is
the tracing key for Γ. w̄(u) is assigned to user with system index u, with
1 ≤ u ≤ N . PKG also selects G, GT and e : G × G → GT as defined in
Section 2, and g is a generator of G. g1 = gα, where α ∈R Z∗

p. p is a prime
larger than 2λ. H : GT → GT×Z∗

p is a collision-resistant hash function. PKG
randomly chooses g2, g3, w1,1, w1,0, . . . , wL,1, wL,0, z ∈ G, and f(x) = ax+ b,
where a, b ∈ Z∗

p. If g2 = g−a
3 or wi,b = g−b

3 for any i ∈ {1, . . . , L} and
b ∈ {1, 0}, chooses another f(x) again. PKG also chooses a (M + 1)-vector
h = (h0, h1, . . . , hM) ←R GM+1 of random generators so that hi = gvi for
i = 0, . . . ,M with a randomly chosen v = (v0, . . . , vM)←R ZM+1

p . Init(1λ) is
run to obtain pub for encapsulation scheme. The public parameters MPK
are (G, GT , p, g, g1, g2, g3, w1,1, w1,0, . . . , wL,1, wL,0, z, f(x), h,H, pub), and
PKG keeps (v, α) as the private key MSK.
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KeyGen(ID, MSK). When a user with identity ID joins the system, PKG
assigns to him an unused system index u ∈ {1, . . . , N} and the codeword w̄(u).
Then, PKG picks random r1, . . . , rL, t1,ID, . . . , tL,ID ∈ Z∗

p and computes

KID,i = (Ki,1, Ki,2, Ti,0, . . . , Ti,M−1, ti,ID)

= ((wi,b · g
ti,ID
2 g

f(ti,ID)
3 )αzri , gri , hri

1 h
−IDri
0 ,

hri
2 h

−IDri
1 , . . . , hri

Mh−IDri
M−1 , ti,ID),

for all i ∈ {1, . . . , L} and b = w̄
(u)
i . (KID,1, . . . , KID,L) are sent to the user

via a secure channel. (ID, u, w̄(u), KID,1, . . . , KID,L) are recorded. Then User
checks whether KID,i satisfies the following relations for each i ∈ {1, . . . , L},
b = w̄

(u)
i and j ∈ {0, . . . ,M − 1}:

e(Ki,1, g) = e(wi,b, g1) · e(g1, g2)ti,ID

·e(g1, g3)f(ti,ID) · e(z,Ki,2),

e(g, Ti,j) = e(Ki,2, hj+1h
−ID
j ).

Encrypt(MPK, S, TSK). to encrypt a temporary session key TSK ∈ GT ,
the sender

1. selects a tracing position j ∈ {1, . . . , L};

2. runs Sencap(1
λ, pub) to obtain a new random set as (r, com, dec);

3. For the receiver set S = {ID1, . . . , IDn−1} where n ≤ M , the sender
sets S ′ = S ∪ {com} and expands P (X) ∈ Zp[X] as

P (X) =
∏

IDi∈S′

(X − IDi)

= ρnX
n + ρn−1X

n−1 + · · ·+ ρ1X + ρ0;

4. chooses s1, s0 ∈R Z∗
p and computes
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C1 = ⟨C1,0, C1,1, C1,2, C1,3, C1,4⟩
= ⟨(TSK ◦ dec)⊕H(e(g1, wj,1)

s1),

gs1 , (z · hρ0
0 hρ1

1 . . . hρn
n )s1 ,

e(g1, g2)
s1 , e(g1, g3)

s1⟩;
C0 = ⟨C0,0, C0,1, C0,2, C0,3, C0,4⟩

= ⟨(TSK ◦ dec)⊕H(e(g1, wj,0)
s0),

gs0 , (z · hρ0
0 hρ1

1 . . . hρn
n )s0 ,

e(g1, g2)
s0 , e(g1, g3)

s0⟩;

5. computes tag= Macr(C1, C0).

