
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 1, JANUARY 2021 211

Low-Cost and Programmable CRC
Implementation Based on FPGA

Huan Liu , Zhiliang Qiu, Weitao Pan , Member, IEEE, Jun Li, Ling Zheng, and Ya Gao

Abstract—Cyclic redundancy check (CRC) is a well-known
error detection code that is widely used in Ethernet, PCIe, and
other transmission protocols. The existing FPGA-based imple-
mentation solutions encounter the problem of excessive resource
utilization in high-performance scenarios. The padding zeros
problem and the introduction of programmability further exac-
erbate this problem. In this brief, the stride-by-5 algorithm is
proposed to achieve the optimal utilization of FPGA resources.
The pipelining go back algorithm is proposed to solve the padding
zeros problem. The method of reprogramming by HWICAP
is proposed to realize programmability with small and con-
stant resource utilization. The experimental results show that the
resource utilization of the proposed non-segmented architecture
is 80.7%-87.5% and 25.1%-46.2% lower than that of two state-
of-the-art FPGA-based CRC implementations, and the proposed
segmented architecture has lower resource utilization, by 81.7%-
85.9% and 2.9%-20.8%, than two state-of-the-art architectures.
Furthermore, throughput and programmability are guaranteed.
The source code has been made available on GitHub.

Index Terms—Cyclic redundancy check, FPGA, low cost,
programmable, HWICAP.

I. INTRODUCTION

AS THE throughput of networks is on a constant
rise, increasingly more packet processing tasks are

being offloaded to the FPGA-based SmartNIC, including
the generation and verification of cyclic redundancy check
(CRC). Technologies such as 400G and the coming multi-
terabit Ethernet demand faster CRC calculations [5], and the
implementation of high-performance CRC calculations based
on FPGAs must meet three requirements: 1) Reduce the

Manuscript received May 1, 2020; revised June 19, 2020; accepted
July 5, 2020. Date of publication July 13, 2020; date of current version
December 21, 2020. This work was supported in part by the National Key
Laboratory Foundation of China under Grant HTKJ2019KL504012, in part by
the National Natural Science Foundation of China under Grant 61502204, and
in part by the National Joint Foundation of China under Grant 6141B06301.
This brief was recommended by Associate Editor H.-G. Yang. (Corresponding
author: Weitao Pan.)

Huan Liu, Zhiliang Qiu, and Weitao Pan are with the State Key Laboratory
of Integrated Service Networks, Xidian University, Xi’an 710071, China
(e-mail: wtpan@mail.xidian.edu.cn).

Jun Li is with the National Key Laboratory of Science and Technology on
Space Microwave, Xi’an Institute of Space Radio Technology, Xi’an 710100,
China.

Ling Zheng is with the School of Communication and Information
Engineering, Xi’an University of Posts and Telecommunications, Xi’an
710121, China.

Ya Gao is with the School of Internet of Things Technology, Wuxi Institute
of Technology, Wuxi 214121, China.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2020.3008932

parallelization cost. The end of Dennard scaling [2] results in
a bottleneck for improving the frequency of integrated circuits,
and higher throughput means wider buses in chips. The slicing-
by-4 and slicing-by-8 algorithms are proposed for parallel
processing in [3] and are suitable for CPUs but not optimal for
FPGAs [4]. 2) Solve the padding zeros problem. Parallelization
means that the final word of a transaction is composed of
valid bytes along with padding zeros. The number of padding
zeros is uncertain, and CRC calculations using the complete
final word would cause an erroneous result, which is called
the padding zeros problem. Reference [5] illustrate a state-of-
the-art scheme for solving this problem. The tables for the
final word are organized in the manner of a pipeline, and each
pipeline step corresponds to one layer of a binary search tree.
An O(n) resource utilization is introduced. 3) Maintain pro-
grammability. A programmable implementation of the CRC
algorithm can achieve better reusability; thus, a wide range
of applications can be supported without circuit modification.
The demand can be found in iSCSI [6] and P4 [7]. A specific
circuit architecture is used to guarantee programmability [8],
but it is not suitable for FPGAs. Reference [4] is a state-of-
the-art scheme that is suitable for FPGAs, but it requires a
complex configuration circuit that leads to a large increase in
resource utilization with increasing bus width.

