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Abstract—Reduced-reference (RR) image quality assess-
ment (IQA) method aims to accurately measure quality with
part of the reference data. The challenge for RR IQA is how
to effectively represent the visual content of an image with
limited data for quality measurement. Inspired by the orientation
selectivity (OS) mechanism in the primary visual cortex, we
introduce an OS based visual pattern (OSVP) to extract visual
content for RR IQA. The OS arises from the arrangement of the
excitatory and inhibitory interactions among connected cortical
neurons. Inspired by this, we investigate the correlation among
neighbor pixels, and propose the OSVP to represent the visual
content of an image. Then, the quality degradation is measured
as the changes of OSVP, and a novel RR IQA model is proposed.
Experimental results demonstrate that the OSVP based RR IQA
model uses limited reference data (9 values) and performs highly
consistent with the subjective perception.

Index Terms—Reduced-Reference, Image Quality Assessment,
Orientation Selectivity Mechanism, Preferred Orientation

I. INTRODUCTION

With the development of the network and communication
technology, digital signals are tremendously increased and be-
comes increasingly important in our daily life. During acquisi-
tion, processing, and transmission, various types of distortions
are introduced into the digital signals. How to effectively
acquire high quality digital signals becomes an open problem.
Subjective quality assessment is the most reliable way to select
high quality signals. However, this method is cumbersome
and time-consuming for signal processing systems. Therefore,
objective quality assessment algorithms are greatly demanded.
In the past decade, a mass of image quality assessment (IQA)
models have been proposed. According to the availability
of the reference data, the existing IQA models can classi-
fied into three classes [1]: Full-Reference (FR), Reduced-
Reference (RR), and No-Reference (NR). In this paper, we
focus on RR IQA modeling, where the part of the reference
image is available for quality measurement.

RR IQA model aims to accurately measure quality with
limited reference data. Generally, some kind of global feature

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 61401325, 61401333, 61472301, 61227004, 61301288),
the Research Fund for the Doctoral Program of Higher Education (Nos.
20130203130001, 20130203120009), the 111 Project (No. B07048), the
Fundamental Research Funds for The Central Universities (No. JB140227),
and Shaanxi province natural science foundation of China (No. 2014JQ8296).

is extracted to create a quality-aware map, which can effec-
tively represent the visual content of an image with a small
amount of values for RR IQA. For example, according to the
assumption that natural scenes follow some stable statistical
properties, a lot of natural scene statistic (NSS) based RR
IQA models were proposed [2], [3], [4]. In [2], the statistic
properties of images were analyzed in the wavelet domain,
and the quality was measured by the changes of the statistical
distribution of the wavelet coefficients between the reference
and distorted images. In [3], Li and Wang [3] adopted a
divisive normalization transform procedure to improve the RR
IQA model. Furthermore, Gao et al. [4] throughly analyzed the
statistical distribution of coefficients with wavelets, curvelets,
and contourlets, and introduced a multiscale geometric based
RR IQA method. Recently, Soundararajan and Bovik [5]
proposed to measure the quality with the scaled entropies
of wavelet coefficients on each divided block. Wu et al. [6]
proposed a perception oriented RR IQA model, in which the
information fidelities on the primary visual content and the dis-
orderly uncertainty were separately measured. However these
RR IQA models either required a large amount of reference
information to achieve good performance, or performs not
good enough with a small amount of reference data.

In this paper, we turn to investigate the perception on the
human visual system (HVS), and introduce an orientation
selectivity based visual pattern (OSVP) to extract visual infor-
mation for RR IQA. Neuroscience researches indicate that the
HVS presents obvious orientation selectivity (OS) mechanism
for visual information extraction [7]. Moreover, OS arises
from the spatial arrangement of excitations and inhibitions
in the primary visual cortex (PVC) [8], [9]. By imitating
the OS mechanism, we firstly analyze the spatial relations
among pixels with the similarity on their preferred orientation.
According to the correlation between a pixel and its circularly
symmetric neighborhood, the OSVP feature is introduced.
Then, the visual content of an input image is extracted and
mapped into an OSVP based histogram. Finally, image quality
is measured as the changes on the OSVP based histograms
between the reference and distorted images. Experimental
results demonstrate that the proposed OSVP based RR IQA
model only requires a quite small amount of reference data
and performs highly consistent with the human perception.

