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This paper is concerned with traveling waves of a monostable reaction–diffusion system
with delay and without quasi-monotonicity. When the initial perturbation around the
travelingwave is suitably small in aweighted norm, the exponential stability of all traveling
wave solutions for the system with delay is proved by the weighted energy method.
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1. Introduction

Traveling wave solutions of nonlinear reaction–diffusion equations and systems have been extensively and intensively
investigated due to their important role in a variety of physical, biological, and epidemic problems; see [1–22]. The
investigation of the stability of travelingwave solutions is one of the important and difficult aspects in the theory of traveling
waves. In particular, the loss of (quasi-)monotonicity and incorporation of (nonlocal) delay into many realistic models in
applicationsmay result inmuch difficulty, because the time delay and spatial non-locality lead to some changes of dynamics
for equations and systems, it is no longer suitable to use the frequent methods and theory for solving the problems of
traveling wave solutions in (quasi-)monotone reaction–diffusion equations and systems or without delay.

Regarding the monotone traveling wave problems for some scalar reaction–diffusion equations and systems with delay,
much has been done concerning the stability of wavefronts by using the spectral analysis method, the squeezing technique,
the weighted energy method, the combination of the comparison principle and the weighted energy method, and so on.
For example, one pioneering work from Schaaf [23] established the local stability results of traveling wave solutions for a
scalar equation with delay, Fisher–KPP nonlinearity and one equilibrium u− = 0 is a stable node, by the spectral analysis
method. In [24], by using the squeezing technique (please refer to [25–29]), we studied the globally asymptotic exponential
stability of traveling fronts for a bistable quasi-monotone system with delay. Recently, with the help of the method of
combination of the comparison principle and the weighted energy method (please refer to [30–36]), we [37] established
the exponential stability of monotone traveling wave solutions for the large initial perturbation and large wave speed of the
following monostable reaction–diffusion system with delay

∂

∂t
u1(t, x) =

∂2

∂x2
u1(t, x) − u1(t, x) + u2(t, x),

∂

∂t
u2(t, x) = −βu2(t, x) + g(u1(t − τ , x))

(1.1)
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when g is the monotone Nicholson’s birth function, i.e. g(u) = pue−au(1 <
p
β

≤ e) is monotone, and the development of
the epidemic model can be referred to [5,21,22,38–40].

However, on the traveling wave solutions of reaction–diffusion equations and systems without quasi-monotonicity, it
seems that little has been done regarding the existence of traveling wave solutions, not to mention the study of the stability
of traveling wave solutions. For delayed scalar reaction–diffusion equations without quasi-monotonicity, some existence
results of traveling wave solutions have been obtained in Huang and Zou [41] and Wu and Zou [42] by using the idea of
the so-called exponential ordering for delayed differential equations. But these results are valid only for small values of the
delay. Fortunately, Ma [43] complement the defect by the idea of auxiliary equations and Schauder’s fixed point theorem
applied inMa [44]. His existence result is valid for all values of the delay, in contrast to the results in [41,42]. After that, using
the same method, Wu and Li et al. [17,45] established the existence of traveling wave solutions for some complicated non-
local reaction–diffusion equations with delay and non-local diffusion term equations with delay, respectively. In particular,
Wu [46] applied themethod to solve the existence of travelingwave solutions of a class of non-monotone integral equations.
As an application of this result, the existence of traveling wave solutions of the following epidemic system with distributed
delay 

∂

∂t
u1(t, x) =

∂2

∂x2
u1(t, x) − u1(t, x) + u2(t, y),

∂

∂t
u2(t, x) = −βu2(t, x) +


∞

0
g(u1(t − s, x))P(ds),

(1.2)

has been obtained. It is easy to see that if P(·) is Dirac function δ(·), (1.2) is the system (1.1). On the other hand, for scalar
equations with local delay but without quasi-monotonicity, Wu [47] established the stability results of traveling wave
solutions by using the weighted energy method derived from Mei’s [48,49] idea. However, to the best of our knowledge,
there are no stability results of travelingwave solutions for delayed reaction–diffusion systemswithout quasi-monotonicity
up until now. Based on this fact, in this paper, we want to continue to study the stability of traveling wave solutions of
the delayed system (1.1) when g(u1) is not satisfied with monotonicity. Therefore the investigated system (1.1) does not
satisfy the so-called quasi-monotone condition and the comparison principle is not applicable for the system. Naturally,
the frequently used methods for stability of traveling wave solutions, such as the squeezing technique, the method of
combination of the comparison principle and the weighted energy method are not valid. In addition, the spectrum analysis
is very complicated for delayed systems. Fortunately the weighted energy method does not need the comparison principle
to hold, but it is not clear whether this method can also be used to solve the stability of traveling wave solutions of these
non-monotone systems. As a result, in this paper we applied the weighted energy method to solve the stability of traveling
wave solutions for a monostable system with delay and without quasi-monotonicity.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries and state our stability result.
In Section 3, we prove our main result on the exponential stability of traveling waves.

2. Preliminaries and main result

Notations. Throughout this paper, C > 0 denotes a generic constant, Ci > 0 (i = 1, 2, . . .) represents a specific constant.
Let I be an interval. L2(I) is the space of the square integrable functions defined on I , and Hk(I)(k ≥ 0) is the Sobolev space
of the L2-functions f (x) defined on the interval I whose derivatives di

dxi
f (i = 1, 2, . . . , k) also belong to L2(I). L2w(I) denotes

the weighted L2-space with a weight function w(x) > 0 and its norm is defined by ∥f ∥L2w
=


I w(x) |f (x)|2 dx
 1

2 ,Hk
w(I) is

the weighted Sobolev space with the norm given by

∥f ∥Hk
w

=


k

i=0


I
w(x)

 didxi
f (x)

2 dx
 1

2

.