All three of the aforementioned requirements lead to consid-
erable resource utilization. Although slicing [3], [4], aggres-
sive strides, simultaneous processing of multiple streams [5]
and many other principles that underlie CRC acceleration are
well known, they cannot achieve low cost, high performance
and programmability at the same time. A multi-core, multi-
socket system with Intel’s CRC instruction [9] can achieve
high throughput, but it suffers from high latency and high
power consumption in packet processing applications. In this
brief, two algorithms and a method corresponding to the
three requirements are proposed to reduce the resource utiliza-
tion with guaranteed throughput and programmability. First,
the stride-by-5 algorithm is proposed, which can reduce the
resource utilization by 79.69%-79.98% compared with the
slicing-by-4 and slicing-by-8 algorithms. Second, the pipelin-
ing go back algorithm is proposed to solve the padding zeros
problem, which will introduce an O(log2 n) resource utiliza-
tion. Finally, a hardware internal configuration access port
(HWICAP) is used to realize dynamic programmability, and it
leads to small and constant resource utilization regardless of
the bus width.

The remainder of this brief is organized as follows.
Section II presents preliminaries to our proposals. Section III

1549-7747 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 22,2020 at 08:43:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3927-268X
https://orcid.org/0000-0002-6388-5008

212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 1, JANUARY 2021

discusses the system architecture and the three proposals.
Section IV shows the synthesis results. Section V concludes
this brief.

II. PRELIMINARIES

A. Parallel CRC Algorithms

The parallel CRC algorithm can process multiple data
input bits simultaneously [10]. The number of bits processed
in parallel is n, which is also the width of the inner bus
in the remainder of this brief. The parallel input data are
Bn = [b0, b1, . . . , bn−1]T . The value of the CRC register is
C(k) before Bn enters. The relationship between C(n+k) and
C(k) is

C(n+k) = TC(n+k−1) + Sbn−1

= TnC(k) + Tn−1Sb0 + Tn−2Sb1 + · · · + Sbn−1

= TnC(k) + WlnBn (1)

where Wln is a matrix of size l × n and

Wln =
[
Tn−1S, Tn−2S, . . . , TS, S

]
(2)

T is a matrix of size l × n, and S is a column vector of size
l. Both T and S can be derived from an LFSR-based serial
CRC algorithm, and l is the size of the LFSR. The serial
CRC algorithm can be found in the extended version of this
brief [11].

B. Programmability and HWICAP

Tn and Wln are generally stored inside LUTs for the
FPGA-based implementation of CRC algorithms, and a pro-
grammable implementation requires the ability to modify the
content of the LUTs at runtime. HWICAP is a Xilinx IP core
that can afford users with access to ICAP primitives using the
AXI4-Lite protocol. It can modify the content of the LUTs
dynamically. The resource utilization of HWICAP is as low
as 186 LUTs, and it will not increase with increasing inner
bus width. For the Intel/Altera FPGAs, a similar function can
be achieved by using PR-IP [12].

III. PROPOSED WORK

A. Non-Segmented System Architecture

The proposed non-segmented system architecture is shown
in Fig. 1. In a non-segmented system architecture, there should
be one frame in a single word, and a segmented system archi-
tecture can process multiple frames at the same time [13].
Regions 1 and 2 correspond to the computation of WlnBn

in (1). Region 1 consumes most of the LUTs, and the num-
ber of consumed LUTs linearly depends on the size of Wln.
The stride-by-5 algorithm, which is discussed in Section III-B,
is proposed to reduce the LUT consumption of Region 1.
Region 2 is implemented by means of an xor tree instead
of a one-stage xor function to achieve higher performance.
Region 3 completes the computation of (1). It consumes few
LUTs for the small size of Tn. The padding zeros problem
is solved by Region 4, and the pipelining go back algorithm,
which results in an O(log2 n) resource utilization, is proposed

Fig. 1. Proposed non-segmented system architecture.

Fig. 2. Function implementation with (a) stride-by-8 and (b) stride-by-4.

and discussed in Section III-C. Region 5 is an HWICAP
controller that can modify the content of the LUTs dynam-
ically. The operation procedure is discussed in Section III-D.
A segmented system architecture is proposed in Section III-E.
Implementation details of the abovementioned proposals can
be accessed at [1].

