学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 白雪茹的留言板
论文成果


第一/通讯作者代表作

  1. HENC-Hierarchical Embedding Network with Center Calibration for Few-Shot Fine-Grained SAR Target Classification. IEEE Trans. on Image Processing. To be published. 2023. (SCI, IF: 11.04)

  2. High-Resolution ISAR Imaging with SSFCS Based on Nonparametric Bayesian Learning and Genetic Algorithm. IEEE Trans. on Geoscience and Remote Sensing. To be published. 2023. (SCI, IF: 8.1)

  3. Recognition of micro-motion space targets based on attention-augmented cross-modal feature fusion recognition network. IEEE Trans. on Geoscience and Remote Sensing. To be published. 2023. (SCI, IF: 8.1)

  4. Sequential ISAR target classification based on hybrid transformer. IEEE Trans. on Geoscience and Remote Sensing. vol. 60, pp. 1-11, 2022, Art no. 5111411, doi: 10.1109/TGRS.2022.3155246. (SCI, IF: 8.1)

  5. Mixed loss graph attention network for few-shot SAR target classification. IEEE Trans. on Geoscience and Remote Sensing. vol. 60, pp. 1-13, Feb. 2022. Art no. 5216613, doi: 10.1109/TGRS.2021.3124336. (SCI, IF: 8.1)

  6. SAISAR-Net: a robust sequential adjustment ISAR image classification network. IEEE Trans. on Geoscience and Remote Sensing. vol. 60, pp. 1-15, Jan. 2022, Art no. 5214715, doi: 10.1109/TGRS.2021.3113655. (SCI, IF: 8.1)

  7. High-resolution radar imaging of off-grid maneuvering targets based on parametric sparse Bayesian learning, IEEE Trans. on Geoscience and Remote Sensing, 2022, doi: 10.1109/TGRS.2022.3169206. (SCI, IF: 8.1)

  8. Hybrid inference network for few-shot SAR automatic target recognition. IEEE Trans. on Geoscience and Remote Sensing. vol. 59, no. 11, pp. 9257-9269, Nov. 2021. (SCI, IF: 8.1)

  9. JTF analysis of micromotion targets based on single-window variational inference. IEEE Trans. on Geoscience and Remote Sensing. vol. 59, no. 8, pp. 6600-6608, Aug. 2021. (SCI, IF: 8.1)

  10. Spatial-temporal ensemble convolution for sequence SAR target classification. IEEE Trans. on Geoscience and Remote Sensing. vol. 59, no. 2, pp. 1250-1262, Feb. 2021. (SCI, IF: 8.1)

  11. High resolution radar imaging in low SNR environments based on expectation propagation. IEEE Trans. on Geoscience and Remote Sensing. vol. 59, no. 2, pp. 1275-1284, Feb. 2021. (SCI, IF: 8.1)

  12. Robust Pol-ISAR target recognition based on ST-MC-DCNN. IEEE Trans. on Geoscience and Remote Sensing. Dec. 2019, vol. 57, no. 12, pp. 9912–9927. (SCI, IF: 8.1)

  13. Radar-based human gait recognition using dual-channel deep convolutional neural network. IEEE Trans. on Geoscience and Remote Sensing. Dec. 2019, vol. 57, no. 12, pp. 9767–9778. (SCI, IF: 8.1)

  14. Sequence SAR image classification based on bidirectional convolution-recurrent network. IEEE Trans. on Geoscience and Remote Sensing. Nov. 2019, vol. 57, no. 11, pp. 9223–9235. (SCI: 000496155200065, IF: 8.1)

  15. Radar image series denoising of space targets based on Gaussian process regression. IEEE Trans. on Geoscience and Remote Sensing. Jul. 2019, vol. 57, no. 7, pp. 4659–4669.  (SCI: 000473436000040, IF: 8.1)

  16. High-resolution radar imaging in complex environments based on Bayesian learning with mixture models. IEEE Trans. on Geoscience and Remote Sensing. Feb, 2019, vol. 57, no. 2, pp. 972–984.  (SCI: 000456936500027, IF: 8.1)

  17. SAR ATR of ground vehicles based on LM-BN-CNN. IEEE Trans. on Geoscience and Remote Sensing. Jul. 2018, vol. 56, no. 12, pp. 7282–7293. (SCI: 000451621000034, IF: 8.1)

  18. High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors. IEEE Trans. on Geoscience and Remote Sensing.  Aug. 2018, vol. 56, no. 8. pp. 4568-4580.  (SCI: 000439980200022, IF: 8.1)

  19. High-resolution radar imaging of space targets based on HRRP series.  IEEE Trans.  on Geoscience and Remote Sensing. May. 2014, vol. 52, no. 5. pp. 2369-2381. (SCI: 000332484700008, EI: 20141217495305, IF: 8.1)

