
Citation: Dong, M.; Pan, W.; Qiu, Z.;

Gao, Y.; Qi, X.; Zheng, L. An Efficient

Framework with Node Filtering and

Load Expansion for

Machine-Learning-Based Hardware

Trojan Detection. Electronics 2022, 11,

2054. https://doi.org/10.3390/

electronics11132054

Academic Editor: Vijayakumar

Varadarajan

Received: 11 May 2022

Accepted: 28 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Efficient Framework with Node Filtering and Load Expansion
for Machine-Learning-Based Hardware Trojan Detection
Meng Dong 1 , Weitao Pan 1,* , Zhiliang Qiu 1, Yiming Gao 1, Xiaoxin Qi 1 and Ling Zheng 2

1 State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China;
mdong@stu.xidian.edu.cn (M.D.); zlqiu@mail.xidian.edu.cn (Z.Q.); 20011210526@stu.xidian.edu.cn (Y.G.);
xxqi@stu.xidian.edu.cn (X.Q.)

2 School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China; lingzheng@xupt.edu.cn

* Correspondence: wtpan@mail.xidian.edu.cn

Abstract: The globalization of the integrated circuit (IC) industry has raised concerns about hardware
Trojans (HT), and there is an urgent need for efficient HT-detection methods of gate-level netlists.
Machine learning (ML) is a powerful tool for this purpose. A Trojan-detection framework is proposed
in this paper to solve the data imbalance and low accuracy problems of existing ML-based HT-
detection algorithms. To solve the problem of data imbalance, we propose the node-filtering algorithm,
which extracts structure templates from HT circuits and removes most normal nodes based on them.
To enhance the identification of unknown HT payload, we propose the load-expansion algorithm,
which expands the identified HT nodes based on their fanout features. We evaluate the framework
using different ML algorithms. The results show that the framework significantly improves the
Trojan-detection rate of the original algorithms, and achieves a 10% improvement in true positive
rate compared to the original algorithms.

Keywords: hardware Trojan detection; machine learning; node filtering; load expansion; gate-level netlists

1. Introduction

Integrated circuits (ICs) have been widely used in various industries, and the IC
design process has become more complex. The production chain of modern circuits is
shown in Figure 1. The presilicon contains three stages: specification, RTL design, and
netlist. The initial stage of pre-silicon translates the specification into RTL design with a
Hardware Design Language (HDL). Then, the RTL design is transformed into a gate-level
design. To meet the requirement of time-to-market (TTM), IC designers must use third-
party intellectual properties (3PIP) and outsource parts of their products to third-party
hardware design companies [1].

Specific RTL Design

EDA tools 3rd IP

Standard Cell

Library

Design Model

Netlist/ Gate

Level

3rd IP

Physical Design/

Layout Level
Fabrication Assembly Market

Figure 1. Design flow of IC.

However, both 3PIP and third-party vendors are associated with a risk of compromised
chip security [2]. One threat is Hardware Trojans (HT), which can destroy functions, steal
secrets, reduce system reliability, and even invalidate chips [3]. An HT consists of two
components called the Trojan trigger and Trojan payload. The Trojan trigger is responsible
for monitoring the running status of the circuit. If certain conditions are fulfilled, the HT is

Electronics 2022, 11, 2054. https://doi.org/10.3390/electronics11132054 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132054
https://doi.org/10.3390/electronics11132054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5215-1896
https://orcid.org/0000-0002-6388-5008
https://doi.org/10.3390/electronics11132054
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132054?type=check_update&version=1

Electronics 2022, 11, 2054 2 of 14

activated and the Trojan payload will perform specific malicious operations. If a chip with
malicious HTs is used in key fields such as finance, communication, and national defense,
serious security problems and huge economic losses may ensue.

The dangers of HT are well-understood and their detection methods have been widely
researched [4,5]. To avoid numerous simulations, some HT-detection methods based on
features are proposed and show good performance [6]. In these methods, features are
extracted from gate-level netlists and used in machine learning (ML)-based detection
algorithms, such as support vector machines (SVMs), artificial neural networks (ANNs), or
recurrent neural networks (RNNs) [7,8].

However, feature-based ML methods have limitations in the balance of datasets and
the identification of HT’s payload. On the one hand, compared to the whole netlist, the
number of HTs is tiny, so the dataset is extremely imbalanced. Data imbalance leads to
overfitting of the learning model, reducing the prediction accuracy. On the other hand,
due to the complex function, HT’s payload is difficult to identify. The selected features
are found from known HTs by heuristic approaches, which are valid for existing HTs. The
trigger circuits of various HTs have the commonality of rare activation conditions, but the
payload does not. Therefore, it is unrealistic to rely on a heuristic approach to detect every
unknown HT’s payload.

In order to identify all HTs in presilicon design and overcome limitations of feature-
based HT detection, this paper focuses on the HT detection in the gate-level netlist and
proposes a Trojan-detection framework that can integrate various existing machine learning
algorithms. The framework consists of four stages: netlist modeling, node filtering, machine
learning, and load expansion. In the netlist modeling stage, the input netlist is converted
to a technology-independent netlist to eliminate functionally duplicated cells and reduce
the problem size. Then, the netlist is modeled as a directed graph, with its nodes being
the element of the circuit and its edge being wires. In the node-filtering stage, structure
template is constructed to reflect the HT circuit structure. Then, subgraphs are divided from
the directed graph. By matching the subgraphs with the structure template, suspicious
nodes are identified. The dataset is then formed by the suspicious nodes, which alleviates
the dataset imbalance problem. In the machine-learning stage, the node features are
determined, which are used to train an ML algorithm to classify the nodes as HT or normal
nodes. Note that the specific machine learning algorithm is not the focus of this paper.
Finally, in order to improve the poor HT payload identification ability of existing ML
algorithms, the already identified HT nodes are expanded in the load expansion stage,
which means that some neighboring nodes of the already identified HT nodes are taken
as HT nodes. This helps to further identify other HT payload and get a complete HT
structure. The experiments show that compared with pure HT-detection methods based
on RNN and SVM, by integrating these methods into the proposed framework, the true
positive rate achieves 10% and 9% improvements, respectively. The paper makes the
following contributions:

1. We propose a Trojan-detection framework which can support most ML-based HT-
detection algorithms;

2. A node filtering algorithm is proposed as a pre-processing stage of ML-based HT
detection algorithms. Suspicious nodes are extracted to obtain a balanced dataset;

3. A load expansion algorithm is proposed as a post-processing stage of ML-based
HT detection algorithms. HT nodes are expanded in this stage to strengthen Trojan
payload detection capabilities.

This paper first introduces the related work of HT-detection algorithms and describes
their strengths and weaknesses (Section 2). A Trojan-detection framework is designed
to improve detection accuracy and strengthen payload identification capability, which
consists of a netlist modeling stage, node-filtering stage, machine-learning stage, and load
expansion stage (Section 3). Experiments are conducted to show the effectiveness of the
proposed framework in Section 4. Conclusions are drawn and further work is outlined in
Section 5.

Electronics 2022, 11, 2054 3 of 14

2. Background

Existing HT-detection techniques can be broadly divided into three categories: side-
channel analysis, logic testing, and circuit analysis. Side-channel analysis focuses on the
difference in side-channel signatures between the expected (golden specification) and
actual (Trojan-inserted implementation) values [9,10]. These methods capture Trojans via
power consumption [11], current activity [12], delay [13], thermal distribution [14], optical
imaging [15], and some other detectable information. A major drawback of side-channel
analysis is that it is difficult to detect the negligible side-channel difference caused by a tiny
Trojan since the difference can easily hide in process variation and environmental noise. In
addition, it requires a “golden model” for parameter comparison.

Logic testing is a reliable method that is independent of process variations, which is
robust against process variations and noise margins [16,17]. It activates HTs by applying
test vectors and compares the responses with the correct results. Previous studies [18,19]
have improved the possibility of observing the impact of Trojans from the primary output
by developing test pattern-generation algorithms. However, due to the existence of many
logic states in the circuit, it is a fundamental challenge to activate an extremely rare trigger
without trying all possible input sequences. The exponential input space complexity makes
it unsuitable for detecting Trojans in large designs using traditional logic testing.

Circuit analysis technology is a fast and reliable method. It identifies HTs by analyzing
the HT circuit structure and comparing it with the normal circuit. Machine-learning
algorithms can analyze existing data sets, discover inherent patterns, and predict future
data, and have been widely used in circuit analysis. Depending on the detection method,
circuit analysis can be divided into three categories: feature-based, testability-based, and
structure-learning-based.

Feature-based. The authors in [6] obtained the features of the circuit structure
via heuristic approaches, and first used a feature-based method to detects HTs. Ever
since that work, features have been widely used in HT-detection methods. For instance,
SVM [20,21], neural networks [8,22,23], and random forest [24] are all based on features, and
achieve relatively high detection performance. However, the features obtained by heuristic
approaches need to be continuously updated, and the extraction process is time-consuming
when using large designs.

Testability-based. Using combinational testability measures as Trojan features to
detect HT is proposed in [25], achieving better accuracy than previous methods. The
measures are calculated using SCOAP in [26], an algorithm to evaluate the observability
and testability of circuits. Based on SCOAP, a previous study [27] clustered the nets
into two groups with the k-means method, used the intercluster distance as the major
feature, and trained a support vector machine classifier to distinguish the Trojan circuits.
However, for HTs with normal triggering probability, methods with SCOAP will reduce
detection accuracy.

Structure-learning-based. To overcome the limitations of feature-based and testability-
based HT-detection methods, structure-learning-based methods are introduced. Grams-
Det [28] uses natural language processing (NLP) technology to solve the HT-detection prob-
lems, and uses a recurrent neural network as the machine-learning model. GNN4TJ [29]
uses Graph Neural Network (GNN) to extract features from data flow graphs at the resister
transfer level, learns the circuit’s behavior, and identifies whether HTs exist in the design.
Another study [30] proposed a node-wise HT-detection method at the gate level based on
graph learning, and compared the performance of different classifiers, including GNN,
GAT, and MPNN. The structure-learning-based method has good generalization ability on
hardware circuits. However, it has poor ability to deal with data imbalances, which is one
of the focuses of this paper.

3. Trojan-Detection Framework

Figure 2 shows the proposed Trojan-detection framework, which consists of four main
stages: netlist modeling, node filtering, machine learning, and load expansion. The netlist

Electronics 2022, 11, 2054 4 of 14

is integrated, mapped, and modeled as a directed graph structure in the netlist modeling
stage. In the node-filtering stage, which is the pre-processing of the machine learning
stage, subgraphs are divided from the directed graph and matched with templates, and
the dangerous nodes are filtered in order to balance the dataset. In the machine-learning
stage, the nodes are classified by an ML-based HT-detection method. The features and
learning models can be configured by the user flexibly. Finally, the identified Trojan nodes
are expanded to obtain a complete Trojan structure in the load expansion stage, which
is the post-processing of the machine learning stage. Note that the proposed framework
aims to enhance the performance of existing ML methods through the pre-processing and
post-processing stages, and the specific ML method is not the focus of this paper.

