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Visual Orientation Selectivity based Structure
Description

Jinjian Wu, Weisi Lin, Guangming Shi, Yazhong Zhang, Weisheng Dong, and Zhibo Chen

Abstract—The human visual system is highly adaptive to
extract structure information for scene perception, and structure
character is widely used in perception-oriented image process-
ing works. However, the existing structure descriptors mainly
describe the luminance contrast of a local region, but cannot
effectively represent the spatial correlation of structure. In this
paper, we introduce a novel structure descriptor according to the
orientation selectivity mechanism in the primary visual cortex.
Researches on cognitive neuroscience indicate that the arrange-
ment of excitatory and inhibitory cortex cells arise orientation
selectivity in a local receptive field, within which the primary
visual cortex performs visual information extraction for scene
understanding. Inspired by the orientation selectivity mechanism,
we compute the correlations among pixels in a local region based
on the similarities of their preferred orientation. By imitating the
arrangement of the excitatory/inhibitory cells, the correlations
between a central pixel and its local neighbors are binarized, and
the spatial correlation is represented with a set of binary values,
which is named as the orientation selectivity based pattern. Then,
taking both the gradient magnitude and the orientation selectiv-
ity based pattern into account, a rotation invariant structure
descriptor is introduced. The proposed structure descriptor is
applied in texture classification and reduced reference image
quality assessment, as two different application domains to verify
its generality and robustness. Experimental results demonstrate
that the orientation selectivity based structure descriptor is
robust to disturbance, and can effectively represent the structure
degradation caused by different types of distortion.

Index Terms—Orientation Selectivity, Excitatory/Inhibitory In-
teraction, Structure Descriptor, Texture Classification, Image
Quality Assessment

I. INTRODUCTION

Structure represents the main visual information of an
image, and the human visual system (HVS) is highly adaptive
to extract it for image understanding [1, 2]. Since the structural
information plays an important role in visual perception, it
is widely used in many perception-oriented image processing
works, e.g., texture classification [3], image retrieval [4], face
detection [5], quality assessment [6], and so on.
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Though structure extraction is popular in many image
processing tasks, how to effectively describe structural infor-
mation is still an open problem. Generally speaking, some
local image properties are used for structure analysis [7], such
as the first-order statistic values (e.g., mean and variance) [2],
the gray-level difference/luminance contrast [8], entropy [9],
and so on. These structural descriptors are simple and easy
to implement. However, they mainly represent the intensity
character of the structure, and cannot effectively represent
the spatial correlation [10]. By analyzing the co-occurring
pixel values from neighborhood, Ojala et al. [11] introduced
some new operators for structure description, within which
the character of the spatial joint distribution can be effectively
represented. Furthermore, in order to reduce the exponential
growth of histogram size in these operators, Ojala et al. [3]
adopted the signed gray-level differences to replace the ab-
solute differences, and introduced the classical uniform local
binary pattern (LBP) model. Though the LBP model succeeds
in describing the spatial correlation of the structure, it is too
sensitive to disturbance. Therefore, a more robust structure
descriptor, which can effectively represent the intensity and
spatial correlation, is required.

In this paper, we turn to investigate the subjective percep-
tion on image structure with the orientation characteristic.
The human visual system (HVS) is highly sensitive to the
orientation information when perceiving an input scene. Since
orientation can effectively represent visual content, the local
orientation information has be successfully used in many
image processing works, such as in scale invariant feature
transform (SIFT) based key point detection [12], histogram
of oriented gradients (HOG) based human detection [5], and
so on. Moreover, the HVS exhibits substantial orientation
selectivity for scene perception [13, 14]. Neurophysiology
research on visual cognition has found such a kind of neurons
in the primary visual cortex, which tune specific orientations
according to interactions among these correlated neurons [15].
Meanwhile, there are two spatial opponent types of interaction
among these neurons, namely, excitation and inhibition [16].
These neurons with similar stimuli are more possible to
tune in excitatory interaction, while those with dissimilar
stimuli are more possible to act as inhibitory interaction [17].
The orientation selectivity arises from the arrangement of
the excitatory and inhibitory interactions in a local receptive
field, within which structure information is extracted in the
primary visual cortex for scene perception [18, 19]. Therefore,
orientation selectivity in the primary visual cortex reveals the
inner mechanism for structure extraction.

Inspired by the orientation selectivity mechanism in the
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primary visual cortex [13], we introduce a novel structure
descriptor in this paper. Firstly, by imitating the orientation
tuning of neurons on visual stimuli, the preferred orientation
of each pixel is computed as its gradient direction. Then, the
spatial correlation between a central pixel and its surrounding
is estimated according to the similarity on their preferred
orientations. In order to mimic the excitatory/inhibitory inter-
actions between neurons [16], we adopt the signed direction-
similarity to represent the correlation between a central pixel
and its surrounding. As a result, the orientation selectivity
of each local receptive field can be represented by a set
of binary values, which is named as orientation selectivity
based pattern. Moreover, the intensity contrast is computed as
the gradient magnitude. With the orientation selectivity based
pattern and gradient magnitude, a novel structure descriptor
is created. Moreover, a structural histogram is mapped with
the orientation selectivity based structure, which is used to
represent the visual content of an image. In order to reduce
the size of the structural histogram, we thoroughly analyze
the orientation selectivity based pattern, and combine these
patterns which possess a same excitatory subfield.

The orientation selectivity based structural descriptor is
applied in texture classification. Firstly, the texture information
is extracted and represented by an orientation selectivity based
structural histogram. Then the chi-square distance [20] is
employed to calculate histogram similarity of two texture
images. Finally, the nearest neighborhood classifier is adopted
for texture classification. Experimental results demonstrate that
the orientation selectivity based structural descriptor is rotation
invariant and quite robust to disturbance, which outperforms
the classic LBP [3, 20] for texture classification.