C1 is the part of ciphertext for codeword bit 1 in tracing position j. We de-
note the computations of C1 as C1← BEnc(j, 1, S, TSK, r, com, dec), which
means encrypting temporary session key TSK to the receiver set S using
tracing position j, codeword bit 1 and additional parameters (r, com, dec).
C0 is the part of ciphertext for codeword bit 0 in tracing position j. Likewise,
the computations of C0 can be denoted as C0 ← BEnc(j, 0, S, TSK, r, com,
dec). ⟨j, com, C1, C0, tag⟩ will be broadcast to all users as the ciphertext
header Hdr, and TSK will be used as session key to symmetrically encrypt
message to generate the ciphertext body.

Decrypt(SKu, S, Hdr, MPK). User with the identity IDu ∈ S parses header

Hdr as ⟨j, com, C1, C0, tag⟩. For tracing position j, codeword bit b = w̄
(u)
j

and the private key KIDu,j = (Kj,1, Kj,2, Tj,0, . . . , Tj,M−1, tj,IDu), the user

1. parses Cb as (Cb,0, Cb,1, Cb,2, Cb,3, Cb,4);

2. sets S ′ = S ∪ {com} and expands PIDu(X) ∈ Zp[X] as

PIDu(X) =
∏

IDj∈S′\{IDu}

(X − IDj)

= y
(IDu)
n−1 Xn−1 + y

(IDu)
n−2 Xn−2 + . . .

+y
(IDu)
1 X + y

(IDu)
0
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and computes the decryption key as

DIDu = Kj,1 · T
y
(IDu)
0

j,0 · T y
(IDu)
1

j,1 . . . T
y
(IDu)
n−1

j,n−1

= (wj,b · g
tj,IDu
2 · gf(tj,IDu )

3 )α

·(z · hρ0
0 hρ1

1 . . . hρn
n )r,

dIDu = Kj,2 = gr,

tIDu = tj,IDu ;

since the following equations hold

ρn = y
(IDu)
n−1 ;

ρn−1 = y
(IDu)
n−2 − IDuy

(IDu)
n−1 ;

. . .

ρ1 = y
(IDu)
0 − IDuy

(IDu)
1 ;

ρ0 = −IDuy
(IDu)
0 .

3. then he recovers the session key as follows. He sets t = tj,IDu and
calculates e(g1, wj,b)

s as

e(Cb,1, DIDu)

e(Cb,2, dIDu) · Ct
b,3 · C

f(t)
b,4

=
e(gs, (wj,b · gt2g

f(t)
3 )α(zhρ0

0 hρ1
1 . . . hρn

n )r)

e((zhρ0
0 hρ1

1 . . . hρn
n )s, gr)e(g1, g2)ste(g1, g3)sf(t)

= e(gs, wα
j,b).

He recovers the temporary session key as (TSK◦dec) = Cb,0⊕H(e(g1, wj,b)
s);

4. runs Rencap(pub, com, dec) to obtain r, and checks whether Vrfyr(C1, C0,
tag)=1.

If holds, the user outputs TSK as temporary session key. Else, ⊥ is out-
put.

TraceD(TK). Given a perfect pirate decoder D with complete decryption
keys, the trusted party queries decoder D as a black-box oracle. We say the
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decoder is perfect if it will always decrypt well-formed ciphertext correctly
[5]. We assume that the captured decoder can recover the messages encrypted
for receivers set S. For j = 1, . . . , L, the sender selects a random temporary
session key TSK ∈R GT , another key KR ∈R GT (KR ̸= TSK). The sender
runs Sencap(1