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1 F2 F3 … Fn

F1

F2

F3

Fn

…

Normal
Nodes

HT
Nodes

F1

F2

F3

Fn

…

Normal
Nodes

HT
Nodes

Trojan-in netlists Technology-independent netlists
Directed Graph Subgraph Suspicious

Normal

Dataset Classifier Expansion

Netlist modeling Node filtering Machine Learning Load expansion

Figure 2. An overview of the Trojan-detection framework. The input netlists are converted to
technology-independent netlists, and then modeled as directed graphs. Subgraphs divided from
the directed graphs are matched with templates to access their dangers, and the features of nodes in
suspicious subgraphs are used as datasets. The nodes are classified as HT or normal nodes by ML-
based HT detection based on their features. Finally, the HT nodes are expanded to obtain unknown
HT payload and a complete HT structure.

3.1. Netlist Modeling

In IC design, cells with the same logical function usually have different descriptions
because they vary in timing, area, and power, which makes it more difficult to analyze
the netlist. In hardware Trojan detection, we only focus on circuit structure and logic gate
function. Therefore, in order to reduce the complexity of the algorithm, we first learn the
existing technology libraries such as SMIC and TSMC, and build a technology-independent
cell model. Then, the cells in the original netlist are replaced by cells in the technology-
independent cell model with the same function to obtain the technology-independent netlist.

The netlist is a description of the circuit connection relationship, including gates, wires,
and the relationships between them, which is consistent with the directed graph structure.
A gate-level netlist can be represented as a graph structure by translating the elements of
the circuit into nodes and the wires into edges. The mapped technology-independent netlist
is modeled as a directed graph G = (V, E), where V is the set of vertices in the directed
graph and E is the set of edges in the directed graph. We define V = {v1, v2, . . . , vj}, where
vj denotes a logic gate description such as XOR2, AND2, or OR2. We define E = {eij},
where eij equals 1 if logic gate vi is a fan-in of logic gate vj, and 0 otherwise.

3.2. Node Filtering

Since the Trojan circuit always accounts for less than one-thousandth of the whole
circuit, the dataset is severely imbalanced and the accuracy of the model is degraded
in ML-based detection methods. Oversampling and undersampling are typically used
to address data imbalance. However, the new samples synthesized by oversampling
are highly correlated with the original samples and tend to overfit during training. In
undersampling, it is difficult to select removed samples, and random removal tends to
introduce uncertainty. In our framework, considering the inherent characteristics of logic
gates and the low trigger probability of Trojan circuits, undersampling is used to filter data.
Firstly, according to expert experience and characteristics of HT trigger circuits, a structure
template is proposed. Then, subgraphs are extracted from the directed graph modeled by

Electronics 2022, 11, 2054 5 of 14

the gate-level netlist. Lastly, all the subgraphs are matched with the structure template, and
dangerous nodes are extracted to form a balanced dataset.

Structure template. Trojan circuits are difficult to activate and are triggered only when
the input is a specific combination. To illustrate this, the HT structure of the s35932-T100
circuit in the Trust_Hub benchmark is shown in Figure 3. It can be seen that the trigger
circuit of the Trojan contains many cascade structures composed of AND and NOR, which
makes the probability of the Trojan being driven by random excitation extremely low.

Q

Q
SET

CLR

D

1

WX11155

WX3442

1

Trojan_Payload1

Trojan_Payload2

Trigger

Payload

Q

Q
SET

CLR

D

1

WX11155

WX3442

1

Trojan_Payload1

Trojan_Payload2

Trigger

Payload

Figure 3. HT circuit in s35932-T100.

To better analyze the structure in the circuit, we calculated the output probabilities
Pgate(0) and Pgate(1) of each logic gate separately, assuming they have the same probability
of input 0 and 1. For example, for a three-input AND gate, the output is 1 only if the
input sequence is ‘111’, so Pgate(1) is 0.125 and Pgate(0) is 0.875. Logic gates are classified
according to their output probabilities. Trojan trigger circuits usually consist of multiple
low-probability logic gates of the same type. The structure template is proposed based on
the above characteristics, as shown in Table 1, where m and n are integers greater than 1,
indicating the number of input ports of the logic gate, and p is a natural number.

Table 1. HT structure template.

Low Probability of 0 Low Probability of 1

ORm→ (2p)INV→ ORn NORm→ (2p)INV→ NORn
ORm→ (2p)INV→ NANDn NORm→ (2p)INV→ ANDn
NANDm→ (2p)INV→ ORn ANDm→ (2p)INV→ NORn

NANDm→ (2p)INV→ NANDn ANDm→ (2p)INV→ ANDn
ANDm→ (2p+1)INV→ ORn ORm→ (2p+1)INV→ NORn

ANDm→ (2p+1)INV→ NANDn ORm→ (2p+1)INV→ ANDn
NORm→ (2p+1)INV→ ORn NANDm→ (2p+1)INV→ NORn

NORm→ (2p+1)INV→ NANDn NANDm→ (2p+1)INV→ ANDn

Subgraph matching. For large-scale netlists, it is difficult to find Trojan-triggered
structures by directly analyzing the entire structure. In order to reduce the complexity of
structure template matching, the backward breadth first search (BBFS) algorithm is used
to divide the netlist graph structure into subgraphs. All subgraphs are matched with the
structure template proposed in Table 1. It is observed that the number of matched structures
of Trojan-triggered circuits is much larger than that of normal circuits. Therefore, we
propose a subgraph classification algorithm as shown in Algorithm 1. The algorithm counts
the number of structures that match the template, and if greater than the classification

Electronics 2022, 11, 2054 6 of 14

threshold Ti, the subgraph will be identified as suspicious and all its nodes will be marked
as suspicious Trojan nodes.