Furthermore, the orientation selectivity based structural de-
scriptor is applied in reduced reference (RR) image quality as-
sessment (IQA) [21, 22]. With the orientation selectivity based
structural histogram, the primary visual content of an image
can be represented by several values of structural patterns.
Since different types of noise cause different degradations
on these structural patterns, we employ the support vector
machine regressor (SVR) [23] for feature pooling to return the
quality score of an image. Experimental results demonstrate
that the orientation selectivity based structural descriptor can
effectively extract the visual information of an image and
accurately represent the degradation caused by different types
of noise. As a result, the proposed RR IQA method achieves
a significant improvement on quality evaluation accuracy with
a small amount of reference data (16 values).

The rest of this paper is organized as follows. In Section II,
the orientation selectivity mechanism in the primary visual
cortex is explored, and the orientation selectivity based struc-
tural descriptor is introduced. The applications of the novel
structural descriptor on texture classification and reduced refer-
ence image quality assessment are demonstrated in Section III.
Finally, conclusions are drawn in Section IV.

II. ORIENTATION SELECTIVITY BASED STRUCTURE
DESCRIPTION

In this section, we firstly give a brief introduction about the
orientation selectivity mechanism in the primary visual cortex.

Fig. 1: The interactions among cortical cells, where ‘+’ means
excitation and ‘-’ means inhibition.

Then, by imitating the responses of cortical cells for orien-
tation selectivity, a novel structure descriptor is introduced.
Finally, image structure is extracted with the novel descriptor,
and a structural histogram is mapped to represent the visual
content of an image.

A. Orientation Selectivity Mechanism

The HVS responds preferentially to the edge regions of an
input scene [24], that is because neurons in the primary visual
cortex (especially in layer 4) exhibit substantial orientation
selectivity [25]. Orientation selectivity becomes one of the
standard models to interpret how the primary visual cortex
performs a complex computation for visual scene understand-
ing [18, 26]. During the past decays, the inner mechanism
of orientation selectivity has attracted intense study and de-
bate [25, 27]. The center of the debate is the classic feedfor-
ward model, which is proposed by Hubel and Wiesel [13].
In the feedforward model, the origin of orientation selectivity
is directly related to the organization of the thalamic inputs
to cortical cells [28]. In other words, orientation selectivity
emerges at the synapses between the terminals of geniculate
relay cells axons and these related cells that they excited [26].
Furthermore, the responses of cortical cells in synapses present
two spatial opponent interactions: excitation, when cells are
well correlated in activity; inhibition, when cells are anti-
correlated or minimally coactivity [29]. The arrangement of
the excitatory and inhibitory neurons in a local receptive field
represents its tuned orientation [30].

In summary, the thalamic inputs cause excitatory and in-
hibitory interactions among cortical cells according to the
correlations among their preferred orientation, and the two
types of interactions play distinct roles in shaping orientation
selectivity in the primary visual cortex. An example of orien-
tation selectivity is given in Fig. 1. By imitating the excita-
tory/inhibitory interactions among cortical cells, we estimate
the correlations among central pixels and their neighbors and
introduce an orientation selectivity based structure descriptor
in the next subsection.
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B. Orientation Selectivity based Pattern

The orientation selectivity mechanism in the primary vi-
sual cortex reveals the general rule of feature extraction for
visual stimuli recognition [26]. Inspired by the orientation
selectivity mechanism, we imitate the excitatory and inhibitory
interactions in the local receptive field and design a novel
structure descriptor. The feedforward model posits that the
orientation selectivity arises from the arrangement of cell
responses in a local receptive field [13]; According to this,
the orientation selectivity based pattern can be described as
the organization of neighbor pixels. For a pixel x and its
neighborhood X={x1, x2, · · · , xn}, the pattern of its spatial
correlation P can be expressed as

P(x|X ) = A(I(x|X )) = A(I(x|x1, x2, · · · , xn)), (1)

where A(·) represents the arrangement of responses, namely,
the pattern of correlations between the central pixel and its
neighbor pixels; I(x|X ) represents the interactions between x
and X , namely, the spatial correlations between x and pixels
in X .

Cortical cells in a local receptive field receive thousands
of synapses altogether, and therefore, the correlations among
xi∈X are complex. For simplicity, in the feedforward model of
orientation selectivity, only these synapses between the central
cell and its excited cells are explored [13, 26]. According to the
feedforward model, we neglect the correlations among xi∈X
and reorganize (1) as

P(x|X ) ≈ A(I(x|x1), I(x|x2), · · · , I(x|xn)), (2)

where I(x|xi) is the interaction between x and xi.
There are two spatial opponent interactions, namely, excita-

tion (‘+’) and inhibition (‘-’). The interaction type between
cortical cell pair is determined by the correlation of their
received stimuli. According to the correlation-based rule of
synaptic plasticity, cortical cells with similar preferred orien-
tations have a higher probability of connection and respond
as excitatory interactions, and vice versa [25, 30]. As shown
in Fig. 1, the third stimulus has the same orientation as
the last stimulus, and the synapse between them responds
as excitation. While the other three stimuli have different
orientations with the last stimulus, and their synapses respond
as inhibition. Therefore, we try to determine the interaction
I(x|xi) according to the preferred orientations of x and xi.
For an input image F , the preferred orientation θ of each pixel
x∈F is computed as

θ(x) = arctan
Gv(x)

Gh(x)
, (3)

where Gh and Gv are the gradient magnitudes alone the
horizontal and vertical directions, which are computed with
the Prewitt filters,

Gh = F ∗ fh, Gv = F ∗ fv, (4)

fh =
1
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 , fv =
1

3


1 0 −1

1 0 −1

1 0 −1

 , (5)

Fig. 2: An example of preferred orientation demonstration.
The preferred orientation for the central pixel locating at the
yellow circle is θ=89.87◦, for the red one is θ=122.47◦. For
the pixel in the plain region, as shown in the blue circle, we
set its preferred orientation θ=360◦.

where ∗ denotes the convolution operation. With (3), (4), and
(5), the preferred orientation θ of each pixel is acquired, and
its range is θ ∈ [−180, 180]. An example is shown in Fig. 2.
For the pixel locating at the vertical edge, as the yellow circle
shown in Fig. 2, its gradient magnitudes are Gh=0.33 and
Gv=150.67, and its preferred orientation θ=89.87◦. For the
pixel locating at the oblique batten, as the red circle shown in
Fig. 2, its gradient magnitudes are Gh=−9.33 and Gv=19.33,
and its preferred orientation θ=122.47◦. While for the pixel
locating at the plain region, as the blue circle shown in
Fig. 2, its gradient magnitudes alone the horizontal and vertical
directions are equal to zero, and there is no solution with (3).
Since plain regions present different visual contents from the
other types of region (e.g., edge and texture region, which
have a certain gradient magnitudes), pixels in plain regions
have distinct orientation characteristic. Therefore, we set the
preferred orientation θ=360◦ (be different from the preferred
orientations of other pixels) for pixels in plain regions in this
work.