The rest of this paper is organized as follows. The OSVP



is designed to extract visual structure for RR IQA in Sec-
tion II. In Section III, experimental results are given. Finally,
conclusions are drawn in Section IV.

II. OSVP BASED RR IQA

In this section, the underlying principle for the OS mecha-
nism in the PVC is firstly introduced. Then, by imitating the
OS mechanism, the OSVP is introduced for feature extraction.
Finally, with OSVP, a novel RR IQA model is proposed.

A. OSVP for Feature Extraction

The HVS is a senior visual signal processing system, which
can effectively and efficiently process the input signals. Neu-
roscience researches indicate that during visual perception,the
HVS presents substantial OS to extract visual structure for
scene understanding [7]. Therefore, the OS mechanism in part
reveals the underline principle of visual signal processing in
the HVS.

During the past decades, many hypotheses about the roots
of OS have been proposed. As the simplest and most classical
one, the feedforward model suggests that the OS lies on
the intracortical responses among cortical neurons [7]. When
receiving different visual stimuli, cortical neurons present
different responses: neurons which receive stimuli with similar
preferred orientations are more likely to present excitatory
interactions, while neurons which receive stimuli with dis-
similar preferred orientations are more probability to present
inhibitory interactions [9]. The OS arises from the arrangement
of the excitatory and inhibitory interactions among neurons in
a local receptive field [8]. A brief schematic representation of
the interactions among neurons is shown in Fig. 1.

Inspired by the OS mechanism, we attempt to analyze the
correlations among neighbor pixels and introduce a novel fea-
ture for visual information representation. Since the excitatory
and inhibitory interactions relies on the similarity of preferred
orientations between neurons, we firstly compute the preferred

Fig. 1: The interactions between cortical neurons, where ‘+’
means excitatory interaction and ‘-’ inhibitory interaction.

Fig. 2: The 8-neighbor OSVP.

orientation for each pixel in an image. In this paper, the
gradient direction θ is adopted to represent the orientation. For
a given image F , the orientation of a pixel x∈F is computed
as,

θ(x) = arctan
Gv(x)

Gh(x)
, (1)

where Gh and Gv represent the gradient magnitudes along the
horizontal and vertical directions, respectively. In this work,
Gh and Gv are calculated with the Prewitt filters,

Gh = F ∗ fh, Gv = F ∗ fv, (2)

fh =
1

3

1 0 −1
1 0 −1
1 0 −1

 , fv =
1

3

 1 1 1
0 0 0
−1 −1 −1

 , (3)

where fh/fv is the horizontal/vertical Prewitt filter, and ∗ is
the convolution operation.

The interaction between two pixels is determined by the
similarity of their preferred orientation, which can be com-
puted as

I(x|xi) =

{
+ if |θ(x)− θ(xi)| < T
− else

, (4)

where ‘+’ represents excitatory interaction, and ‘-’ represents
inhibitory interaction. The similarity threshold T decides
the interaction type between two pixels. According to the
subjective visual masking test [10], we set T =6◦ in this work.

With the interaction types from (4), the OSVP type of a
pixel x can be represented by the arrangement of ‘+’ and ‘-’
between pixel x and its circularly symmetric neighborhood.
Fig. 2 shows an example of 8-neighbor (namely, n=8) OSVP,
whose pattern type is OSVP={+−−−+−−−}.