Algorithm 1: Subgraph matching

Data: Subgraph G = (V, E), Template Set ST , Predecessor Set SP, Classification
Threshold Ti

Result: Suspicious HT Nodes HTnodes
1 for node ∈ V do
2 if node ∈ ST then
3 node_set.add(node)
4 end
5 end
6 for node1 ∈ node_set do
7 for node2 ∈ node_set do
8 if exist path from node1 to node2 then
9 path_set.add(path)

10 end
11 end
12 end
13 for path ∈ path_set do
14 if path ∈ ST then
15 match_num += 1
16 end
17 end
18 if match_num ≥ Ti then HTnodes ← V ;
19 else HTnodes ← None ;

3.3. Machine Learning

After the node-filtering stage, suspicious Trojan nodes are extracted. Features are
extracted from these suspicious nodes to form the dataset used by the machine-learning
stage. Different machine-learning algorithms can be applied in this stage to detect HT
nodes in the dataset. We now discuss how the features are defined and how different
learning models are trained based on the features.

Feature Library. Given the set of suspicious nodes, features are extracted to train the
machine-learning model. Note that different models may use different features. On the
basis of previous work and our analysis of existing HT, we create a HT feature library to
support different ML models, which consists of static, statistical, and structural features.

Static features are extracted from the netlist based on fan-in, adjacent circuit elements, and
minimum distance to a specific circuit element. We count the number of various logic gates
near the target node and calculate the distance from the node to the input and output ports.
All the static features are shown in Table 2, where x is a positive integer in the range 1 to 5.

Table 2. Static features.

Feature Specification

fan_in(x) No. of fan-ins at the distance x-level from the net input
fan_out(x) No. of fanouts at the distance x-level from the net input
in_dff(x) No. of flip-flops at the distance x-level from the net input

out_dff(x) No. of flip-flops at the distance x-level from the net output
in_gate(x) No. of gates at the distance x-level from the net input

out_gate(x) No. of gates at the distance x-level from the net output
in_loop(x) No. of loops at the distance x-level from the net input

out_loop(x) No. of loops at the distance x-level from the net output

Electronics 2022, 11, 2054 7 of 14

Table 2. Cont.

Feature Specification

in_const(x) No. of constants at the distance x-level from the net input
out_const(x) No. of constants at the distance x-level from the net output
nearest_pin Min. level to any primary input

nearest_pout Min. level to any primary output
nearest_dff Min. level to any flip-flops from the net output

nearest_mux Min. level to any multiplexer from the net output

Statistical features are proposed in SCOAP and utilized for evaluating the testability
of a circuit. There has been research to prove that the SCOAP values are reasonable
for HT detection, which include combinational controllability-0 (CC0), combinational
controllability-1 (CC1), combinational observability (CO), sequential controllability-0 (SC0),
sequential controllability-1 (SC1), and sequential observability (SO).

The structural feature is obtained by extracting netlist structural information near the
target node, such as that on node types and connection relationships. In this paper, a depth-
first search method with a maximum depth of 2 is used to sample each gate to obtain the
connection relationship, and the co-occurrence matrices (COM|D|×|D|) are constructed to
abstract cascade structural information, where D is the number of gate types. COM|D|×|D|
indicates the forward and reverse connection relationship of various gates in the subgraph
extended with a node as the starting point. Figure 4 is an example of the co-occurrence
matrix where the right part is the COM6×6 constructed for the AND gate in the center of
the left part.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Sigmoid

 …

 …

 …

Vec1 Vec2 VecD-1 VecD

.

.

.

.

.

.

.

.

.

.

.

.

Feature 1

Feature 2

Feature n-1

Feature n

Input

layer

Hidden

layer

Hidden

layer

Hidden

layer

Output

layer

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

INV DFF MUX OTHERAND NOR

0 1 0 0AND 0 0

0 0 0 0NOR 2 0

0 0 0 0INV 0 0

0 1 0 0DFF 0 0

0 0 0 0MUX 0 0

0 0 0 0OTHER 0 0

INV DFF MUX OTHERAND NOR

0 1 0 0AND 0 0

0 0 0 0NOR 2 0

0 0 0 0INV 0 0

0 1 0 0DFF 0 0

0 0 0 0MUX 0 0

0 0 0 0OTHER 0 0

Figure 4. Example of the co-occurrence matrix.

Learning Model. Our framework is not limited to a specific machine-learning algo-
rithm. Generally, three categories of learning models are supported, namely support vector
machine (SVM), multilayer perceptron (MLP), and recurrent neural network (RNN).

SVM aims to solve the problem of determining the parameters of the optimal classifi-
cation hyperplane. In essence, the process of determining the parameters is a quadratic
optimization problem, whose geometric meaning is to find the maximum classification
interval under the constraints. For nonlinear problems in the input space, kernel functions
are used to transform them into a linear classification problems of the feature space.

An MLP consists of an input layer, one or more hidden layers and an output layer,
as shown in Figure 5. The multi-dimensional feature vector enters the model from the
input layer. Linear operations and nonlinear activation are performed at the neurons in
each hidden layer. Finally a one-dimensional result is generated by the output layer. The
numbers of neurons in the input layer and output layer are equal to the dimension of the
feature vector and 1, respectively. The number of hidden layers and neurons in each hidden
layer can be dynamically adjusted.

Electronics 2022, 11, 2054 8 of 14

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Sigmoid

 …

 …

 …

Vec1 Vec2 VecD-1 VecD

.

.

.

.

.

.

.

.

.

.

.

.

Feature 1

Feature 2

Feature n-1

Feature n

Input

layer

Hidden

layer

Hidden

layer

Hidden

layer

Output

layer

Figure 5. Structure of the multilayer perceptron.