The interaction I(x|xi) can be estimated according to the
similarity of the preferred orientations,

I(x|xi) =

{
1 if |θ(x)− θ(xi)| < T
0 else

, (6)

where ‘1’ means excitatory interaction, ‘0’ means inhibitory
interaction, and T is the judging threshold. Subjective viewing
test on visual masking demonstrates that nearby gratings
with similar orientations cause strong masking effect, and
the masking effect is obviously reduced when the orientation
difference is larger than a certain threshold (e.g., 12◦) [31].
Considering the orientation difference on the two sides of
x (i.e., plus or minus), we set T =6◦ in this paper. With
Eqs. (2) and (6), the pattern of the spatial correlation can be
expressed by a set of binary values. In order to visualize how
the orientation selectivity based pattern varies as a function of
orientation correlations, we set the local receptive field as a
8-neighborhood region (i.e., we set n=8 for the neighborhood
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Fig. 3: An example of orientation selectivity based pattern.
Pixels with similar preferred orientations to the central one
respond as excitation (‘1’), and these dissimilar ones respond
as inhibition (‘0’).

X ), and give an example of the spatial arrangement of excita-
tory and inhibitory interactions and its corresponding pattern,
which is shown in Fig. 3. As can be seen, the interactions
between the central stimulus and its neighbor stimuli can be
simplified as a 8-binary-value pattern.

C. Fundamental Patterns of Orientation Selectivity

By analyzing the response arrangement in a local receptive
field, the orientation selectivity based pattern is created in the
above subsection. However, the number of pattern increases
exponentially with the neighbor number. For example, a local
receptive field with 8 neighbors will present 256 different types
of patterns.

In order to reduce the number of patterns, we explore the re-
lationships between these orientation selectivity based patterns
and try to combine the similar ones. During experiment we
found that these patterns with same excitatory subfield (where
the excitatory interaction respond) are more correlated and
represent much similar response. For example, the patterns
[00000011] and [00001100] have a same size of excitatory
subfield, as shown in the third column of Fig. 4, the excitatory
interactions of the two patterns locating at a 90◦ sector
domain. Moreover, the excitatory interactions of the patterns
[00000111] and [00000101] locate in a 135◦ sector domain, as
shown in the fourth column of Fig. 4. Therefore, we combine
these patterns with a same size of excitatory subfield. For a 8-
neighborhood local receptive field, the excitatory subfield can
be divided into 8 sector domains, i.e., {0◦, 45◦, · · · , 315◦}. As
a result, all of the 256 orientation selectivity based patterns
can be located into 8 types of fundamental patterns (Pf )
according to their corresponding sector domains, as shown
in Fig. 4. Moreover, the fundamental patterns present rotation
invariant, e.g., the three patterns [00000001], [00000010], and
[00000100] locate at the same sector domain (with 45◦), as
shown in the second column of Fig. 4, which will be described
as a same fundamental pattern (e.g., P1

f ).

D. Orientation Selectivity based Structure Extraction

A successful image structure descriptor should represent
both the spatial correlation and intensity of image content.
In the above subsection, the spatial correlation of structure is
described with the orientation selectivity based pattern. The

intensity of image structure can be computed as the gradient
magnitude,

M(x) =
√
(Gh(x))2 + (Gv(x))2. (7)

So far, a novel orientation selectivity based structure de-
scriptor {Pf/M} is created for image structure extraction.
The structural characteristic of an image is usually repre-
sented by its structural histogram. Therefore, we calculate the
structural information (i.e., {Pf/M}) of all pixels to build a
structural histogram. There are two kinds of mapping methods
for structural histogram construction: 1) directly calculate the
number of structural patterns; 2) considering the contribution
of gradient magnitude and calculate the weighted distribution
of structural patterns. For the first condition, the structural
histogram, which is named as Orientation Selectivity based
Structural histogram (OSS), is mapped as,

H(k) =
N∑

x=1

δ(Pf (x),Pk
f ), (8)

δ(Pf (x),Pk
f ) =

{
1 if Pf (x) = Pk

f

0 else
, (9)

where N is the dimension of the image F , and Pk
f is the k−th

fundamental pattern.
For the second condition,the contribution of gradient mag-

nitude of structure is considered, and the weighted structural
histogram, which is named as Weighted Orientation Selectivity
based Structural histogram (WOSS), is mapped as,

Hw(k) =

N∑
x=1

w(x) δ(Pf (x),Pk
f ), (10)

where w(x) is the weight factor due to the gradient magnitude,
and we simply set w(x)=M(x) in this paper.

In (8) and (10), the bin number of the structural histogram is
determined by the number of the fundamental patterns. For a
8-neighborhood local receptive field, it has 8 different types of
fundamental patterns, and therefore, an image can be mapped
into a 8-bin histogram.

III. EXPERIMENTAL RESULTS

The orientation selectivity based structure is quite consis-
tent with subjective perception. In order to demonstrate the
effectiveness, we apply the proposed structure descriptor for
texture classification. Moreover, it is used to extract structural
information from distorted image for quality assessment.