λ, pub) to obtain a new random set as (r, com, dec) and computes

C1 ← BEnc(j, 1, S, TSK, r, com, dec),

C0 ← BEnc(j, 0, S,KR, r, com, dec),

tag = Macr(C1, C0)

as described in the algorithm Encrypt. The ciphertext headerHdr is ⟨j, com,
C1, C0, tag⟩. A message m is symmetrically encrypted using the session
key TSK to generate ciphertext body C. (Hdr, S) and C are fed to the
decoder as in normal broadcasting. If the pirate decoder outputs m, the
trusted party decides that the decoder contains a codeword w̄∗ with w̄∗

j =
1. Otherwise, w̄∗

j = 0. When the tracing on all positions (1, . . . , L) is
completed, the recovered codeword w̄∗ = (w̄∗

1 . . . w̄∗
L) is put to the tracing

algorithm of collusion secure code T(w̄∗, TK) to obtain a set of traitors
T ∩ S ⊆ {1, . . . , N}, with T = T(w̄∗, TK).

3.3. Security Analysis

Correctness. The correctness is straightforward due to the above compu-
tations.

Theorem 1. If there is (t, ϵ, qk, qd)-adversary against IND-ID-CCA2 secu-
rity game of the proposed scheme, the M-TBDHE assumption can be broken
with probability ϵ′ within time t′, where qk+qd <M, t′ ≈ t + O(M(qk+qd)Texp)
+ O(M(qk+qd)Tmul) + O(qdTpair), ϵ

′ ≈ ϵ, Texp, Tpair and Tmul are the average
time for exponentiation, pairing and multiplication in G respectively.

Proof: Suppose such adversary exists, we denote it as A. Challenger B is
given an M-TBDHE problem, i.e. B is given a vector (g′, g, gα, . . . , gα

M
, Z)∈

GM+2 ×GT to decide whether Z = e(g′, g)α
M+1

.

Setup. B selects random functions f1,1(x), f2(x), f3(x) ∈ (Z∗
p)[x] of de-

gree M , where f1,1(x) = aMxM +
∑M−1

j=0 a1,1,jx
j, f2(x) =

∑M
j=0 bjx

j, f3(x) =∑M
j=0 cjx

j. Let g1 = gα, w1,1 = gf1,1(α), g2 = gf2(α), g3 = gf3(α), f(x) =

− bM
cM

x − aM
cM

. If g2 = g
bM/cM
3 or w1,1 = g

aM/cM
3 , randomly chooses f1,1(x),

14



f2(x), f3(x) again. After that, additional random functions f1,0(x), f2,1(x),
f2,0(x), . . . , fL,1(x), fL,0(x) ∈ (Z∗

p)[x] of degree M are selected, ensuring they

are of the form fi,k(x) = aMxM +
∑M−1

j=0 ai,k,jx
j, for all i = 1, . . . , L and

k = 0, 1. Let wi,k = gfi,k(α), for all i = 1, . . . , L and k = 0, 1. If wi,k = g
aM/cM
3

holds for some (i, k), B chooses fi,k(x) again. B also chooses a (M+1)-vector
h = (h0, h1, . . . , hM), a collision-resistant hash function H as described in the
proposed scheme. B keeps the h-related vector v = (v0, . . . , vM) private. B
also selects random γ ∈ Z∗

p, sets z = gγ. Init(1λ) is run to obtain pub for
encapsulation scheme. Then B sends the public parameters (G, GT , p, g, g1,
g2, g3, w1,1, w1,0, . . . , wL,1, wL,0, z, f(x), h,H, pub) to A.

Phase 1. A is free to query as follows.
KeyGen query. A may request the KeyGen algorithm run for an arbitrary
identity ID. B assigns to ID an unused system index u ∈ {1, . . . , N} and
the codeword w̄(u). Then, B picks random r1, . . . , rL, t1,ID, . . . , tL,ID ∈ Z∗

p

satisfying wi,k · g
ti,ID
2 g

f(ti,ID)
3 ̸= 1 for i = 1, . . . , L and k = w̄

(u)
i . B computes

KID,i = (Ki,1, Ki,2, Ti,0, . . . , Ti,M−1, ti,ID)