  20. Sparse subband imaging of space targets in high-speed motion. IEEE Trans.  on Geoscience and Remote Sensing. Jul. 2013, vol. 51, no. 7. pp. 4144-4154. (SCI: 000320943700005, EI: 20132916512161, IF: 8.1)

  21. A novel method for imaging of group targets moving in a formation. IEEE Trans.  on Geoscience and Remote Sensing. Jan. 2012, vol. 50, no. 1, pp. 221-231. (SCI: 000298782000018, EI: 20120214670427, IF: 8.1)

  22. High-resolution three-dimensional imaging of spinning space debris. IEEE Trans.  on Geoscience and Remote Sensing. Jul. 2009, vol. 47, no. 4,  pp. 2352-2362. (SCI: 000267437300023, EI: 20093112231520, IF: 8.1)

  23. Imaging of micromotion targets with rotating parts based on empirical-mode decomposition. IEEE Trans.  on Geoscience and Remote Sensing. Nov. 2008, vol. 46, no. 11, pp. 3514-3523. (SCI: 000261309100014, EI: 20084911766021, IF: 8.1)

  24. High-resolution 3D imaging of precession cone-shaped targets. IEEE Trans. on Antennas and Propagation. Aug. 2014, vol. 62, no. 8, pp. 4209-4219. (SCI: 000340450200033, EI: 20143418081411, IF: 4.8)

  25. Robust ISAR Target Recognition Based on ADRISAR-Net. IEEE Trans. on Aerospace and Electronic Systems, 2022, doi: 10.1109/TAES.2022.3174826. (SCI, IF: 4.102)

  26. Fusion Recognition of Space Targets with Micro-Motion. IEEE Trans. on Aerospace and Electronic Systems, 2022, doi: 10.1109/TAES.2022.3145303. (SCI, IF: 4.102)

  27. Obtaining JTF-signature of space-debris from incomplete and phase-corrupted data. IEEE Trans. on Aerospace and Electronic Systems, Feb, 2017, vol. 53, no. 3, pp. 1169-1180. (SCI: 000403288600008, IF: 4.102)

  28. Radar imaging of micromotion targets from corrupted data.  IEEE Trans. on Aerospace and Electronic Systems, Dec. 2016., vol. 52, no. 6, pp. 2789-2802. (SCI: 000395804700013, IF: 4.102)

  29. Imaging of rotation-symmetric space targets based on electromagnetic modeling. IEEE Trans. on Aerospace and Electronic Systems, Jul. 2014, vol. 50, no. 3. pp. 1680-1689. (SCI: 000346791100008, EI: 20145200373460, IF: 4.102)

  30. High-resolution 3-D imaging of group rotating targets. IEEE Trans. on Aerospace and Electronic Systems, Apr. 2014, vol. 50, no. 2. (SCI: 000344364500021, EI: 20143118005601, IF: 4.102)

  31. High-resolution radar imaging of air-targets from sparse azimuth data. IEEE Trans. on Aerospace and Electronic Systems, Apr. 2012, vol. 48, no. 2, pp. 1643-1655. (SCI: 000302647400046, EI: 20121714958066, IF: 4.102).

  32. High resolution ISAR imaging of targets with rotating parts. IEEE Trans. on Aerospace and Electronic Systems. Dec. 2011, vol. 47, no. 4, pp. 2530-2543. (SCI: 000297339000016, EI: 20114214425783, IF: 4.102).

  33. High-resolution three-dimensional imaging of space targets in micromotion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Jul. 2015, vol. 8, no. 7, pp. 3428-3440. (SCI: 000359538700017, EI: 20153401190865, IF: 3.784).

  34. Few-shot SAR automatic target recognition based on Conv-BiLSTM prototypical network. Neurocomputing. Vol. 443, 235–246, 2021. (SCI, IF: 5.719)

  35. High-resolution ISAR imaging based on plug-and-play 2D ADMM-Net. Remote Sensing, 2022. pp. 1-16. (SCI, IF: 4.848)

  36. High-resolution ISAR imaging and autofocusing via 2D-ADMM-Net. Remote Sensing, 2021, vol. 13, no. 2326, pp. 1-21. (SCI, IF: 4.848)

  37. SAR ATR of ground vehicles based on ESENet, Remote Sensing, 2019, vol. 11, no. 1316. pp. 1–16. (SCI, IF: 4.848).

  38. Scaling the 3-D image of spinning space debris via bistatic inverse synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters. Jul. 2010, vol. 7, no. 3, pp. 430-434. (SCI: 000282088300003, EI: 20102913082151, IF: 3.966)

  39. Narrow-band radar imaging of spinning targets. SCIENCE CHINA Information Sciences. Apr. 2011. vol. 54, no. 4, pp. 873-883. (SCI: 000289902100015, EI: IP51262523, IF: 4.380)

  40. 窄带雷达自旋目标成像. 中国科学F辑, 2010年11月, vol. 40, no. 11, pp. 1508 -1518.