A. Texture Classification

In this subsection, the rotation invariance property of the
orientation selectivity based structure is firstly illustrated.
Three images with the same texture but different rotation
angles (with 0◦, 45◦, and 90◦, respectively) are shown in
Fig. 5, and their corresponding OSS based histograms are
shown in Fig. 6 (in which the 1th bin corresponds to patterns
with angles 0◦ in Fig 4, the 2th bin corresponds to 45◦, · · · ,
the 8th bin corresponds to 315◦). As can be seen, the OSS
histograms of the three images are quite similar, especially
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Fig. 4: The combination of orientation selectivity based pattern based on their excitation subfield.

(a) 0◦ (b) 45◦ (c) 90◦

Fig. 5: Images with a same type of texture while under three
different rotation angles.

Fig. 6: The OSS based histogram for the three texture images
in Fig. 5.

for the two texture images with angles 0◦ and 90◦ (as the
blue and red bars shown in Fig. 6). The OSS histogram of
Fig. 6 (b) (with 45◦ angle) is a little different from that of
the other two images, and this is because the content of this
image is a little different from the others. In summary, OSS
presents rotation invariant for texture description.

Then, the orientation selectivity based structure is adopted
for texture classification. In order to compute the structural
dissimilarity between two images, the chi-square distance is
employed, which could be regarded as the weighted L2-norm
between their structural histogram H1 and H2,

D(H1,H2) =
n∑

k=1

(H1(k)−H2(k))
2

H1(k) +H2(k)
. (11)

A well accepted texture database, Outex [32], is selected for
texture classification experiment. Outex database is composed
of 24 classes of textures with three illuminations (‘hori-
zon’, ‘inca’, and ‘t184’) and nine angles (0◦, 5◦, 10◦, 15◦,
30◦, 45◦, 60◦, 75◦, and 90◦). The performance of the pro-
posed method is evaluated according to the classification rate
by using the chi-square distance and the nearest neighbor-
hood classifier. Moreover, the classic texture classification
method, i.e., local binary pattern (LBP) [3], its improved
method LBPV [20] (LBP with variance) and CLBP (consid-
ering the local gray level, the sign and magnitude features
of local difference) [33], and the local phase quantization
method (LPQ) [34] are adopted for comparison. For fair
comparison, the size of the neighborhood for all methods is
set as n=8.

The experiments are carried on two test suites of Ou-
tex, namely, Outex TC 00010 (TC10) and Outex TC 00012
(TC12), which include the same 24 classes of textures. For the
training and testing datasets choosing, we follow the default
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TABLE I: Classification rate (%) by different descriptors.

DB
Al.

LBP OSS LBPV WOSS LPQ CLBP

TC10 55.16 84.53 91.41 88.83 51.6 96.56

TC12 49.00 71.81 76.41 78.80 54.6 90.30

setting of Outex. Thus, as in [20, 33], the experimental setups
for the two suites of Outex are listed as follows,

• For TC10, these images under ‘inca’ illumination and
‘0◦’ angle (with a number of 480 images) are chosen for
classifier training, and the other images (with a number
of 480×8 images) for test.

• For TC12, the classifier is trained under the same training
condition as TC10, and tested with all images under
‘t184’ and ‘horizon’ illuminations and nine angles (with
a number of 480×2×9 images).

The classification results on TC10 and TC12 are listed in
Table I. As can be seen, the proposed OSS achieves 20% −
30% increase against LBP and LPQ on both TC10 and TC12,
the proposed WOSS performs similar with LBPV on the two
databases, and worse than CLBP which considers more local
information than the other methods. Therefore, the proposed
structural descriptor is comparable with these improved LBP-
based structural descriptors for texture classification.

Furthermore, the proposed structural descriptor is very
robust to disturb, while the LBP based structural descriptor
is quite sensitive to small disturb. In order to give a clear
view about this, the function of white noise on LBP/OSS
based histogram is analyzed (Here, we choose LBP/OSS
based structural histogram, rather than LBPV/WOSS based
histogram. That is because the former is directly based on the
number of LBP/OSS, which can better represent the change
on structural pattern).

Fig. 7 shows a texture image contaminated by weak white
noise (with PSNR=30dB) and strong white noise (with
PSNR=23dB) respectively. As shown in Fig. 7 (b), when the
image is contaminated by the weak white noise, we can hardly
sense the distortion. In other words, the weak white noise in
Fig. 7 (b) has limited damage on the structural information.
However, the LBP based structural histogram is obviously
changed under the weak white noise, as the green bars shown
in Fig. 8 (a). Since the weak white noise has limited affection
on image orientation, the OSS based histogram is almost
invariant under it, as the green bars shown in Fig. 8 (b).
When the image is contaminated by strong white noise, its
visual structure is obviously distorted, as shown in Fig. 7 (c).
Under the affection of strong noise, both of the LBP and OSS
based structural histograms are changed, as the red bars shown
in Fig. 8. Therefore, OSS is robust for structural information
extraction under different levels of noise, which performs quite
consistently with the human perception.

In order to present a comprehensive analysis on the ro-
bustness of the texture classification algorithms against noise,
we carried out the texture classification experiments on white
noise contaminated TC10 and TC12 databases. Three different
levels of white noise (with PSNR of 30 dB, 27 dB, and

TABLE II: Classification rate (%) on contaminated images by
different descriptors.

DB
Al.

PSNR LPQ LBP OSS LBPV WOSS CLBP

TC10
30 44.84 44.19 80.78 86.88 88.73 94.87
27 38.49 37.68 73.20 79.84 87.27 93.36
23 22.99 24.74 61.59 62.27 77.16 84.87

TC12
30 46.71 44.61 69.49 73.84 78.73 86.00
27 38.31 38.59 66.27 67.64 77.64 84.03
23 25.05 26.81 52.73 53.84 68.94 75.32

23 dB, under which images represent little, obvious, and
severe distortion, respectively) are injected into the two texture
databases.