An RNN model is typically used for time-series processing and predicting problems.
GramsDet [28] demonstrated the feasibility of using a long short-term memory (LSTM)
network in HT detection, and proposed a stacked LSTM network, as shown in Figure 6.
The row vectors of each gate in COM are sent to different LSTMs for training, and the
output of the last layer of LSTMs is a single vector, which is converted to a probability
value through the Sigmoid function.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Sigmoid

 …

 …

 …

Vec1 Vec2 VecD-1 VecD

.

.

.

.

.

.

.

.

.

.

.

.

Feature 1

Feature 2

Feature n-1

Feature n

Input

layer

Hidden

layer

Hidden

layer

Hidden

layer

Output

layer

Figure 6. Structure of a stacked LSTM network.

Given the learning model, proper features should be selected from the feature library
to train the model. Specifically, for SVM and MLP, the features can be selected from the
static and statistical features; for RNN, only the structural feature can be used.

3.4. Load Expansion

After the machine-learning stage, the nodes extracted in the node-filtering stage are
labeled as either HT or normal nodes. However, the node-filtering stage may have excluded
some HT payload nodes, and the machine-learning stage may misclassify some HT nodes
as normal nodes. In order to further identify such HT nodes, we proposed the load

Electronics 2022, 11, 2054 9 of 14

expansion mechanism. Before discussing the proposed algorithm, we first inspect the HT
load structure.

The load structure of Trojans with different functions varies greatly, which poses
challenge for the identification of hardware Trojans. Via analysis of the Trojan load circuits
in gate-level netlists, we found that the HTs can be divided into two categories: (1) The
load circuit is similar to the normal circuit, as shown in Figure 7a. Such Trojans can be
classified into two categories according to their functions: leaking information and violating
functions. If the function of the HT is to leak information, its load is close to the netlist
output. If the function of the HT is to violate the function of the circuit, its load is generally
located in a critical position in the circuit. For these HTs, the size of the load circuit is
small, i.e., the fanout of the Trojan trigger circuit is small. When applying machine-learning
algorithms to identify Trojan nodes, such HT nodes are usually regarded as normal nodes,
resulting in low recognition accuracy. (2) The load circuit contains a ring oscillator, as
shown in Figure 7b. Since this structure rarely appears in both normal circuits and Trojan
circuits, it is hard for a machine-learning algorithm to identify all such HT nodes.

Q

Q
SET

CLR

D

HT Trigger

HT Payload

(a)

HT Trigger

HT Payload

(b)

Figure 7. Two categories of Trojan load circuits. (a) The load circuit is similar to the normal circuit (b)
The load circuit contains structure that rarely appeared in both normal circuits and Trojan circuits.

Through the above analysis, it can be seen that compared with normal circuits, HT load
circuits have lower fanout. This is because Trojan designers prefer to use Trojans to attack a
small number of key components in the circuit. This can lead to poor detection ability of
machine-learning-based algorithms. Based on the above observations, we propose a load
expansion algorithm to expand the HT nodes identified in the machine-learning stage, as
shown in Algorithm 2. To cope with situations where the HT load contains rare circuits
such as ring oscillators, a fanout threshold Tgate for each node. Only when the number of
fanouts of the node is less than Tgate, the node is expanded. In addition, considering the
small scale of the Trojan load circuits, a total fanout threshold Ttotal is set. When the fanout
of all expanded nodes reaches Ttotal , the expansion terminates.

Electronics 2022, 11, 2054 10 of 14

Algorithm 2: Load expansion
Data: HT nodes HTnodes, Total Fanout Threshold Ttotal , Gate Fanout Threshold

Tgate, Successor Node Set SS
Result: Expanded Nodes HTexpand

1 for node ∈ node_set do
2 Successor_Nodes← SS ;
3 if len of Successor_Nodes ≥ Tgate then Break;
4 else HTexpand ← Successor_Nodes;
5 while True do
6 if current_ f anout ≥ Ttotal then
7 Break
8 end
9 for suc_node ∈ Successor_Nodes do

10 if suc_node ∈ HTexpand then
11 Continue
12 end
13 if len of suc_node ≥ Tgate then
14 Continue
15 end
16 current_ f anout += len of suc_node;
17 HTexpand.add(suc_node)
18 end
19 end
20 end

4. Experiment and Analysis

To verify the effectiveness of each stage and the overall framework, we first perform
experiments on the node-filtering algorithm and the load expansion algorithm, and then
apply existing machine-learning algorithms in the machine-learning stage to evaluate the
overall framework. The algorithms proposed in this paper are written in Python language.
The test cases include 15 benchmark test circuits selected on TrustHub. The descriptions
of the HT benchmarks are listed in Table 3. The machine-learning algorithms selected to
evaluate the performance of the framework are recurrent neural networks and support
vector machines, which are implemented through an open-source program in Keras.

Table 3. Description of HT benchmarks.

Netlists Scale No. of Normal Nodes No. of Trojan Nodes No. of Trigger Nodes Function of HTs

RS232-T1000 215 202 13 10 Change circuit function
RS232-T1100 216 204 12 11 Change circuit function
RS232-T1200 216 202 14 13 Change circuit function
RS232-T1300 213 204 9 7 Change circuit function
RS232-T1400 215 202 13 12 Change circuit function
RS232-T1500 216 202 14 11 Change circuit function
RS232-T1600 214 202 12 10 Change circuit function
S15850-T100 2182 2156 26 22 Denial of Service, Change circuit function
S35932-T100 5441 5427 14 11 Leak information, Change circuit function
S35932-T200 5436 5422 14 12 Denial of Service
S35932-T300 5462 5426 36 12 Reduce performance, Denial of Service
S38417-T100 5341 5329 12 11 Denial of Service, Change circuit function
S38417-T200 5344 5329 15 11 Denial of Service, Change circuit function
S38417-T300 5373 5329 44 11 Denial of Service, Change circuit function
S38584-T100 6482 6473 9 8 Denial of Service, Change circuit function

Electronics 2022, 11, 2054 11 of 14

4.1. Node-Filtering Evaluation

In our experiment, we generate technology-independent netlists by netlist mapping
and model them as directed graphs. Then, the node-filtering algorithm is applied to extract
suspicious nodes. The extracted subgraph depth is 6 and the threshold Ti is 8.