B. Stride-by-5 Algorithm

In this section, the model of the resource utilization is
established, the stride-by-5 is proved to be the best stride for
various bus widths, and the stride-by-5 algorithm is described
in Algorithm 1.

Stride, as its name implies, refers to the number of bits
processed by a single logical table. The logical table can be
realized using FPGA LUTs, and it can load the truth table of
a function. For example, an eight-input function is defined as

y = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 (3)

which can be transformed equivalently as⎧
⎨
⎩

y1 = x1 + x2 + x3 + x4
y2 = x5 + x6 + x7 + x8
y = y1 + y2

(4)

Equations (3) and (4), whose strides are 8 and 4, can be
implemented as shown in Fig. 2(a) and Fig. 2(b), respectively.
A smaller stride means that a smaller logical table can be
realized by a single LUT or cascaded LUTs. Can stride-by-1
be considered the best stride for FPGA implementation? We
will establish the resource utilization model and determine the
answer.

l equations with the same n inputs are required to realize
the computation of WlnBn in (1). n is also the bus width, and

n = ms + r (5)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 22,2020 at 08:43:44 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LOW-COST AND PROGRAMMABLE CRC IMPLEMENTATION BASED ON FPGA 213

Algorithm 1 Stride-by-5 Algorithm
Input: The bus width n. The stride s. The input vector B[n]. The computing

matrix W[l][n].
Output: The meta matrix MD[l][m + 1], which is the input of Region 2.

1: Initialize s to 5;
2: Initialize m to �n/s�;
3: Initialize MD[l][m + 1] to the null matrix;
4: for i = 0 to l − 1 do
5: for j = 0 to m − 1 do
6: for k = 0 to s − 1 do
7: MD[i][j] = MD[i][j] ⊕ (B[j × s + k] · W[i][j × s + k]);
8: end for
9: end for

10: end for
11: for i = 0 to l − 1 do
12: for j = s · m to n − 1 do
13: MD[i][m] = MD[i][m] ⊕ (B[j] · W[i][j]);
14: end for
15: end for

in which s is the stride. m equals �n/s�. r is the remainder,
which equals n mod s.

The function A(x) is defined as

A(x) =
{

0 x = 0
1 x > 0

(6)

and the resource utilization function is defined as

K(n, s, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(l/2) · (�n/s� + A(n mod s)
s ≤ 5

(l/2) · (�n/s� · 2s−5 + A(n mod s))
s > 5, n mod s ≤ 5

(l/2) · (�n/s� · 2s−5 + A(n mod s)
× 2(n mod s)−5) s > 5, n mod s > 5

(7)

There are three equations corresponding to different s. A
single LUT is required to realize a logical table when s is less
than five, and cascaded LUTs are needed to realize a logical
table when s is greater than five. This is because a single LUT
has five inputs. l is divided by 2 for the two outputs of a single
LUT.

The stride-by-5 algorithm is optimal for the 5-input LUTs
in FPGAs. Stride-by-5 reduces the resource utilization by
79.69%-79.98% compared with stride-by-8, which is used in
the slicing-by-4 and slicing-by-8 algorithms. For FPGAs with
non-5-input LUTs (prior to Xilinx Virtex-5 or Altera Stratix
II), the stride defined by the number of LUT inputs should be
used, and the LUT sharing mechanism should be exploited.
The stride-by-5 algorithm is described in Algorithm 1; it
processes the computation in Region 1 here, but the algorithm
can also be used in Regions 3 and 4.

C. Pipelining Go Back Algorithm

In this section, the pipelining go back algorithm is proposed
with an O(log2 n) resource utilization, and the derivation and
description of the algorithm are presented.

The padding zeros problem is discussed in Section I. p is
used to represent the number of valid bits in the final word.
q is used to represent the number of padding zeros. The data
vector of the final word is Bp+q = [b0, . . . , bp−1, 0, . . . , 0]T .
Substitute Bp+q into (1), and then

C(p+q+k) = Tp+qC(k) + W(p+q)nBp+q

= Tq
(

TpC(k) + Tp−1Sb0 + · · · + Sbp−1

)

= TqC(p+k) (8)

The relationship between C(p+k) and C(p+q+k) is

C(p+k) = T−qC(p+q+k) (9)

There will be an O(1) resource utilization to realize the
computation of T−q because the size of T−q is l × l and has
no relation to n. However, q varies and 0 ≤ q < n, and if
we use the n table corresponding to every possible q, there
will be an O(n) resource utilization. We introduce a pipeline
to reduce the resource utilization to O(log2 n).