The classification results are listed in Table II, and the
decreases of the classification rates against the original results
are shown in Fig. 9. As the black curves shown in Fig. 9 (a)
and (b), the classification rates based on LBP structure are
greatly decreased with the disturbance of the white noise. The
LPQ performs much similar with LBP on these contaminated
textures. The decreasing rate of OSS is much smaller than
that of LBP and LPQ, as shown in Table II, OSS achieves
about 40% increase on TC10 against LBP and LPQ under
white noise (the increase is about 30% for the original TC10
database), and achieves about 25% increase on TC12 (the
original increase is about 20%). WOSS performs quite steady
under white noise. As shown in Fig 9, the classification rates
are almost unchanged on both databases under weak white
noise (PSNR=30dB), decreased a little bit when the noise
becomes stronger (PSNR=27dB), and obviously decreased
under sever noise (PSNR=23dB). While the classification
rate of LBPV is obviously effect by white noise. As a
result, WOSS performs much better than LBPV under white
noise, as shown in Fig 9, which achieves about 15% increase
under sever noise (PSNR=23dB) for both TC10 and TC12
databases. Moreover, though CLBP considers much more local
information than other descriptors, WOSS performs as robust
as CLBP (as the purple curve shown in Fig 9) on both TC10
and TC12 databases.

According to the analysis above, we can conclude that the
proposed orientation selectivity based structure descriptor is
robust to noise, and performs comparable with the state-of-
the-art algorithms for texture classification.

B. Image Quality Assessment

In this subsection, the orientation selectivity based structure
is used for reduced-reference (RR) image quality assess-
ment (IQA). The effectiveness of the orientation selectivity
based structure for representing visual information degradation
is firstly demonstrated. Then, we propose a novel RR IQA
method, and compare it with three state-of-the-art RR IQA
algorithms and three classic full reference (FR) IQA metrics.

It is well known that different types of distortion re-
sult in different quality degradations [35]. An example is
shown in Fig. 10, where the reference image is distorted by
three different types of noise, i.e., additive white Gaussian
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(a) Original Image (b) PSNR=30dB (c) PSNR=23dB

Fig. 7: Texture image distorted by different levels of white noise.

(a) LBP histogram

(b) OSS histogram

Fig. 8: The robustness of the LBP/OSS based structural
histograms.

(a) TC10

(b) TC12

Fig. 9: Decrease of classification rates under different levels
of white noise.
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(a) Original (b) awgn

(c) gblur (d) jpg

Fig. 10: The boat image distorted by three different types of noise, namely, additive white Gaussian noise (with PSNR=24.7
dB), Gaussian blur (with PSNR=25.1 dB), and JPEG compression noise (with PSNR=24.7 dB).

Fig. 11: Structure degradation under different types of distor-
tion.

noise (awgn), Gaussian blur noise (gblur), and JPEG com-
pression noise (jpg), respectively. Meanwhile, the noise levels
in the three distorted images are much similar, where Fig. 10
(b) with PSNR=24.7 dB, Fig. 10 (c) with PSNR=25.1 dB,
and Fig. 10 (d) with PSNR=24.7 dB. With (10), the structural
information of an image is extracted, and the visual content
of the image is represented by a structural histogram.

Different types of distortion will cause various structure
decays. Intuitively, as shown in Fig. 10, the awgn mainly
adds random disturbance into the whole image, which causes
much more obvious distortion on the plain region (e.g., the
sky) than that on the other regions; On the contrary, the gblur
mainly weakens the luminance contrast of texture and edge
regions, while has limited affection on the plain region; The
jpg smooths out some high frequency information, meanwhile,
it brings new false edges due to the blockiness artifact.

As a result, the three types of noise generate different
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changes on the structural histograms. As the babe blue bars
shown in Fig. 11, with the distortion of the awgn, the energies
of the first and second bars (corresponding to structures
which are more likely to appear in the disorderly regions) are
obviously increased, while that for the last bar (corresponding
to the structure which is more likely to appear in the plain
regions) is decreased. That is because the awgn increases
the variance values for most of the image regions, and some
plain regions are tuned into disorderly (e.g., the sky). On the
contrary, the gblur decreases the variance values for most of
the image regions, and tunes some texture regions into smooth
ones. As a result, the energies of most bins are decreased,
especially for the first and second bars, while the energies
of the last bar is increased, as the yellow bars shown in
Fig. 11. Since the jpg creates new edge due to the blockiness
artifact, the energy of the sixth red bar which represents
edge structure is increased. Meanwhile, the jpg removes some
high frequency information, the energies for the other bars
are decreased, especially for the first and second bars. In
summary, different types of noise cause different degradations
on image structures, and the orientation selectivity based
structural histogram can effectively represent the degradations
from different types of noise.

According to the analysis hereinabove, we measure image
quality according to the change on structural histogram, and
introduce a novel RR IQA method. For a test image F̂ (and its
corresponding reference image F), the structural information
can be extracted by Eq. (10), and its visual content can be
represented by a 8-bin structural histogram. Furthermore, im-
ages are composed with many sizes. In order to offer a certain
uniformity in scene representation over multiple scales, the eye
will automatically zoom in and out according to the viewing
condition [36], which results in different projection size of the
local receptive field for an object [37]. In order to extract more
visual information from an image, a multiscale framework
is employed. For simplicity, we down sample the original
image and create a L-level pyramid. In this experiment, we set
L=2, and therefore, the structural information of a test image
F̂ (and its reference image F) can be represented by a 16-bin
structural histogram Ĥw (Hw). The visual content degradation
is then measured as the similarity between Ĥw and Hw,

S(k) = 2Ĥw(k)Hw(k)

Ĥ2
w(k) +H2

w(k)
, (12)

where k ∈ {1, 2, · · · , 16}. As a result, the content degradations
on all of the 16 bins are acquired.

Since each bin represents an individual structural pattern,
its change results in different quality degradation. Therefore,
we employ the support vector machine regressor (SVR) rather
than equally accumulation for feature pooling. Here, the LIB-
SVM package [23] is adopted to implement the SVR with a
radial basis function kernel, and the quality score of an image
is predicted as,

Qs(F̂) = SVR (S,MOD) , (13)

where Qs is the quality score, and MOD is a trained model
for regression.