B. Quality Measurement

According to the analysis above, the visual pattern (i.e.,
OSVP) for each pixel is acquired. The OSVP type presents
the visual structure of a pixel. For a given image, pixels with
a same OSVP type display a same visual content, and pixels
with different OSVP types display different visual contents.
Therefore, we combine pixels with the same OSVP type, and a
given image can be mapped into a histogram for visual content



representation,

B(k) =
N∑
i=1

w(xi) δ(Pv(xi),Pk
v ), (5)

δ(Pv(xi),Pk
v ) =

{
1 if Pv(xi) = Pk

v

0 else
, (6)

where B(k) is the value of the k−th bin, N is the total pixel
number of the image, and Pk

v is the index of the k−th OSVP
type. The parameter w(xi) is the weighting factor of pixel
xi. Pixels with large luminance changes always carry much
information. Therefore, we adopt the luminance change of
each pixel as its corresponding weighting factor w(xi), which
is calculated as

w(xi) = var(xi), (7)

where var(xi) is the local variance of xi.
With (5), the visual content of an image is extracted and

represented by an OSVP based histogram. For an 8-neighbor
OSVP, there are 28 different types, which means the visual
content of an image is represented by 28 values. In order
to reduce the number of reference data for RR IQA, we
analyze all of the OSVP types and try to combine these
types which present similar visual structure. With subjective
viewing test, we have found that these OSVP types possess a
same number of excitatory interactions present similar visual
structure. Thus, we combine these OSVP types with a same
number of excitatory interactions. As a result, the visual
content of an image can be mapped into a (n+1)-bin OSVP
based histogram.

Since noise will distort image structures, we measure the
quality as the changes on OSVP types. For a given distorted
image, the quality is measured as the distance of its OSVP
based histogram from that of the reference image,

Q(Fd|Fr) =
n+1∑
k=1

2Bd(k)Br(k)

B2
d(k) + B2

r(k)
, (8)

where Bd(k)/Br(k) is the k-th bin of the distorted/reference
histogram.

III. EXPERIMENTAL RESULTS

In the experimental section, the effectiveness of the pro-
posed OSVP on visual structure extraction is firstly illustrated.
And then, the performance of the proposed RR IQA model is
demonstrated on publicly available databases.

Different types of distortion cause different visual structure
degradations. The proposed OSVP feature can effectively cap-
ture the degradations caused by different types of distortion.
Fig. 3 shows a hats image contaminated by three differ-
ent types of distortions: the Gaussian white noise (GWN),
the Gaussian blur noise (GBN), and the JPEG compression
noise (JPG). Though the distortion energies on the three
contaminated images (i.e., Fig. 3 (b)-(d)) are the same (with
PSNR=24.5dB), their quality are clearly different. It is obvi-
ous that Fig. 3 (b) has a much better quality than the other
two contaminated images (i.e., Fig. 3 (c) and (d)). With further

(a) ORG (b) GWN

(c) GBN (d) JPG

Fig. 3: The hats image contaminated by three types of distor-
tions, namely, Gaussian white noise, Gaussian blur noise, and
JPEG noise. The noise energies on the three distorted images
are same, with PSNR=24.5dB.

Fig. 4: The OSVP histograms for the hat image and its
corresponding three contaminated images (as shown in 3).

analysis on these images in Fig. 3, we can see that: the GWN
randomly adds the disturbance to the whole image, which has
limited effect on visual structure, as shown in Fig. 3 (a); the
GBN smooths out most of the high frequency contents, which
obviously degrades image structure, as shown in Fig. 3 (b);
with the blockiness artifacts, the JPG not only distorts the
original edges but also adds some new structures on the smooth
regions, as shown in Fig. 3 (c).