Inspired by the binary representation, q is represented as

q = 8 ·
(

xh−1 · 2h−1 + xh−2 · 2h−2 + · · · + x1 · 2 + x0

)
(10)

q and n are multiples of 8 because the data transfer is in
bytes. The value of x can be 0 or 1, and h is the number of
pipeline stages, which can be represented as

h = log2(n/8) (11)

Equations (10) and (11) can be used to convert (9) to

C(p+k) =
((

T−8·2n−1
)xn−1 · · ·

(
T−8

)x0
)

C(p+q+k)

= (
Rxn−1

1 · Rxn−1
2 · · · Rx0

h

)
C(p+q+k) (12)

where [R1, R2, . . . , Rh] is the h matrices for the h-stage
pipeline, and the size of each matrix is l × l. [R1, R2, . . . , Rh]
can be used to convert C(p+q+k) to C(p+k). The stride-by-5
algorithm can be used to convert [R1, R2, . . . , Rh] to the
content of the LUTs. Using the resource utilization func-
tion in (7), the resource utilization of the pipeline is KR4 =
h · K(l, s, l), where R4 indicates Region 4 in Fig. 1. KR4 can
be represented as

KR4 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

log2(n/8) · (l/2) · (�l/s� + A(l mod s))
s ≤ 5

log2(n/8) · (l/2) · (�l/s� · 2s−5 + A(l mod s))
s > 5, n mod s ≤ 5

log2(n/8) · (l/2) · (�l/s� · 2s−5 + A(l mod s)
·2(l mod s)−5) s > 5, n mod s > 5

(13)

As shown in (13), we can achieve an O(log2 n) resource uti-
lization using the pipelining go back algorithm. The algorithm
is described in Algorithm 2.

D. Reprogramming by HWICAP

Region 5 in Fig. 1 represents an HWICAP IP core, which
can dynamically modify the content of the LUTs. It consumes
186 LUTs for any bus width. In contrast, the configuration
logic realized by logic resources leads to several thousand
LUTs being consumed when n ≥ 1024 [4], and the resource
utilization increases with increasing bus width.

The operation procedure of reprogramming using the
HWICAP IP core is described as follows:

1) Complete the initial design, generate the bitstream using
Vivado, and download the bitstream into the FPGA;

2) Extract the locations of the LUTs used;

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 22,2020 at 08:43:44 UTC from IEEE Xplore. Restrictions apply.

214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 1, JANUARY 2021

Algorithm 2 Pipelining Go Back Algorithm

Input: The temporary CRC value C(p+q+k), the bus width n, the number of
padding zeros q, the computing matrix T .

Output: The desired CRC value C(p+k).
1: Initialize h to log2(n/8), q to q/8;
2: Initialize matrix R to the null matrix, matrix C(p+k) to C(p+q+k);
3: for i = h − 1 to 0 do
4: if q ≥ 2i then
5: R = T−8·2i

;
6: C(p+k) = RC(p+k);
7: q = q − 2i;
8: else
9: continue;

10: end if

11: end for

3) When reprogramming is needed, compute the new con-
tent of the LUTs using (1) and (12);

4) Map the content of the LUTs to the initial value of the
LUTs;

5) Write the initial value to the LUTs using the AXI Lite
interface of the HWICAP IP core.

The method of reprogramming by HWICAP is useful in
engineering. Our contributions are as follows:

1) We verify the feasibility of reprogramming the FPGA
implementation of the CRC algorithm using the
HWICAP IP core. It leads to small and constant resource
utilization regardless of the bus width;

2) The proposed method can change the CRC polynomial
directly, without re-coding and re-synthesizing;

3) The code of the above procedure can be accessed in [1],
as a part of the entire project. To the best of our knowl-
edge, this is the first open-source code covering the
whole procedure described above.