We compare the proposed RR IQA method (which we called
WOSS) with three state-of-the-art RR IQA methods (i.e.,
RRED [22], WNISM [21], and RRVIF [38]) and four clas-
sic full-reference (FR) IQA (i.e., SSIM [2], MSSIM [39],
FSIM [40], and PSNR [41]). Meanwhile, three popular large
databases in the quality assessment society are selected for
the comparison experiments: LIVE database [42], including 29
reference images and 799 distorted images cross 5 different
types of noise; CSIQ database [43], including 30 reference
images and 866 distorted images cross 6 different types of
noise; and TID database [44], including 25 reference images
and 1700 distorted images cross 17 types of noise.

Since the predicted quality scores from different IQA algo-
rithms always have different ranges, a five-parameter mapping
function is adopted to nonlinearly regress the scores into a
common space [35],

Q = β1

(
1

2
− 1

1 + exp(β2(Qs − β3))

)
+ β4Qs + β5, (14)

where β1, β2, β3, β4, and β5 are five parameters to be fitted.
Then, three well accepted performance criteria, namely, lin-

ear correlation coefficient (CC), Spearman rank-order correla-
tion coefficient (SRCC), and root mean squared error (RMSE),
are employed to judge the performances of different IQA
algorithms, which compute the correlations between the re-
gressive scores Q and their corresponding subjective quality
scores (i.e., the mean opinion score (MOS) or the differ-
ent MOS (DMOS)). A good IQA algorithm returns high
CC/SRCC values and a low RMSE value. Meanwhile, a better
RR IQA algorithm should use less data from reference images
and achieve higher prediction accuracy. In this experiment, the
quantities of reference data used in WOSS, RRED, WNISM,
and RRVIF are 16, 16, 18, and 2, respectively. Meanwhile, the
FR IQA metrics use the whole information of the reference
image, so the quantities of reference data they used are N (the
size of the reference image).

Firstly, the LIVE database is chosen for performance com-
parison, which includes five types of noise: JPEG2000 com-
pression noise (j2k), JPEG compression noise (jpg), additive
white Gaussian noise (awgn), Gaussian blur (gblur), and a
Rayleigh fast-fading channel simulation noise (ff). Since the
proposed IQA method adopts SVR for feature pooling, a
train-test procedure is required. In this experiment, 80% of
the reference images and their corresponding distorted images
in the LIVE database are randomly chosen for training, and
the rest for testing (which ensures that no overlap occurs
between the training and testing images). Moreover, in order
to eliminate performance bias, the random train-test procedure
is repeated for 100 times, and the average performance is
calculated to return the final result. The performances of the
IQA algorithms on the LIVE database are listed in Table III.
As can be seen, WOSS performs better than the other RR IQA
algorithms on awgn and gblur, performs almost same with the
best RR IQA algorithm on jpg, and performs quite similar
with the best RR IQA algorithm on j2k and ff. Meanwhile,
the overall performance of WOSS is better than the other RR
IQA algorithms. Furthermore, WOSS performs better than the
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TABLE III: PERFORMANCE OF IQA INDICES ON LIVE DATABASE.

Dist.
Crit.

Algo. RR FR
OSS RRED [22] WNISM [21] RRVIF [38] PSNR SSIM [2] MSSIM [39] FSIM [40]

No. of scalars 16 16 18 2 N N N N

j2k
CC 0.932 0.952 0.924 0.932 0.896 0.941 0.957 0.978

SRCC 0.921 0.946 0.920 0.950 0.889 0.936 0.953 0.971
RMSE 8.91 7.74 6.18 5.88 11.0 8.51 4.69 5.22

jpg
CC 0.958 0.959 0.876 0.895 0.860 0.951 0.943 0.984

SRCC 0.944 0.953 0.851 0.885 0.841 0.944 0.942 0.983
RMSE 8.91 9.08 7.71 7.15 14.5 9.89 5.33 5.72

awgn
CC 0.979 0.946 0.890 0.957 0.982 0.969 0.974 0.965

SRCC 0.972 0.946 0.870 0.946 0.985 0.963 0.973 0.965
RMSE 5.58 9.08 7.29 4.66 4.334 6.901 3.65 7.34

gblur
CC 0.972 0.956 0.888 0.955 0.784 0.874 0.955 0.969

SRCC 0.962 0.952 0.915 0.961 0.782 0.894 0.954 0.971
RMSE 4.19 5.42 7.22 4.66 11.5 8.96 4.69 4.57

ff
CC 0.924 0.895 0.925 0.944 0.890 0.945 0.947 0.946

SRCC 0.907 0.918 0.923 0.941 0.890 0.941 0.947 0.950
RMSE 10.4 12.7 6.25 5.42 13.0 9.36 5.30 9.21

overall
CC 0.863 0.827 0.710 0.725 0.872 0.904 0.943 0.960

SRCC 0.865 0.830 0.703 0.732 0.876 0.910 0.945 0.963
RMSE 12.4 15.3 18.4 17.6 13.4 11.7 9.09 7.68

FR IQA metrics on gblur, and a slightly worse than the best
one on jpg and awgn.

In addition, another two databases, namely, CSIQ and TID,
are chosen for comparison. The same train-test procedure as
that for LIVE database is adopted, and the performances on
the CSIQ and TID databases are listed in Table IV. As can
be seen, WOSS performs much better (>20% improvement)
than the other RR IQA algorithms on the CSIQ database, and
also outperforms the other three RR IQA algorithms on the
TID database. Meanwhile, WOSS even performs better than
two FR IQA metrics (i.e., PSNR and SSIM) on both CSIQ
and TID databases, and is quite comparable with MSSIM and
FSIM (FR metrics) on the two databases.

According to the performances on the three large databases,
we can conclude that as a RR IQA algorithm, WOSS outper-
forms the existing RR IQA algorithms, and is quite comparable
with the classic FR IQA metrics.