= (g
∑M−1

j=0 (ai,k,j+ti,IDbj+f(ti,ID)cj)α
j+1

zri ,

gri , hri
1 h

−ID·ri
0 , hri

2 h
−ID·ri
1 , . . . ,

hri
Mh−ID·ri

M−1 , ti,ID),

for all i ∈ {1, . . . , L} and k = w̄
(u)
i . Because f(ti,ID) = − bM

cM
ti,ID − aM

cM
, so we

have aM + ti,IDbM + f(ti,ID)cM = 0. Thus

Ki,1 = (g
∑M−1

j=0 (ai,k,j+ti,IDbj+f(ti,ID)cj)α
j+1

) · zri

= g
∑M−1

j=0 (ai,k,j+ti,IDbj+f(ti,ID)cj)α
j+1

·g(aM+ti,IDbM+f(ti,ID)cM )αj+1 · zri

= (gaMαM+
∑M−1

j=0 ai,k,jα
j · gti,ID

∑M
j=0 bjα

j

·gf(ti,ID)
∑M

j=0 cjα
j

)α · zri

= (gfi,k(α) · gti,IDf2(α) · gf(ti,ID)f3(α))α · zri

= (wi,k · g
ti,ID
2 g

f(ti,ID)
3 )α · zri .

Ki,1 has the correct form and KID,i is a valid private key for ID and w̄
(u)
i on

codeword position i. Also, KID,i is randomly distributed because of the ran-
domness of ti,ID and ri. (KID,1, . . . , KID,L) are returned toA. (ID, u, w̄(u), KID,1, . . . , KID,L)

15



are recorded by B.

Decryption query. A sends (ID, S,Hdr) to B. B checks whether ID ∈ S
holds. If so, B obtains private key KID for ID as follows: B finds the system
index u of ID, the codeword w̄(u) and the decryption key in the records. If
no such item exists, B assigns to ID an unused system index u ∈ {1, . . . , N}
and the codeword w̄(u). B chooses randomly r1, . . . , rL, t1,ID, . . . , tL,ID ∈ Z∗

p

so that wi,k · g
ti,ID
2 g

f(ti,ID)
3 ̸= 1 for i = 1, . . . , L and k = w̄

(u)
i . B sets ti = ti,ID

and computes

KID,i = (Ki,1, Ki,2, Ti,0, . . . , Ti,M−1, ti)

= (g
∑M−1

j=0 (ai,k,j+tibj+f(ti)cj)α
j+1 · zri ,

gri , hri
1 h

−ID·ri
0 , hri

2 h−ID·ri
1 , . . . ,

hri
Mh−ID·ri

M−1 , ti),

= ((wi,k · gti2 g
f(ti)
3 )α · zri , gri ,

hri
1 · h

−ID·ri
0 , hri

2 · h
−ID·ri
1 , . . . ,

hri
M · h

−ID·ri
M−1 , ti)

for all i ∈ {1, . . . , L} and k = w̄
(u)
i . (ID, u, w̄(u), KID,1, . . . , KID,L) are

recorded by B. Then B runs the Decrypt algorithm to verify the tag and
recover the message, which is returned to A. If verification fails, B returns
⊥.

Challenge. A sends (S∗, K0, K1) to B, where S∗ = {ID1, . . . , IDn−1} (n ≤
M) and any identity in S∗ has never been queried for the private key in
Phase 1. B obtains a new random set of (r, com, dec), and set the receiver
set as S∗ = S∗ ∪ {com}. Then he expands P (X) as follows,

P (X) =
∏

IDi∈S∗

(X − IDi)

= ρnX
n + ρn−1X

n−1 + · · ·+ ρ1X + ρ0.