The numbers of different types of nodes before and after node filtering are shown
in Table 4. The average retention rate of the total nodes of the netlist is 20.6%, and the
retention rates of most netlists are less than 50%. For netlist S15850-T100, its retention
rate of the total nodes reaches 59%, because many low trigger structures also appear in its
normal circuits.

Table 4. Result of node filtering.

Netlists Node Number before Filtering Node Number after Filtering
Total HT Trigger Total HT Trigger

RS232-T1000 215 13 10 108(50%) 13(100%) 10(100%)
RS232-T1100 216 12 11 99(46%) 12(100%) 11(100%)
RS232-T1200 216 14 13 103(48%) 14(100%) 13(100%)
RS232-T1300 213 9 7 100(47%) 9(100%) 7(100%)
RS232-T1400 215 13 12 110(51%) 13(100%) 12(100%)
RS232-T1500 216 14 11 108(50%) 14(100%) 11(100%)
RS232-T1600 214 12 10 92(43%) 12(100%) 10(100%)
S15850-T100 2182 26 22 1290(59%) 24(92%) 22(100%)
S35932-T100 5441 14 11 52(1%) 12(86%) 11(100%)
S35932-T200 5436 14 12 48(1%) 14(100%) 12(100%)
S35932-T300 5462 36 12 54(1%) 16(44%) 12(100%)
S38417-T100 5341 12 11 1710(32%) 12(100%) 11(100%)
S38417-T200 5344 15 11 1653(31%) 15(100%) 11(100%)
S38417-T300 5373 44 11 1665(31%) 14(32%) 11(100%)
S38584-T100 6482 9 8 1613(25%) 9(100%) 8(100%)

From Table 4, it can be seen that all Trojan-triggered circuit nodes of the netlist are
completely retained, as expected. In addition, most Trojan payload nodes are preserved
due to the fact that all nodes of the danger subgraphs are preserved. Only when the
Trojan load is too long, as in the case of netlists S35932-T300 and S38417-T300, will part
of the Trojan load be truncated and not recognized. However, as shown later, such Trojan
load will be fully recognized in the load expansion stage and will not affect the overall
Trojan recognition accuracy. This experiment demonstrates the ability of the node-filtering
algorithm to balance the dataset by extracting suspicious nodes, which filters out a large
proportion of the normal nodes.

4.2. Load Expansion Evaluation

The HT trigger nodes are extracted using the node-filtering algorithm, and then, they
are expanded by Algorithm 2 to obtain the Trojan load nodes. The gate fanout threshold
Tgate is set to 2, and the total fanout threshold Ttotal is set to 40. The purpose of the load
expansion is to extract as many HT payload nodes as possible with less error. Therefore,
we evaluate the algorithm by the number of expanded HT nodes and misclassified normal
nodes. The experimental results of the load expansion algorithm are shown in Table 5. For
each netlist, with the given trigger nodes, the algorithm expands all the Trojan load nodes
and misclassifies less than four normal nodes. This experiment shows that, by further
including the neighboring nodes of the detected HT nodes in the machine-learning stage,
the load expansion algorithm can accurately obtain the Trojan load structure.

Electronics 2022, 11, 2054 12 of 14

Table 5. Result of load expansion.

Netlists Number of Input
Triggers

Number of Expanded
HT Nodes

Recognition Rate
of HT Nodes

Misjudged
Normal Nodes

RS232-T1000 10 3 100% 1
RS232-T1100 11 1 100% 1
RS232-T1200 13 1 100% 0
RS232-T1300 7 2 100% 0
RS232-T1400 12 1 100% 0
RS232-T1500 11 3 100% 1
RS232-T1600 10 2 100% 0
S15850-T100 22 4 100% 0
S35932-T100 11 3 100% 1
S35932-T200 12 2 100% 3
S35932-T300 12 24 100% 0
S38417-T100 11 1 100% 1
S38417-T200 11 4 100% 3
S38417-T300 11 33 100% 0
S38584-T100 8 1 100% 1

4.3. Trojan-Detection-Framework Evaluation

In order to verify the effectiveness of the overall Trojan-detection framework, we apply
two different ML methods, i.e., RNN and SVM, respectively, in the machine-learning stage
of the framework.

When implementing the RNN-based Trojan-detection algorithm, we extracted the
connection relationships of gates in the netlist and established the order-sensitive coevo-
lution matrix (OSCOM) as features according to the algorithm of a previous study [28].
The constructed recurrent neural network model contains three LSTM layers and the sig-
moid function is used as the output layer activation function. When implementing the
SVM-based Trojan-detection algorithm, we selected static features of the hardware Trojan,
including the total number of level-2 and level-3 logic gate fan-ins from the target node,
the minimum number of levels from the target node to any primary input and output,
and the minimum number of levels from the target node to the trigger input. A radial
basis function is used as the kernel function of the SVM, and a Relu function is used as the
activation function.

We use the cross-validation method in the training phase. That is, when testing a
particular netlist, all the remaining netlists are used as the training set. For each of the
above two algorithms, we first train the model using node features in the whole training
set, and adjust the parameters to obtain the best classifier and test the netlist. Then, we
apply the algorithm in our framework, i.e., we train the best model with the features of
the extracted nodes, classify the nodes of the tested netlist, and further identify HT nodes
by load expansion. The subgraph depth is set to 6 and the threshold Ti is set to 8 in node
filtering; the gate fanout threshold Tgate is set to 2 and total fanout threshold Tf anout is set
to 40 in load expansion.