  41. 空中微动旋转目标的二维ISAR成像算法. 电子学报,2009年9月,vol. 37, 9, pp. 1937-1943. (EI: 20094512438017, 入选2013年度中国精品科技期刊顶尖学术论文, F5000)

  42. 基于高斯原型网络的小样本逆合成孔径雷达目标识别. 电子与信息学报,2021年.

 

合作文章代表作

  1. A New scatterer trajectory association method for ISAR image sequence utilizing multiple hypothesis tracking algorithm. IEEE Trans. on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022, Art no. 5103213, doi: 10.1109/TGRS.2021.3087192.
  2. Wideband Interference Suppression for SAR via Instantaneous Frequency Estimation and Regularized Time-Frequency Filtering, IEEE Trans. on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 5208612, doi: 10.1109/TGRS.2021.3098783.
  3. High-resolution ISAR imaging under low SNR with sparse stepped-frequency chirp signals, IEEE Trans. on Geoscience and Remote Sensing, vol. 59, no. 10, pp. 8338-8348, Oct. 2021.
  4. A method for 3-D ISAR imaging of space debris. IEEE Trans. on Aerospace and Electronic Systems. Apr. 2019, vol. 55, no. 2. pp. 864–876. (SCI: 000464942600026, IF: 2.797)
  5. A modified EM algorithm for ISAR scatterer trajectory matrix completion, IEEE Trans. on Geoscience and Remote Sensing. Jul. 2018, vol. 56, no. 7. pp. 3953-3962.  (SCI: 000436418200025, IF: 5.630)
  6. Joint cross-range scaling and 3-D geometry reconstruction of ISAR targets based on factorization method, IEEE Trans. on Image Processing. 2016, vol. 25, no. 4. pp.1740-1750. (SCI: 000372415900007, IF:6.790).
  7. Narrow-band interference suppression for SAR based on independent component analysis. IEEE Trans. on Geoscience and Remote Sensing. Oct. 2013, vol. 51, no. 10. pp.4952-4960.  (SCI: 000325377900006, EI: 20134216849062, IF: 5.630)
  8.  A large scene deceptive jamming method for space-borne SAR. IEEE Trans. on Geoscience and Remote Sensing. Aug. 2013, vol. 51, no. 8. pp. 4486-4495. (SCI: 000322394600013, EI: 20133216594682, IF: 5.630)
  9. Analysis of wide angle radar imaging. IET Proc. Radar, Sonar & Navigation. Apr. 2011, vol. 5, no. 4, pp. 449-457. (SCI: 000288742100008, EI: 11883177, IF: 2.015)
  10. Narrow-band interference suppression for SAR based on complex empirical  mode decomposition. IEEE Geoscience and Remote Sensing Letters. Jul. 2009,  vol. 6, no. 2, pp. 423-427. (SCI: 000267764800013, EI: 20093112232028, IF: 3.534)

 

会议论文 

  1. A novel ISAR autofocusing method based on Bayesian inference, IET International Radar Conference, 17-19 Oct. 2018, Nanjing, China. (Best paper award)
  2. Few-Shot SAR ATR Based on Conv-BiLSTM Prototypical Networks. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  3. JTF Reconstruction of Micromotion Targets based on Bayesian Inference. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  4. Robust ISAR Target Recognition Based on IC-STNs. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  5. 2D-Temporal Convolution for Target Recognition of SAR Sequence Image. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  6. High-resolution radar imaging with unknown noise, International Conference on Radar 2018, 27-30 Aug. 2018, Brisbane, Australia.
  7. Deep CNN for micromotion recognition of space targets, 2016 CIE International Conference on Radar, 10-12 Oct. 2016, Guangzhou, China, pp. 808-812.
  8. JTF-based radar imaging of micromotion targets from corrupted data, 2016 CIE International Conference on Radar, 10-12 Oct. 2016, Guangzhou, China, pp. 2409-2412.
  9. High-resolution 3-D imaging of micromotion targets from RID imaging series. IGARSS2016, Jul. 10-15, 2016, Beijing, China.
  10. Recent advances in ISAR imaging of micromotion targets. IET International Radar Conference, Oct. 14-16, 2015, Hangzhou, China.  (Invited Talk)
  11. High-resolution radar imaging of aerospace targets with micromotion. IGARSS2014, Jul. 13-18, 2014, Quebec, Canada. (EI: 000349688101099)
  12. Analysis of the azimuth resolution of bistatic SAR. 2013 International Conference on Radar, Sep. 9-12, 2013, Adelaide, Australia. (EI: 20140117155661) 
  13. Micro-Doppler analysis and imaging of air-planes with rotating parts. APSAR2009, Oct. 26-30, 2009, Xi'an, China.  (EI: 20101212789240)