B randomly chooses Kβ, β ∈ {0, 1}, tracing position i, random s ∈ Zp and
computes
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C∗
1,0 = (Kβ ◦ dec)⊕H(ZaM e(g′, g)

∑M−1
j=0 ai,1,jα

j+1

),

C∗
1,1 = g′,

C∗
1,2 = (g′)γ+

∑n
j=0 vjρj ,

C∗
1,3 = ZbM · e(g′, g)

∑M−1
j=0 bjα

j+1

,

C∗
1,4 = ZcM · e(g′, g)

∑M−1
j=0 cjα

j+1

;

C∗
0,0 = (Kβ ◦ dec)⊕H((ZaM e(g′, g)

∑M−1
j=0 ai,0,jα

j+1

)s),

C∗
0,1 = (g′)s,

C∗
0,2 = ((g′)γ+

∑n
i=0 viρi )s,

C∗
0,3 = (ZbM · e(g′, g)

∑M−1
i=0 biα

i+1
)s,

C∗
0,4 = (ZcM · e(g′, g)

∑M−1
i=0 ciα

i+1
)s.

B sets C∗
1 = (C∗

1,0, C
∗
1,1, C

∗
1,2, C

∗
1,3, C

∗
1,4), C

∗
0 = (C∗

0,0, C
∗
0,1, C

∗
0,2, C

∗
0,3, C

∗
0,4)

and calculates tag= Macr(C
∗
1 ,C

∗
0). For any IDu ∈ S∗ with codeword bit

b = w̄
(u)
i , the private key KIDu,i = (Ki,1, Ki,2, Ti,0, . . . , Ti,M−1, ti,IDu) for

tracing position i, and the polynomial

PIDu(X) =
∏

IDj∈S∗\{IDu}

(X − IDj)

= y
(IDu)
n−1 Xn−1 + y

(IDu)
n−2 Xn−2 + . . .

+y
(IDu)
1 X + y

(IDu)
0 ,

we notice that if b = 1,

e(C∗
1,1,Ki,1(Ti,0)

y
(IDu)
0 (Ti,1)

y
(IDu)
1 . . . (Ti,n−1)

y
(IDu)
n−1 )

e(C∗
1,2,Ki,2) · (C∗

1,3)
ti,IDu · (C∗

1,4)
f(ti,IDu )

= ZaM · e(g′, g)
∑M−1

j=0 ai,1,jα
j+1

.

It does not help B to decide whether Z = e(g′, g)α
M+1

even B can gen-
erate decryption keys for IDu ∈ S∗. We can observe the following deductions.

Let s′ = loggg
′. If Z = e(g′, g)α

M+1
, we have
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C∗
1,0 = (Kβ ◦ dec)

⊕H(e(g′, g)aMαM+1+
∑M−1

j=0 ai,1,jα
j+1

)

= (Kβ ◦ dec)⊕H(e(g′, gf1,1(α))α)

= (Kβ ◦ dec)⊕H(e(g1, w1,1)
s′),

C∗
1,1 = g′ = gs

′
,

C∗
1,2 = (g′)γ+

∑n
j=0 vjρj = (z · hρ0

0 hρ1
1 . . . hρn

n )s
′
,

C∗
1,3 = ZbM · e(g′, g)

∑M−1
j=0 bjα

j+1

= e(g′, gf2(α))α

= e(g1, g2)
s′ ,

C∗
1,4 = ZcM · e(g′, g)

∑M−1
j=0 cjα

j+1

= e(g′, gf3(α))α

= e(g1, g3)
s′ .

C∗
1 is the valid ciphertext header part encrypting Kβ for tracing position i

with codeword bit value 1 under the randomness of s′. It is similar for the
case of b = 0 under the randomness of ss′. Let tag= Macr(C1,C0). Hdr =
⟨j, com, C1, C0, tag⟩ is the valid ciphertext header encrypting Kβ for tracing
position i. If Z is uniformly random, the ciphertext is uniformly random and
independent from the adversary’s view. Thus the ciphertext does not help
the adversary to guess the bit choice.

Phase 2. A may query adaptively as Phase 1, with some exceptions as
follows.