True positive rate (TPR) and true negative rate (TNR) are used to evaluate the effec-
tiveness of the methods. The experimental results are shown in Table 6. It can be seen
that after applying the proposed framework, the average TPR of the Trojan-detection al-
gorithms based on RNN and SVM is improved by 10% and 9%, respectively. That is, the
HT-detection capability of the original algorithms is effectively improved. The average
TNR of both algorithms is reduced by 1%, as the load expansion stage enhances Trojan
identification accuracy at the expense of introducing a few misclassifications of normal
circuits. However, a small decrease in TNR is acceptable compared to the large increase
in TPR. In Trojan detection, the true positive rate of identifying the Trojan circuit is much
more important than the overall accuracy of detection. This experiment shows that, by
preprocessing the circuit to extract suspicious nodes and postprocessing the detection result
of the machine-learning algorithm, the proposed framework can significantly improve the
TPR of the HT detection.

Electronics 2022, 11, 2054 13 of 14

Table 6. Comparison of the original work and our work.

Netlists RNN [28] RNN Applied in the Framework SVM [21] SVM Applied in the Framework
TPR TNR TPR TNR TPR TNR TPR TNR

RS232-T1000 100% 95% 100% 92% 100% 97% 100% 97%
RS232-T1100 97% 96% 100% 94% 100% 97% 100% 98%
RS232-T1200 87% 97% 100% 95% 100% 96% 100% 95%
RS232-T1300 95% 96% 100% 93% 88% 97% 100% 94%
RS232-T1400 97% 95% 100% 91% 91% 97% 91% 95%
RS232-T1500 73% 95% 82% 92% 92% 96% 92% 94%
RS232-T1600 97% 95% 100% 95% 90% 96% 100% 97%
S15850-T100 73% 98% 92% 94% 96% 95% 96% 95%
S35932-T100 89% 95% 89% 90% 92% 100% 100% 99%
S35932-T200 50% 87% 67% 89% 100% 99% 100% 98%
S35932-T300 80% 93% 91% 95% 37% 100% 97% 98%
S38417-T100 77% 98% 82% 97% 92% 97% 92% 96%
S38417-T200 78% 99% 88% 98% 86% 95% 94% 96%
S38417-T300 40% 97% 86% 97% 30% 91% 86% 92%
S38584-T100 70% 98% 78% 96% 87% 86% 87% 91%

Average 80% 95% 90% 94% 86% 96% 95% 95%

5. Summary and Conclusions

To address the problems of data imbalance and poor identification of HT payload
in machine-learning-based Trojan-detection algorithms, we propose a gate-level Trojan-
detection framework in this paper. The framework improves the accuracy of feature-based
HT detection by the node-filtering mechanism and strengthens payload identification
capability by the load expansion mechanism. Different ML models can be supported
by the proposed framework. Experiment results show that compared with pure HT-
detection methods based on RNN and SVM, by integrating these methods into the proposed
framework, the true positive rate achieves 10% and 9% improvement, respectively. In the
future, we aim to further reduce the misclassification of the framework and support more
advanced HT-detection algorithms such as GNN.

Author Contributions: Conceptualization, M.D. and Y.G.; methodology, M.D.; software, M.D.;
validation, Y.G.; formal analysis, M.D.; investigation, W.P.; resources, L.Z.; data curation, Y.G.;
writing—original draft preparation, M.D.; writing—review and editing, M.D. and X.Q.; visualization,
M.D.; supervision, Z.Q.; project administration, W.P.; funding acquisition, L.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 62102314, the Natural Science Basic Research Program of Shaanxi Province under Grant 2021JQ-
708 and the Scientific Research Program Funded by Shaanxi Provincial Education Department under
Grant 20JK0923.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://trust-hub.org/#/benchmarks/chip-level-trojan (accessed on 1 January 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bao, C.; Forte, D.; Srivastava, A. On Reverse Engineering-Based Hardware Trojan Detection. IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 2015, 35, 49–57. [CrossRef]
2. Bhunia, S.; Hsiao, M.S.; Banga, M. Hardware Trojan Attacks: Threat Analysis and Countermeasures. Proc. IEEE 2014, 102,

1229–1247. [CrossRef]
3. Tehranipoor, M.; Koushanfar, F. A survey of hardware trojan taxonomy and detection. IEEE Des. Test Comput. 2010, 27, 10–25. [CrossRef]
4. Dhavlle, A.; Hassan, R.; Mittapalli, M.; Dinakarrao, S.M.P. Design of hardware trojans and its impact on cps systems: A

comprehensive survey. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea,
22–28 May 2021; pp. 1–5.

5. Yang, K.; Hicks, M.; Dong, Q. A2: Analog malicious hardware. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 18–37.

https://trust-hub.org/#/benchmarks/chip-level-trojan
http://doi.org/10.1109/TCAD.2015.2488495
http://dx.doi.org/10.1109/JPROC.2014.2334493
http://dx.doi.org/10.1109/MDT.2010.7

Electronics 2022, 11, 2054 14 of 14

6. Oya, M.; Shi, Y.; Yanagisawa, M. A score-based classification method for identifying hardware-trojans at gate-level netlists. In
2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015; pp. 465–470.

7. Huang, Z.; Wang, Q.; Chen, Y. A survey on machine learning against hardware trojan attacks: Recent advances and challenges.
IEEE Access 2020, 8, 10796–10826. [CrossRef]

8. Kundu, S.; Meng, X.; Basu, K. Application of machine learning in hardware trojan detection. In Proceedings of the 2021 22nd
International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 7–9 April 2021; pp. 414–419.