Due to the degradations on visual structures of the three
contaminated images, their corresponding OSVP histograms
are also changed, as shown in Fig. 4. By adding disturbance
into the image, the GWN increases the energies of all OSVP
types except for the last type, as the light blue bars shown in
Fig. 4. That is because with the disturbance from GWN, a flat



TABLE I: IQA Performance Comparison on Three Databases

Dist. Crit.
Algo. RR FR

OSVP RRED RRVIF WNISM PSNR SSIM
No. of scalars 9 9 2 18 N N

CSIQ
PLCC 0.843 0.677 0.598 0.735 0.800 0.815
SRCC 0.849 0.758 0.633 0.771 0.800 0.838
RMSE 0.141 0.193 0.210 0.178 0.158 0.152

LIVE
PLCC 0.862 0.815 0.722 0.743 0.872 0.904
SRCC 0.867 0.818 0.738 0.755 0.876 0.910
RMSE 13.84 15.83 18.90 18.28 13.36 11.67

TID2013
PLCC 0.724 0.729 0.577 0.629 0.702 0.686
SRCC 0.654 0.671 0.451 0.523 0.703 0.627
RMSE 0.856 0.849 1.013 0.964 0.883 0.902

region may be distorted into an unsmooth region, where pixels
with the 9-th OSVP type (i.e., ‘++++++++’) are distorted into
other OSVP types. On the contrary, the effect of GBN is
shown as the yellow bars in Fig. 4, where the energies for
most OSVP bins are decreased except for the last one. That
is because the GBN degrades some unsmooth regions into
flat regions, and as a result, the number of the last OSVP
type is greatly increased. The JPG causes different changes
on OSVP histogram from that of GWN and GBN, as the
wine red bars shown in Fig. 4. Since the blockiness artifacts
not only degrades original edges but also adds new edges,
the energies for most OSVP bins remain similar. Meanwhile,
the JPG averages out small disturbance on the flat block,
which decrease the variance values for the last OSVP type. In
summary, the proposed OSVP feature can effectively represent
structure degradations from different distortion types.

In order to give a comprehensive analysis on the proposed
OSVP based IQA (OSVP for short), three publicly available
IQA databases, CSIQ, LIVE, and TID2013, are chosen in this
experiment. Meanwhile, three latest RR IQA models (i.e.,
RRED [5], RRVIF [6], and WNISM [2]) and two classic FR
IQA metrics (i.e., PSNR, SSIM [11]) are adopted for compari-
son. The performance of these IQA models are measured with
three widely used performance criteria, namely, the Pearson
linear correlation coefficient (PLCC), the Spearman rank-order
correlation coefficient (SRCC), and the root mean squared
error (RMSE). A better IQA model will return higher PLCC
and SRCC values and a lower RMSE value [1].

The comparison result is listed in Tab. I. As the second
row shown in Tab. I, the four RR IQA models uses a very
limited amount of reference data (i.e., OSVP, RRED, RRVIF,
and WNISM with 9, 9, 2, and 18 values, respectively); and all
of the reference data (the size (N ) of the image) is required for
the two FR IQA metrics. By comparing the performance we
can see that, OSVP outperforms the other RR IQA models on
both CSIQ and LIVE databases (have larger PLCC and SRCC
values and smaller RMSE values). Meanwhile, on TID2013
database, OSVP performs a slight worse than RRED, while
much better than RRVIF and WNISM. Moreover, OSVP is
comparable with the two FR IQA metrics: OSVP outperforms
both PSNR and SSIM on CSIQ and TID2013, while worse
than them on LIVE. According to the above comparison result,
we can conclude that OSVP outperforms the existing RR IQA

models, and is comparable with the classical FR IQA metrics.

IV. CONCLUSION

In this paper, we have designed a novel OSVP feature
to extract visual structure for RR IQA. Inspired by the OS
mechanism in the PVC, we firstly analyzed the correlations
among nearby pixels with the similarities of their preferred
orientation. Then, by arranging the correlations between a
pixel and its neighbor pixels, an OSVP is designed to represent
its visual information. Finally, according to the changes on
OSVP between the reference and distorted images, a novel
RR IQA model is introduced. Experimental results on three
publicly databases demonstrated that the OSVP based RR IQA
model uses limited reference data (9 values) and performs
highly consistent to the subjective perception.
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