In KeyGen query on IDi, we require IDi ̸∈ S∗. In Decrypt query on Hdr,
we require Hdr ̸= Hdr∗. In both cases, B responds as described in Phase 1.

Guess. A returns the guessed β′ to B. If β = β′, B decides Z is equal to
e(g′, g)α

M+1
. Else, B decides Z is unequal to e(g′, g)α

M+1
.

Each key generation query requires O(M) exponentiations and O(M)
multiplications in G, and each decryption query requires O(M) exponenti-
ations, O(M) multiplications, O(1) pairings in G, so the time required by
B is t′ ≈ t + O(M(qk+qd)Texp) + O(M(qk+qd)Tmul) + O(qdTpair), where
Texp, Tpair and Tmul are the average time for exponentiation, pairing and
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multiplication in G. Only if the adversary can guess the right s′ or ss′ that
will expose Kβ, the adversary can return the right choice. If we use Peq to

denote the probability of Z = e(g′, g)α
M+1

, Pneq to denote the probability of

Z ̸= e(g′, g)α
M+1

, ϵ1 to denote the advantage of A in guessing the right choice
in Peq, and ϵ2 to denote the advantage of A in guessing the right choice in
Pneq. We have ϵ = Peq · ϵ1 + Pneq · ϵ2 = Peq · ϵ1 + Pneq · (1/2+ 2/p), and ϵ′ =
Peq · (ϵ1 − 2/p) + Pneq · 1/2. Thus, we have ϵ′ ≈ ϵ.

Usually, we need additional proof to prove it negligible that the adver-
sary is able to construct a valid ciphertext header for decryption oracle as
⟨j, com∗, C1, C0, tag

∗⟩ satisfying com∗ ̸= com or tag∗ ̸= tag. Since it is similar
to the proof in [37], we omit it for brevity. �

Theorem 2. At most t users (with a same value for a same tracing position)
colluding in the proposed scheme, cannot recover the message encrypted for
the other value of the same tracing position.

Proof: (Sketch Proof.) The proof for Theorem 2 is quite similar to the proof
for Theorem 1, except that the challenging ciphertext is computed only on
the target codeword bit value for which the adversary is never issued any
decryption key. The sketch phases are as follows.

Setup. This phase is the same as Setup in Theorem 1.

Phase 1. This phase is almost the same as Phase 1 in Theorem 1 except
that there should be at least one codeword bit value for which the adversary
is never issued decryption keys. For instance, with respect to all queried
IDu, the challenger has never issued decryption keys for tracing positions j
and i on the values w̄

(u)
j = 0 and w̄

(u)
i = 1.

Challenge. This phase is almost the same as Challenge in Theorem 1.
The exceptions are that the tracing position is restricted to the positions
where there is certain codeword bit value the adversary is never issued de-
cryption keys for, and that the challenging ciphertext is computed only on
the selected codeword bit value. For instance, the tracer can select j as the
tracing position and the ciphertext is computed only on w̄

(u)
j = 0.

Phase 2. This phase is almost the same as Phase 2 in Theorem 1 except
that the adversary cannot be issued decryption key for codeword bit value
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w̄
(u)
j = 0 which is already used in the challenging ciphertext.

Guess. This phase is the same as Guess in Theorem 1.

As described above, if the adversary has any advantage in breaking Theo-
rem 2, we has the same advantage to break the M-TBDHE assumption. The
detailed proof is omitted for brevity. �

Theorem 3. Our tracing and revoking scheme is t-collusion secure assum-
ing the scheme is IND-ID-CCA2 secure, the employed collusion secure code
is t-collusion secure and Theorem 2 holds.

Proof: The t-collusion resistant game of our scheme is interacted between a
challenger B and an adversary A as described in Section 2.