E. Segmented System Architecture

The non-segmented system architecture cannot process
multiple frames in one word (clock), which reduces the
throughput of short or misaligned frames. This is called the
bus efficiency problem. A segmented system architecture is
proposed to solve the problem. The bus format is the same as
that in [5], and the block in [5] is another name for the segment
in [13]. For example, a 4096-bit bus can process eight com-
plete frames at the same time; hence, the bus can be divided
into eight regions [5]. The number of regions depends only on
the bus width. Different segment widths are feasible, and if
a 64-bit segment width is chosen, one region can be divided
into eight segments (blocks). The proposed segmented system
architecture is shown in Fig. 3. Compared with the proposed
non-segmented system architecture, the proposed segmented
system architecture has a slightly more complex Region 1 and
Region 2 and multiple duplicates of Region 3 and Region 4.
The number of duplicates is just the maximum number of
frames processed in a single word.

The comparison between the proposed segmented system
architecture and the proposed non-segmented system archi-
tecture can be found in Fig. 4. The red cuboids represent
the non-segmented system architecture. The blue cuboids
represent the increment between the proposed segmented

Fig. 3. Proposed segmented system architecture.

Fig. 4. Comparison between segmented system architecture and non-
segmented system architecture.

system architecture and the proposed non-segmented system
architecture. The yellow slice (bus width = 1024, segment
width = 512) represents the decrement between the two
architectures. Fig. 4(a) shows that the increment in resource
utilization depends mainly on the bus width instead of the
segment width. This is because the increment in resource
utilization depends mainly on the number of duplicates of
Regions 3 and 4, which depends only on the bus width.
Fig. 4(b) shows that the increment in 65-byte-frame through-
put is obvious for most cases. The only decrease in throughput
is found when the bus width is 1024 bits and the seg-
ment width is 512 bits, where the two architectures have the
same bus efficiency for 65-byte-frame throughput, and the
non-segmented architecture has a slightly higher frequency.
Therefore, 64 bits is chosen as the segment width in the rest
of this brief. A detailed comparison between the segmented
and non-segmented architectures can be found in the extended
version of this brief [11].

IV. EXPERIMENTAL RESULTS

There are three state-of-the-art studies [5], [4], [14]. The
architecture in [4], [14] can be reprogrammed, whereas
the architecture in [5] cannot be reprogrammed. The
two proposed architectures are implemented with Virtex-7
XC7VX690T, and [5], [4], [14] use Virtex-7 XCVH870T,
Virtex-6 XC6VLX550T and Stratix-V 5SGSED6N1F45I2,
respectively. In this section, the two proposed architectures are
compared with these works in terms of resource utilization and
maximum throughput. The proposed segmented architecture
is compared with [5] in terms of throughput on various frame
lengths. The power consumption of two proposed architectures

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 22,2020 at 08:43:44 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LOW-COST AND PROGRAMMABLE CRC IMPLEMENTATION BASED ON FPGA 215

Fig. 5. Synthesis result.

is reported also. In the following, we use SA to refer to the
segmented architecture.

The synthesis result is illustrated in Fig. 5. Fig. 5(a) shows
that the resource utilization of the proposed non-SA is lower
than that of the architectures in [4] and [5] by 80.7%-87.5%
and 25.1%-46.2%, respectively. The proposed SA has lower
resource utilization by 81.7%-85.9% and 2.9%-20.8%. The
lower resource utilization results from implementing the algo-
rithms and method described in Section III, which can also
guarantee high performance and programmability. The archi-
tecture in [14] has lower resource utilization than that of the
non-SA by 74.4%-81.3%. The reasons for the lower resource
utilization of [14] are as follows: 1) Reference [14] needs to
process only half-filled and fully filled packets. In other words,
the padding zeros problem is partly addressed. By contrast, the
two proposed architectures and [5], [4] can fully address the
padding zeros problem. 2) The cost of the Nios II IP core is
not considered in [14]. By contrast, the two proposed archi-
tectures consider the cost of HWICAP. Moreover, it is difficult
to scale the bus width of [14] up to 1024 bits.

Fig. 5(b) shows that the maximum throughput of the
proposed non-SA is higher than that of the architec-
ture in [4], [5], [14] by 24.2%-37.9%, 37.4%-75.0% and
259.4%-284.5%, respectively. The maximum throughput of
the proposed SA is higher than that of the architecture
in [4], [5] by 28.7%-30.2% and 32.2%-80.2%, respectively.
The higher frequency leads to higher throughput, and the two
proposed architectures can achieve higher frequency for the
well-arranged pipelines in Regions 1, 2, and 4.