9. Lyu, Y.; Mishra, P. Maxsense: Side-channel sensitivity maximization for trojan detection using statistical test patterns. ACM Trans.
Des. Autom. Electron. Syst. TODAES 2021, 26, 1–21. [CrossRef]

10. Pan, Z.; Sheldon, J.; Mishra, P. Test generation using reinforcement learning for delay-based side-channel analysis. In Proceedings
of the 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2–5 November
2020; pp. 1–7.

11. Salmani, H.; Tehranipoor, M.; Plusquellic, J. A layout-aware approach for improving localized switching to detect hardware
Trojans in integrated circuits. In Proceedings of the 2010 IEEE International Workshop on Information Forensics and Security,
Seattle, WA, USA, 12–15 December 2010; pp. 1–6.

12. Cao, Y.; Chang, C.H.; Chen, S. Cluster-based distributed active current timer for hardware Trojan detection. In Proceedings of the
2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 1010–1013.

13. Jin, Y.; Makris, Y. Hardware Trojan detection using path delay fingerprint. In Proceedings of the 2008 IEEE International Workshop
on Hardware-Oriented Security and Trust, Anaheim, CA, USA, 9 June 2008; pp. 51–57.

14. Forte, D.; Bao, C.; Srivastava, A. Temperature tracking: An innovative run-time approach for hardware Trojan detection.
In Proceedings of the 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA,
18–21 November 2013; pp. 532–539.

15. Zhou, B.; Adato, R.; Zangeneh, M. Detecting hardware trojans using backside optical imaging of embedded watermarks. In
Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June
2015; pp. 1–6.

16. Ahmed, A.; Farahmandi, F.; Iskander, Y. Scalable hardware trojan activation by interleaving concrete simulation and symbolic execution.
In Proceedings of the 2018 IEEE International Test Conference (ITC), Phoenix, AZ, USA, 29 October–1 November 2018; pp. 1–10.

17. Pan, Z.; Mishra, P. Automated test generation for hardware trojan detection using reinforcement learning. In Proceedings of the
26th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 18–21 January 2021; pp. 408–413.

18. Banga, M.; Hsiao, M.S. A novel sustained vector technique for the detection of hardware Trojans. In Proceedings of the 2009 22nd
International Conference on VLSI Design, New Delhi, India, 5–9 January 2009; pp. 327–332.

19. Chakraborty, R.S.; Bhunia, S. Security against hardware Trojan through a novel application of design obfuscation. In Proceedings
of the 2009 IEEE/ACM International Conference on Computer-Aided Design-Digest of Technical Papers, San Jose, CA, USA,
2–5 November 2009; pp. 113–116.

20. Hasegawa, K.; Oya, M.; Yanagisawa, M. Hardware Trojans classification for gate-level netlists based on machine learning. In
Proceedings of the 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu
de Guixols, Spain, 4–6 July 2016; pp. 203–206.

21. Liangjun, G.; Jinxing, Y.; Xin, C.; Yingchun, L.; Maoxiang, Y. Hardware Trojan Detection Method Based on Feature Extraction and
SVM. Microelectronics 2020, 6, 914–919.

22. Inoue, T.; Hasegawa, K.; Kobayashi, Y. Designing subspecies of hardware Trojans and their detection using neural network
approach. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin,
Germany, 2–5 September 2018; pp. 1–4.

23. Kurihara, T.; Hasegawa, K.; Togawa, N. Evaluation on hardware-Trojan detection at gate-level IP cores utilizing machine learning
methods. In Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS),
Napoli, Italy, 13–15 July 2020; pp. 1–4.

24. Hasegawa, K.; Yanagisawa, M.; Togawa, N. Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan
detection using random forest classifier. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), Baltimore, MD, USA, 28-31 May 2017; pp. 1–4.

25. Salmani, H. COTD: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level
netlist. IEEE Trans. Inf. Forensics Secur. 2016, 12, 338–350. [CrossRef]

26. Goldstein, L.H.; Thigpen, E.L. SCOAP: Sandia controllability/observability analysis program. In Proceedings of the 17th Design
Automation Conference, Minneapolis, MN, USA, 23–25 June 1980; pp. 190–196.

27. Xie, X.; Sun, Y.; Chen, H. Hardware Trojans classification based on controllability and observability in gate-level netlist. Ieice
Electron. Express 2017, 14, 20170682. [CrossRef]

28. Lu, R.; Shen, H.; Su, Y. Gramsdet: Hardware trojan detection based on recurrent neural network. In Proceedings of the 2019 IEEE
28th Asian Test Symposium (ATS), Kolkata, India, 10–13 December 2019; pp. 111–1115.

29. Yasaei, R.; Yu, S.Y.; Al Faruque, M.A. Gnn4tj: Graph neural networks for hardware trojan detection at register transfer level. In
Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February
2021; pp. 1504–1509.

30. Hasegawa, K.; Yamashita, K.; Hidano, S. Node-wise Hardware Trojan Detection Based on Graph Learning. arXiv 2021, arXiv:2112.02213.

http://dx.doi.org/10.1109/ACCESS.2020.2965016
http://dx.doi.org/10.1145/3436820
http://dx.doi.org/10.1109/TIFS.2016.2613842
http://dx.doi.org/10.1587/elex.14.20170682

	Introduction
	Background
	Trojan-Detection Framework
	Netlist Modeling
	Node Filtering
	Machine Learning
	Load Expansion

	Experiment and Analysis
	Node-Filtering Evaluation
	Load Expansion Evaluation
	Trojan-Detection-Framework Evaluation

	Summary and Conclusions
	References