Suppose (G, T ) denotes a collusion secure code and N is a positive integer
and ϵ ∈ (0, 1). B runs G(N, ϵ) to obtain (Γ, TK) where Γ = {w̄(1), . . . , w̄(N)}
where user with index i will receive the codeword w̄(i). B also generates an
instance of our tracing and revoking scheme with public key PK. It sends
Γ and PK to A. After that, A submits to B a set of identities S∗ with the
subset of system indexes denoted as C with |C| ≤ t. A can query B for
decryption keys of users in C. B generates decryption keys as described in
the proposed scheme and forwards them to A.

Now the challenger B can query A on decryptions. For each tracing
position i = 1, . . . , L, the challenger B queries A with message m encrypted
as described in algorithm Trace to a set S of receivers. There are four cases
for the tracing queries:

• Case 1: A does not hold any valid decryption key of users in S. The
adversary will always output a random message other thanm, as proved
in Theorem 1. The probability that A responds with the right message
is at most 1/|M|, where |M| is the number of messages in the message
space. In this case, B changes to another set to continue. B will be
deceived with probability at most 1/|M|;

• Case 2: A holds decryption keys for at least one user in S (we use SA

to denote these users whose decryption keys are held by A, where SA =
S ∩C), and all codewords of users in SA contain “1” in current tracing

position i. That is to say, all w̄(j)(∀j ∈ SA) satisfy w̄
(j)
i = 1. Thus,

A will always output m′ = m. The recovered bit w̄∗
i will always be 1.
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Since all codewords of users in SA do not contain “0” in position i, the
probability that A outputs m′ ̸= m is less than AdvAFS, the probability
that the adversary breaks Theorem 2. AdvAFS is negligible as implied
in Theorem 2;

• Case 3: A holds decryption keys for at least one user in S (we denote
the set of these users as SA), and all codewords of users in SA contain
“0” in current tracing position i. That is to say, all w̄(j)(∀j ∈ SA)

satisfy w̄
(j)
i = 0. Thus, the adversary will always output m′ ̸= m. The

recovered bit w̄∗
i will always be 0. Since all codewords in SA do not

contain “1” in position i, the probability that the adversary outputs m
is less than AdvAFS, the probability that the adversary breaks Theorem
2;

• Case 4: The adversary holds decryption keys for at least one user in S
(these users are denoted as SA), and codewords of users in SA contain
both “0” and “1” in current tracing position i. No matter what message
the adversary outputs (m or others), w̄∗

i must be in the feasible set of
all codewords corresponding to SA.

We use WSA
to denote the set of codewords corresponding to SA. Therefore,

the final recovered codeword w̄∗ ∈ F (WSA
). From the assumption that col-

lusion secure code (G, T ) is t-collusion resistant, the probability that T (w̄∗,
TK) is empty or not a subset of SA is less than ϵ. Thus, the probability that
the adversary breaks the property of t-collusion resistance of our tracing and
revoking scheme is less than (1/|M|)L + 2L · AdvAFS + ϵ. �

As we can see, our scheme is fully collusion resistant when t = N .

Theorem 4. The proposed scheme is public collaboration resistant.

Proof: In our scheme, if some traitor leaks certain partial key d∗ in public,
it can operate in two cases.

• Case 1: The traitor leaks d∗ID,i together with its identity ID, the key
index i of d∗ID,i in its set of decryption keys and the corresponding

codeword bit value w̄
(u)
i , so any one who picks up d∗ID,i can use it

immediately. In this case, the traitor’s identity ID is exposed already.
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• Case 2: The traitor leaks only the partial key d∗ = (Ki,1, Ki,2, Ti,0, . . . , Ti,M−1, ti,ID)
for some unknown i and nothing else. In this case, the tracer can still
learn the traitor’s identity by comparing at most 2L +N rounds. For
all w1,1, w1,0, . . . , wL,1, wL,0, the tracer tests whether there is certain
wj,b (j ∈ {1, . . . , L} and b ∈ {1, 0}) satisfying the following equation:

e(Ki,1, g) = e(wj,b, g1) · e(g1, g2)ti,ID · e(g1, g3)f(ti,ID) · e(z,Ki,2).