The throughput on frame lengths from 64 bytes to 256 bytes
can be found in Fig. 5(c). Only [5] and the proposed SA are
compared for their ability to process multiple frames in one
word. The two architectures use a 4096-bit bus width and a
64-bit segment width; therefore, they have the same bus effi-
ciency. The proposed SA has an 80.2% higher frequency and
throughput than [5]. The lowest throughput of 1933.9 Gbps is
achieved when the frame length is 65 bytes.

The power consumption of the two proposed architectures
is illustrated in Fig. 5(d). They run at 500Mhz. The dataset
comes from the post-implementation power reports generated
by vivado. The power consumption is composed of static
power consumption and dynamic power consumption. The
static power consumption varies from 0.32 W to 0.48 W,
and the dynamic power consumption increases linearly with
increasing bus width. The power consumption of the proposed
SA has a faster growth than that of the proposed non-SA.
This is because the resource consumption of the proposed SA
increases faster than that of the proposed non-SA.

The board-level implementation and the comparison with
other works can be found in the extended version of this
brief [11].

V. CONCLUSION AND FUTURE WORK

Two algorithms and a method are proposed to realize low-
cost, high-performance, and programmable CRC computation.
These algorithms and the presented method can be used
in segmented or non-segmented architectures. The synthe-
sis results show that the proposed architectures can achieve
lower resource utilization and higher throughput than two
state-of-the-art architectures. The source code can be accessed
in [1]. Our future work will focus on making the hardware
reconfiguration method (HWICAP) technology independent.

REFERENCES

[1] S.C. of Low-Cost and Programmable CRC Implementation. Accessed:
Apr. 24, 2020. [Online]. Available: https://github.com/FPGA-
Networking/Low-Cost-and-Programmable-CRC

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5,
pp. 256–268, Oct. 1974.

[3] M. E. Kounavis and F. L. Berry, “Novel table lookup-based algorithms
for high-performance CRC generation,” IEEE Trans. Comput., vol. 57,
no. 11, pp. 1550–1560, Nov. 2008.

[4] A. Akagic and H. Amano, “High-speed fully-adaptable CRC accelera-
tors,” IEICE Trans. Inf. Syst., vol. 96, no. 6, pp. 1299–1308, 2013.

[5] L. Kekely, J. Cabal, and J. Kořenek, “Effective FPGA architecture
for general CRC,” in Proc. Int. Conf. Archit. Comput. Syst., 2019,
pp. 211–223.

[6] C. Toal, K. McLaughlin, S. Sezer, and X. Yang, “Design and implemen-
tation of a field programmable CRC circuit architecture,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1142–1147,
Aug. 2009.

[7] The P4 Language Specification, Version 1.0.5, P4 Lang. Consortium,
Stanford, CA, USA, Nov. 2018. [Online]. Available: https://p4.org/p4-
spec/p4-14/v1.0.5/tex/p4.pdf

[8] M. Grymel and S. B. Furber, “A novel programmable parallel CRC
circuit,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 10, pp. 1898–1902, Oct. 2011.

[9] S. Gueron, “Speeding up CRC32C computations with Intel CRC32
instruction,” Inf. Process. Lett., vol. 112, no. 5, pp. 179–185, 2012.

[10] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realization,”
IEEE Trans. Comput., vol. 52, no. 10, pp. 1312–1319, Oct. 2003.

[11] H. Liu, Z. Qiu, W. Pan, J. Li, L. Zheng, and Y. Gao. (Apr. 2020).
Low-Cost and Programmable CRC Implementation Based on FPGA.
[Online]. Available: https://www.techrxiv.org/articles/Low-Cost_and_
Programmable_CRC_Implementation_based_on_FPGA/12181494

[12] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfigura-
tion: A survey of architectures methods and applications,” ACM Comput.
Surveys, vol. 51, no. 4, pp. 1–39, 2018.

[13] P. Orosz, T. Tóthfalusi, and P. Varga, “FPGA-assisted DPI systems:
100 Gbit/s and beyond,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 2015–2040, 2nd Quart., 2019.

[14] M. Jubin and T. Nayak, “Reconfigurable very high throughput low
latency VLSI (FPGA) design architecture of CRC 32,” Integration,
vol. 56, pp. 1–14, Jan. 2017.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 22,2020 at 08:43:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

