学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 董伟生的留言板
基本信息

董伟生,教授,硕导、博导

 

硕士学科:计算机科学与技术、

                人工智能、计算机技术

                 控制科学与工程

博士学科:计算机科学与技术

工作单位:人工智能学院

主要研究方向

1. 图像视频处理

2. 图像识别与理解

3. 深度模型轻量化

 

联系方式

通信地址:西安电子科技大学134信箱

Email:wsdong@mail.xidian.edu.cn

办公地点:老校区主楼III区

个人简介

董伟生,男,19814月生于浙江省兰溪市,人工智能学院教授,博导,副院长,国家级人才。主要从事图像视频处理、深度学习、计算机视觉方面的研究工作。在权威国际期刊和会议上发表论文100余篇,其中在TPAMIIJCVIEEE-TIPCVPRNeurIPS等顶级期刊和会议上发表论文60多篇。论文被引用9000余次,2篇论文单篇引用超过1400余次。曾任/现任包括国际顶级期刊IEEE Trans. on Image ProcessingSIAM Journal on Imaging Sciences在内的3个期刊的编委(Associate Editor)CVPR 2022领域主席。主持包括国家部委重大项目、国家优青、国家自然科学基金重大项目课题等项目。曾多次获得国家级青年人才称号。以第二完成人身份获2017年国家自然科学二等奖、2013年陕西省科学技术一等奖;曾获2017年陕西省自然科学论文一等奖,VCIP 2010最佳论文奖。 

招生信息:

欢迎有志青年报考我的研究生,本人每年招收硕士研究生5~8名(其中包括本校推免生,接收外校保送生名额不限),博士1-2名。硕士招生专业为国家双一流学科计算机科学与技术人工智能计算机技术。报考的同学请提前联系一下(wsdong@mail.xidian.edu.cn)。

教育经历:

  • 2000.9~2004.6            华中科技大学电子信息工程系                      工学学士
  • 2004.9~2010.8            西安电子科技大学电子工程学院                  工学博士

工作经历:

  • 2018.1~至今               西安电子科技大学人工智能学院           教授
  • 2016.7~2017.12            西安电子科技大学电子工程学院           教授
  • 2012.6~2016.6              西安电子科技大学电子工程学院           副教授
  • 2012.8~2013.2              微软亚洲研究院视觉计算组                 客座研究员
  • 2010.9~2012.6              西安电子科技大学电子工程学院           讲师
  • 2009.1~2010.6              香港理工大学计算学系                            Research Assistant

学术服务:

近期工作

 近期录用和发表的代表性论文:

  1. Q. Ning, F. Wu, W. Dong, X. Li, and G. Shi, “Exploring Correlations in Degraded Spatial Identity Features for Blind Face Restoration,” ACM Multimedia, 2023. (CCF-A 类会议)
  2. Y. Liu, T. Huang, W. Dong, X. Li, and G. Shi, “Low-Light image enhancement with multi-stage residue quantization and brightness-aware attention,” IEEE ICCV, 2023. (CCF-A 类会议)
  3. J. Xu, F. Wu, X. Li, W. Dong, T. Huang, and G. Shi, “Spatially varying prior learning for blind hyperspectral image fusion,” IEEE Trans. on Image Processing, in press, 2023. (CCF-A类期刊)
  4. T. Huang, W. Dong, F. Wu, X. Li, and G. Shi, “Uncertainty-driven knowledge distillation for language model compression,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, in press, 2023. 
  5. C. Wang, W. Dong*, X. Li, F. Wu, J. Wu, and G. Shi, “Memory based temporal fusion network for video deblurring,” International Journal of Computer Vision, 2023. (CCF-A)
  6. T. Huang, X. Yuan, W. Dong*, J. Wu, and G. Shi, “Deep Gaussian Scale Mixture Prior for Image Reconstruction,” IEEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI), 2023. (CCF-A)
  7. Z. Yang, W. Dong*, X. Li, Y. Sun, M. Huang and G. Shi, “Vector Quantization with Self-attention for Quality-independent Representation Learning”, IEEE CVPR 2023. (CCF-A)
  8. Z. Fang, F. Wu, W. Dong, X. Li, J. Wu and G. Shi, “Self-supervised non-uniform kernel estimation with flow-based motion prior for blind image deblurring,” IEEE CVPR 2023. (CCF-A)
  9. X. Lu, W. Dong*, X. Li, J. Wu, L. Li, and G. Shi, “Adaptive search-and-training for robust and efficient network pruning,” IEEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI), 2023. (CCF-A)
  10. L. Sun, Y. Wang, F. Wu, X. Li, W. Dong, and G. Shi, “Deep unfolding network for efficient mixed video noise removal,” IEEE Trans. on Circuits and System for Video Technology (T-CSVT), 2023. (中科院1)
  11. Q. Ning, W. Dong*, X. Li and J. Wu, “Searching efficient model-guided deep network for image denoising,” IEEE Trans. on Image Processing, vol. 23, pp. 668-681, 2023. (CCF-A)
  12. Z. Fang, W. Dong*, X. Li, J. Wu, L. Li, and G. Shi, “Uncertainty learning in kernel estimation for multi-stage blind image super-resolution,” ECCV 2022. (计算机视觉领域顶级会议)
  13. Z. Yang, W. Dong*, X. Li, J. Wu, L. Li, and G. Shi, “Self-feature distillation with uncertainty modeling for degraded image recognition,” ECCV 2022. (计算机视觉领域顶级会议)
  14. X. Lu, T. Xi, B. Li, G. Zhang, and W. Dong, “Bayesian based re-parameterization for DNN model pruning,” ACM Multimedia, 2022. (CCF-A)
  15. W. Dong, J. Wu, L. Li, G. Shi, and X. Li, “Bayesian deep learning for image reconstruction: from structured sparsity to uncertainty estimation,” IEEE Signal Processing Magazine, vol. 40, no. 1, pp. 73-84, 2023. (中科院1)
  16. Q. Ning, J. Tang, F. Wu, W. Dong*, et al., “Learning degradation Uncertainty for unsupervised real-world image super-resolution,” IJCAI 2022. (CCF-A)
  17. T. Huang, W. Dong*, J. Wu, L. Li, X. Li, and Guangming Shi, “Deep hyperspectral image fusion network with iterative spatio-spectral regularization,” IEEE Trans. on Computational Imaging, 2022.
  18. Y. Zhu, W. Dong*, X Li, J. Wu, L. Li, and G. Shi, “Robust depth completion with uncertainty-driven loss functions,” AAAI 2022. (CCF-A)
  19. Q. Ning, W. Dong*, X. Li, J. Wu, and G. Shi, “Uncertainty-driven loss for single image super-resolution,” NeurIPS 2021. (CCF-A)
  20. Y. Cao, G. Shi, T. Zhang, W. Dong*, J. Wu, X. Xie, and X. Li, “Bayesian correlation filter learning with Gaussian scale mixture model for visual tracking”, IEEE Trans. on Circuit and Systems for Video Technology (T-CSVT), 2021. (中科院1)
  21. L. Sun, W. Dong*, X. Li, J. Wu, L. Li, and G. Shi, “Deep maximum a posterior estimator for video denoising”, International Journal of Computer Vision (IJCV), 2021. (CCF-A)
  22. W. Dong, C. Zhou, F. Wu, J. Wu, G. Shi, and X. Li, “Model-guided deep hyperspectral image super-resolution,” IEEE Trans. on Image Processing (T-IP), 2021. (CCF-A)
  23. T. Huang, W. Dong*, X. Yuan*, J. Wu, and G. Shi, “Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging,” IEEE CVPR 2021. (CCF-A)
  24. Q. Ning, W. Dong*, G. Shi, L. Li and X. Li, “Accurate and lightweight image super-resolution with model-guided deep unfolding network,” IEEE Journal of Selected Topics on Signal Processing (J-STSP), vol. 15, no. 2, pp. 240-252, Feb. 2021. (中科院1)
  25. X. Lu, H. Huang, W. Dong*, G. Shi, and X. Li, “Beyond network pruning: a joint search-and-training approach,” IJCAI, 2020. (CCF-A)
  26. T. Huang, W. Dong*, J. Liu, F. Wu, G. Shi, and X. Li, “Accelerating convolutional neural network via structured Gaussian scale mixture models: a joint grouping and pruning approach,” IEEE Journal of Selected Topics on Signal Processing (J-STSP), vol. 14, no. 4, pp. 817-827, May, 2020. (中科院1)
  27. Q. Ning, W. Dong*, F. Wu, J. Wu, J. Lin, and G. Shi, “Spatial-temporal Gaussian scale mixture modeling for foreground estimation,” AAAI 2020. (CCF-A)
  28. W. Dong, H. Wang, F. Wu, G. Shi, and X. Li, “Deep spatial-spectral representation learning for hyperspectral image denoising”, IEEE Trans. on Computational Imaging (T-CI), vol. 5, no. 4, pp. 635-648, 2019.
  29. Weisheng Dong*, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising Prior Driven Deep Neural Network for Image Restoration” IEEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI), Vol. 41, no. 10, pp. 2308-2318, Oct., 2019. (CCF-A)

 

Google scholar profile:   http://scholar.google.com/citations?user=-g58LsoAAAAJ&hl=en

English homepage: http://see.xidian.edu.cn/faculty/wsdong