When such a j is found, for all u = 1, . . . , N the tracer tests whether
there is a tuple of (ID, u, w̄(u), KID,1, . . . , KID,L) with a value tj,ID in
KID,j satisfying tj,ID = ti,ID. If such tuple (ID, u, w̄(u), KID,1, . . . , KID,L)
exists, the tracer will accuse the user with identity ID of releasing this
partial key.

Thus, the partial decryption key in our scheme is self-enforced so that
the scheme is resistant to public collaboration. �

4. Efficiency Analysis

We compare our scheme with several codes based schemes [2, 3, 5, 6, 7,
8, 9] in Table 1. In the comparison, all schemes are assumed to employ code-
words of the same length L. In schemes that did not mention the employed
public key encryption scheme (such as [5] and [6]), we assume that secure
ElGamal encryption over a cyclic group of a large prime order p is used. Ta-
ble 1 shows that our scheme achieve constant ciphertext length as schemes
in [5, 6, 9] do, and our scheme is almost as efficient as the scheme in [9].

5. Conclusion and Discussions

Inspired by the idea in [9], we describe a new construction of codes based
tracing and revoking scheme. Our scheme is proved secure against chosen
ciphertext attacks under adaptive-adversary model without random oracle
while the scheme in [9] is only secure against chosen plaintext attacks un-
der selective-adversary model with random oracle. Our scheme can also be
extended to scheme adopting identifiable parent property (IPP) codes and
scheme against imperfect pirate decoders as described in [9].

We notice that the scheme in [9] is based on v-Modified Bilinear Diffie-
Hellman Assumption [10] that is not well studied, and our scheme is based on
q-Truncated Bilinear Diffie-Hellman Exponent Assumption [13]. The above
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Table 1: Comparison with Previous Codes Based Works
Public Key Private

Key
Ciphertext Length Encryption

Computation
Decryption
Computation

Revocation Pirate 2.0
Resistant

[2] 2LG LZp 2LG L(2E+ 1M) L(1E+ 2M) No No

[3] 1G+
(L+1)GT

LZp+ LG 2G+ LGT LET+ 2M L(M+ 2P) No No

[5] 2LG LZp 1Zp+ 2G (2E+ 1M) (1E+ 2M) No No

[6] 2LG LZp u(1Zp+ 2G) u(2E+ 1M) u(1E+ 2M) No No

[7] (2L+1)G (L+2)Zp 2Zp+ (L+2)G (3E+1M) (2E+2M) No No

[8] (L+2)G1

+2G2

1G1 +1G2 2LG1 +2G2+3Zp 2(L+1)E1 +2M
+2E2 +2ET

(L-1)E1 +(L-1)M
+2P+1MT

No Yes

[9] (N+1)G
+1Zp

LG 1Zp +4G +2GT 2(|S|+1)M
+4E+2ET

2(|S|-1)E+|S|M
+2P+1MT

Yes Yes

Our
Scheme

(M+L+5)G
+1Zp

L(M + 2)G
+LZp

3Zp +4G +6GT 2(|S|+2)M +
2(|S|+2)E

+2P+2ET+(|S|+1)Mp

|S|E+|S|M
+2P+2ET

+1MT+|S|Mp

Yes Yes

L: the length of codeword; |S|: the number of users in the set S of receivers;
N : the total number of users in the system;
u: the number of codeword positions used in encryption [6];
G: element in G; G1: element in G1; G2: element in G2; GT : element in GT ;
Zp: element in Zp; P: pairing in G×G or G1 ×G2;
E: exponentiation in G; E1: exponentiation in G1; E2: exponentiation in G2;
M: multiplication (or division) in G; M1: multiplication (or division) in G1;
Mp:multiplication in Zp; MT : multiplication (or division) in GT .

two assumptions are both q-based, so future works may focus on construct-
ing codes based tracing and revoking schemes based on static complexity
assumptions.
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