IV. CONCLUSION

In this paper, we have introduced a novel structure de-
scriptor based on the orientation selectivity mechanism of the
primary visual cortex. The HVS is highly adaptive to extract
structure information for visual perception, and structure char-
acter is widely used in perception-oriented image processing
tasks, such as image retrieval, face detection, texture clas-
sification, quality assessment, and so on. However, existing
structural descriptors mainly describe the intensity character,
but can not effectively represent spatial correlation of structure.
Inspired by the orientation selectivity mechanism, we explore
the excitatory/inhibitory interactions among cortex cells for
visual structure extraction. By imitating the arrangement of
the excitatory/inhibitory cells in a local receptive field, the
orientation selectivity based pattern was introduced to repre-
sent the spatial correlation of structure. Then, according to

the gradient magnitude and the orientation selectivity based
pattern, a novel structure descriptor was proposed.

With the novel structure descriptor, image structure was ex-
tracted and an orientation selectivity based structural histogram
was created to represent the image content. Then, the novel
structure descriptor was applied to two different domains of
applications, namely, texture classification and reduced refer-
ence image quality assessment, to demonstrate its generality
and robustness. Experimental results on texture classification
demonstrated that the proposed structure descriptor is rotation
invariant, and it is robust to disturbance. Experimental results
on reduced reference image quality assessment demonstrated
that the proposed structure descriptor can effectively represent
degradation on visual content, and it performs quite consis-
tently with human perception.

REFERENCES

[1] D. Marr, “Visual information processing: the structure
and creation of visual representations,” Philosophical
transactions of the Royal Society of London. Series B,
Biological sciences, vol. 290, pp. 199–218, 1980.

[2] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli, “Image quality assessment: from error visibility
to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600–612, 2004.

[3] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multireso-
lution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 7,
pp. 971–987, 2002.

[4] Y. Rui, T. S. Huang, and S. F. Chang, “Image retrieval:
Current techniques, promising directions, and open is-
sues,” Journal of Visual Communication and Image Rep-
resentation, vol. 10, no. 1, pp. 39–62, 1999.



11

TABLE IV: OVERALL PERFORMANCE OF IQA INDICES ON CSIQ and TID DATABASES.

DB
Crit.

Algo. RR FR
WOSS RRED [22] WNISM [21] RRVIF [38] PSNR SSIM [2] MSSIM [39] FSIM [40]

CSIQ
CC 0.901 0.695 0.696 0.698 0.800 0.815 0.900 0.928

SRCC 0.895 0.773 0.705 0.733 0.806 0.838 0.914 0.940
RMSE 0.113 0.189 0.189 0.182 0.158 0.152 0.115 0.098

TID
CC 0.782 0.712 0.572 0.535 0.573 0.641 0.842 0.886

SRCC 0.759 0.702 0.495 0.500 0.579 0.627 0.853 0.890
RMSE 0.829 0.943 1.101 1.134 1.100 1.03 0.723 0.623

[5] N. Dalal and B. Triggs, “Histograms of oriented gradients
for human detection,” vol. 1. IEEE Conference on
Computer Vision and Pattern Recognition, 2005, pp.
886–893.

[6] W. Lin and C. C. J. Kuo, “Perceptual visual quality
metrics: A survey,” Journal of Visual Communication and
Image Representation, vol. 22, no. 4, pp. 297–312, 2011.

[7] T. Ojala, K. Valkealahti, E. Oja, and M. Pietikinen, “Tex-
ture discrimination with multidimensional distributions
of signed gray-level differences,” Pattern Recognition,
vol. 34, no. 3, pp. 727–739, 2001.

[8] A. Liu, W. Lin, and M. Narwaria, “Image quality assess-
ment base on gradient similarity,” IEEE Transactions on
Image Processing, vol. 21, no. 4, pp. 1500–1512, 2012.

[9] J. Wu, F. Qi, G. Shi, and Y. Lu, “Non-local spatial
redundancy reduction for bottom-up saliency estimation,”
Journal of Visual Communication and Image Represen-
tation, vol. 23, no. 7, pp. 1158–1166, 2012.

[10] J. Wu, W. Lin, and G. Shi, “Image quality assessment
with degradation on spatial structure,” IEEE Signal Pro-
cessing Letters, vol. 21, no. 4, pp. 437–440, 2014.

[11] T. Ojala, M. Pietikinen, and D. Harwood, “A compara-
tive study of texture measures with classification based
on featured distributions,” Pattern Recognition, vol. 29,
no. 1, pp. 51–59, 1996.

[12] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, no. 2, pp. 91–110, 2004.

[13] D. H. Hubel and T. N. Wiesel, “Receptive fields, binoc-
ular interaction and functional architecture in the cat’s
visual cortex,” The Journal of Physiology, vol. 160, no. 1,
pp. 106–154, 1962.

[14] T. D. Albright, “Direction and orientation selectivity of
neurons in visual area MT of the macaque,” Journal of
neurophysiology, vol. 52, no. 6, pp. 1106–1130, 1984.

[15] D. H. Hubel and T. N. Wiesel, “Receptive fields and
functional architecture in two nonstriate visual areas (18
and 19) of the cat,” Journal of neurophysiology, vol. 28,
pp. 229–289, 1965.

[16] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “The-
ory for the development of neuron selectivity: orientation
specificity and binocular interaction in visual cortex,”
The Journal of neuroscience: the official journal of the
Society for Neuroscience, vol. 2, no. 1, pp. 32–48, 1982.

[17] N. J. Priebe and D. Ferster, “Inhibition, spike threshold,
and stimulus selectivity in primary visual cortex,” Neu-
ron, vol. 57, no. 4, pp. 482–497, 2008.

[18] J. A. Cardin, L. A. Palmer, and D. Contreras, “Stimulus
feature selectivity in excitatory and inhibitory neurons in
primary visual cortex,” The Journal of neuroscience : the
official journal of the Society for Neuroscience, vol. 27,
no. 39, pp. 333–344, 2007.

