学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 冯晓莉的留言板
学术论文(Research Publication)

Paper:

[23] Xiaoli Feng*, and Zhi Qian, An a posteriori wavelet method for solving two kinds of ill posed problems,  International Journal of Computer Mathematics, 2017 (6) :1-24.

[22] Zhi Qian*,and Xiaoli Feng, A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation, Applicable Analysis, 96(10), 1656-1668, 2017.

[21] Chunyu Qiu*, Xiaoli Feng, A wavelet method for solving backward heat conduction problems, Electron. J. Differential Equations,  2017 (219), 1-19, 2017.

[20] Xiaoli Feng*, and Wantao Ning, A Wavelet regularization method for solving analytic continuation, International Journal of Computer Mathematics, 92(5), 1025-1038, 2015.

[19] Xiaoli Feng*, and Lars Eldén, Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method, Inverse Problems, 30(1), 015005(17pp), 2014.

[18] Xiaoli Feng*, Wantao Ning, and Zhi Qian, A Quasi-Boundary-Value method for a Cauchy problem of an elliptic equation in multiple dimensions, Inverse Problems in Science and Engineering, 22(7), 1045-1061, 2014.

[17] Zhi Qian*,and Xiaoli Feng,Numerical solution of a 2D inverse heat conduction problem, Inverse Problems in Science and Engineering, 21(3), 467-484, 2013.

[16] Wen-Ting Wang*, Xiaoli Feng,and Xiu-Ping Chen, Biological invasion and coexistence in Intraguild predation, Journal of Applied Mathematics, 2013, 12 pages, 2013.

[15] Zhi-Liang Deng*, Xiao-Mei Yang, and Xiaoli Feng, A mollification regularization method for a fractional-diffusion inverse heat conduction problem, Mathematical Problems In Engineering,  2013, 9 pages, 2013.

[14] Hao Cheng*, Chu-Li Fu, and Xiaoli Feng, An optimal filtering method for stable analytic continuation, Journal of Computational and Applied Mathematics, 236, 2582-2589, 2012.

[13] Xiaoli Feng*, Chu-Li Fu, and Hao Cheng, A regularization method for solving the Cauchy problem for the Helmholtz equation, Applied Mathematical Modelling, 35, 3301-3315, 2011.

[12] Zhi-Liang Deng*, Chu-Li Fu, Xiaoli Feng, and Yun-Xiang Zhang, A mollification regularization method for stable analytic continuation,  Mathematics and Computers in Simulation, 81, 1593-1608, 2011.

[11] Hao Cheng*, Chu-Li Fu, and Xiaoli Feng, An optimal filtering method for the Cauchy problem of the Helmholtz equation, Applied Mathematics Letters, 24, 958-964, 2011.

[10] Xiaoli Feng*, Lars Eldén and Chu-Li Fu, A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous Neumann dataJournal of Inverse and Ill-posed Problems, 18(2010), 617-645.

[9]  Xiaoli Feng*, Lars Eldén and Chu-Li Fu, Stability and regularization of a backward parabolic PDE with variable coefficientsJournal of Inverse and Ill-posed Problems, 18(2010), 217-243.

[8] Chu-Li Fu*Xiaoli Feng and Zhi Qian, Wavelets and high order numerical differentiationApplied Mathematical Modelling, 34(2010), 3008-3021.

[7] Hao Cheng*Xiaoli Feng and Chu-Li Fu, A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case, Inverse Problems in Science and Engineering, 18(2010), 971-982.

[6]  Chu-Li Fu*Xiaoli Feng and Zhi Qian, The Fourier regularization for solving the Cauchy problem for the Helmholtz equationApplied Numerical Mathematics, 59(2009), 2625-2640.

[5]  Chu-Li Fu*, Zhi-Liang Deng, Xiaoli Feng and Fang-Fang Dou, A modified Tikhonov regularization for stable analytic continuationSIAM Journal on Numerical Analysis, 47(2009),  2982-3000.

[4]  Hao Cheng*, Chu-Li Fu and Xiaoli Feng, Determining surface heat flux in the steady state for the Cauchy problem for the Laplace equation,  Applied Mathematics and Computation, 211(2009), 374-382.

[3]  Xiaoli Feng*, Zhi Qian and Chu-Li Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region,Mathematics and Computers in Simulation, 79(2008), 177-188.

[2] Chu-Li Fu*, Fang-Fang Dou, Xiaoli Feng and Zhi Qian, A simple regularization method for stable analytic continuationInverse Problems, 24(2008), 065003(15pp).

[1]  Zhi Qian*, Chu-Li Fu and Xiaoli FengA modified method for high order numerical derivativesApplied Mathematics and Computation, 182 (2006), 1191-1200.

 

Thesis:

X.L. Feng, Some ill-posed problems for elliptic and parabolic equations, Lanzhou University, 2010, PhD thesis.

版权声明:未经西安电子科技大学以及个人主页教师本人许可不得复制,转载传播本主页内容或用于任何商业用途,如需转载请征得主页所有者同意,并附上主页链接.
西安电子科技大学个人主页 站点地图 | | 冯晓莉的留言板 | 更新日期 :2018-07-11 | |
Copyright © 2011-2016 西安电子科技大学 版权所有 陕ICP备021284(05016169) Powered by 信息化建设处 & 电院网络中心