[19] O. Yizhar, L. E. Fenno, M. Prigge, F. Schneider, T. J.
Davidson, D. J. OShea, V. S. Sohal, I. Goshen, J. Finkel-
stein, J. T. Paz, K. Stehfest, R. Fudim, C. Ramakrish-
nan, J. R. Huguenard, P. Hegemann, and K. Deisseroth,
“Neocortical excitation/inhibition balance in information
processing and social dysfunction,” Nature, vol. 477, no.
7363, pp. 171–178, 2011.

[20] Z. Guo, L. Zhang, and D. Zhang, “Rotation invariant
texture classification using LBP variance (LBPV) with
global matching,” Pattern Recognition, vol. 43, no. 3,
pp. 706–719, 2010.

[21] Z. Wang and E. P. Simoncelli, “Reduced-reference image
quality assessment using a wavelet-domain natural image
statistic model,” in SPIE, vol. 5666, 2005, pp. 149–159.

[22] R. Soundararajan and A. Bovik, “RRED indices: Re-
duced reference entropic differencing for image quality
assessment,” IEEE Transactions on Image Processing,
vol. 21, no. 2, pp. 517 –526, 2012.

[23] C. C. Chang and C. J. Lin. (2001) Libsvm: a
library for support vector machines. [Online]. Available:
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[24] R. Ben Yishai, R. L. Bar-Or, and H. Sompolinsky, “The-
ory of orientation tuning in visual cortex,” Proceedings
of the National Academy of Sciences of the United States
of America, vol. 92, no. 9, pp. 3844–3848, 1995.

[25] D. Hansel and C. Vreeswijk, “The mechanism of ori-
entation selectivity in primary visual cortex without a
functional map,” The Journal of Neuroscience, vol. 32,
no. 12, pp. 4049–4064, 2012.

[26] D. Ferster and K. D. Miller, “Neural mechanisms of
orientation selectivity in the visual cortex,” Annual review
of neuroscience, vol. 23, pp. 441–471, 2000.

[27] R. Shapley, M. Hawken, and D. Xing, “The dynamics of
visual responses in the primary visual cortex,” Progress
in brain research, vol. 165, pp. 21–32, 2007.

[28] B. Chapman, K. R. Zahs, and M. P. Stryker, “Relation of
cortical cell orientation selectivity to alignment of recep-
tive fields of the geniculocortical afferents that arborize
within a single orientation column in ferret visual cortex,”
The Journal of neuroscience: the official journal of the
Society for Neuroscience, vol. 11, no. 5, pp. 1347–1358,



12

1991.
[29] D. Ferster, “Spatially opponent excitation and inhibition

in simple cells of the cat visual cortex,” The Journal of
Neuroscience, vol. 8, no. 4, pp. 1172–1180, 1988.

[30] T. W. Troyer, A. E. Krukowski, N. J. Priebe, and K. D.
Miller, “Contrast-invariant orientation tuning in cat visual
cortex: Thalamocortical input tuning and correlation-
based intracortical connectivity,” The Journal of Neuro-
science, vol. 18, no. 15, pp. 5908–5927, 1998.

[31] F. W. Campbell and J. J. Kulikowski, “Orientational
selectivity of the human visual system,” The Journal of
Physiology, vol. 187, no. 2, pp. 437–445, 1966.

[32] T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyl-
lonen, and S. Huovinen, “Outex - new framework for
empirical evaluation of texture analysis algorithms,” in
16th International Conference on Pattern Recognition,
vol. 1, 2002, pp. 701–706.

[33] Z. Guo, D. Zhang, and D. Zhang, “A completed modeling
of local binary pattern operator for texture classification,”
IEEE Transactions on Image Processing, vol. 19, no. 6,
pp. 1657–1663, Jun. 2010.

[34] E. Rahtu, J. Heikkil, V. Ojansivu, and T. Ahonen, “Local
phase quantization for blur-insensitive image analysis,”
Image and Vision Computing, vol. 30, no. 8, pp. 501–
512, Aug. 2012.

[35] J. Wu, W. Lin, G. Shi, and A. Liu, “Perceptual quality
metric with internal generative mechanism,” IEEE Trans-
actions on Image Processing, vol. 22, no. 1, pp. 43 –54,
2013.

[36] E. H. Adelson, E. P. Simoncelli, and W. T. Freeman,

“Pyramids and multiscale representations,” Pyramids and
multiscale representations, pp. 3–16, 1991.

[37] B. Shneiderman, “The eyes have it: a task by data
type taxonomy for information visualizations,” in IEEE
Symposium on Visual Languages, 1996, pp. 336–343.

[38] J. Wu, W. Lin, G. Shi, and A. Liu, “Reduced-reference
image quality assessment with visual information fi-
delity,” IEEE Transactions on Multimedia, vol. 15, no. 7,
pp. 1700–1705, 2013.

[39] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale
structural similarity for image quality assessment,” in The
Thirty-Seventh Asilomar Conference on Signals, Systems
and Computers, vol. 2, 2003, pp. 1398–1402.

[40] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a
feature similarity index for image quality assessment,”
Image Processing, IEEE Transactions on, vol. 20, no. 8,
pp. 2378–2386, Aug. 2011.

[41] Z. Wang and A. C. Bovik, “Mean squared error: Love it
or leave it?” IEEE Signal Processing Magazine, vol. 26,
no. 1, pp. 98–117, 2009.

[42] H. R. Sheikh, K. Seshadrinathan, A. K. Moorthy,
Z. Wang, A. C. Bovik, and L. K. Cormack. (2006) Image
and video quality assessment research at live. [Online].
Available: http://live.ece.utexas.edu/research/quality/.

[43] E. C. Larson and D. M. Chandler. (2004) Categorical
image quality (csiq) database. [Online]. Available:
http://vision.okstate.edu/csiq.

[44] N. Ponomarenko and K. Egiazarian. (2009) Tampere
image database 2008 tid2008. [Online]. Available:
http://www.ponomarenko.info/tid2008.htm.