Let T > 0 be a number andB be a Banach space.We denote by C([0, T ]; B) the space of theB-valued continuous functions
on [0, T ]. L2([0, T ]; B) is the space of the B-valued L2-functions on [0, T ]. The corresponding spaces of B-valued functions
on [0, ∞) are defined similarly.

In addition, throughout this paper, we assume that β > 1
2 and (1.1) satisfies the initial conditions

u1(s, x) = u10(s, x), s ∈ [−τ , 0], x ∈ R,
u2(0, x) = u20(x), x ∈ R.

(2.1)

We also need the following assumptions for the sake of proving the existence of traveling wave solutions (see [46]):

(C1) g(0) = βK − g(K) = 0 for some K > 0, g ′(0) > β , and there exists a ν ∈ (0, 1] such that

lim sup
u→0+


g ′(0) −

g(u)
u


u−ν < +∞;



Y.-R. Yang et al. / Nonlinear Analysis: Real World Applications 14 (2013) 1511–1526 1513

(C2) min{k∗u, K+
} ≥

1
β
g(u) > 0 for ∀u ∈ (0, K+

], and g is Lipschitz continuous on [0, K+
] for some K+

≥ K , where

k∗
=

g ′(0)
β

;
(C3) One of the following assumptions holds:

(i) K ≥
1
β
g(u) > u, for ∀u ∈ (0, K);

(ii) u < 1
β
g(u) < 2K −u, for u ∈ (K−, K) and u > 1

β
g(u) > 2K −u, for u ∈ (K , K+), where K−

= k∗ infη∈[0,K+]{g(η) :

1
β
g(η) ≤ η};

(iii) u < 1
β
g(u), for u ∈ [K−, K); u > 1

β
g(u), for u ∈ (K , K+

] and there is no pair 0 < γ1 < K < γ2 ≤ K+ such that
γ1 =

1
β
g(γ2), γ2 =

1
β
g(γ1).

Notice that system (1.1) has two constant equilibria u− = (u1−, u2−) = (0, 0) and u+ = (u1+, u2+) = (K , K0), where
K0 =

g(K)

β
and K , K0 > 0. We are interested in traveling wave solutions u of (1.2) that connect u− with u+. A traveling wave

solution of system (1.1) connecting with u− and u+ is a solution u = (u1(t, x), u2(t, x)) = (φ1(ξ), φ2(ξ)) , ξ = x + ct ,
satisfying the following ordinary differential systemcφ′

1(ξ) − φ′′

1 (ξ) + φ1(ξ) = φ2(ξ),
cφ′

2(ξ) + βφ2(ξ) = g (φ1(ξ − cτ)) ,
φ1(±∞) = u1±, φ2(±∞) = u2±.

(2.2)

Obviously, when P(·) is Dirac function δ(·), (1.2) is the system (1.1), therefore, the existence of traveling wave solutions
of (1.1) is guaranteed by the following Proposition 2.1. Wu [46] proved the existence of traveling wave solutions of (1.1)
with profile (φ1(ξ), φ2(ξ)) by the idea of auxiliary equations and Schauder’s fixed point theorem.

Proposition 2.1 (Existence of Traveling Waves). Assume that (C1)–(C2) hold. Then there exists c∗ > 0 such that

(i) for every c > c∗, (1.2) admits a traveling wave solution 8(ξ) =: (φ1(ξ), φ2(ξ)) satisfying φi(ξ) = O

eΛ1(c)ξ


when

ξ → −∞, i = 1, 2, φ1 ∈ C(R, [0, K+
]) and

0 < K−
≤ lim inf

ξ→+∞

φ1(ξ) ≤ lim sup
ξ→+∞

φ1(ξ) ≤ K+,

0 < lim inf
ξ→+∞

φ2(ξ) ≤ lim sup
ξ→+∞

φ2(ξ) ≤ K+.

If, in addition, (C3) also holds, then 8(+∞) = (K , K0), where K0 =
g(K)

β
and Λ1(c) is the smallest solution such that the

linearized characteristic equation at (0, 0) of (1.2) has solutions;
(ii) for c = c∗, (1.2) admits a traveling wave solution with the wave speed c∗;
(iii) for ∀c ∈ (0, c∗), (1.2) admits no such wave solution with the wave speed c.

For some kind of need for proof, we assume g ′ is bounded on [0, +∞), and let

L = max
u∈[0,K+]

|g ′(u)|, L̃ = max
u∈[0,+∞)

|g ′(u)|,

L1 =
1
β

max
u∈[0,K+]

|g ′′(u)| max
u∈[0,K+]

g(u), L2 =
1
2

max
u∈[−σK+,(σ+1)K+]

|g ′′(u)|,

where σ ≥ 1, and the definition of g can be referred to in the extension ḡ for g in the following.

Lemma 2.2. For a given traveling wave solution (φ1(ξ), φ2(ξ)) of (1.1) with speed c > c∗, there holds limξ→+∞ φ′

1(ξ) = 0
and |φ′

1(ξ)| ≤
1
β
maxu∈[0,K+] g(u).

Proof. From the first equation of (2.2), we have

φ1(ξ) =
1

λ2 − λ1

 ξ

−∞

eλ1(ξ−s)φ2(s)ds +


+∞

ξ

eλ2(ξ−s)φ2(s)ds


.

Then

φ′

1(ξ) =
1

λ2 − λ1


λ1

 ξ

−∞

eλ1(ξ−s)φ2(s)ds + λ2


+∞

ξ

eλ2(ξ−s)φ2(s)ds


,

where

λ1 =
c −

√
c2 + 4
2

< 0, λ2 =
c +

√
c2 + 4
2

> 0

are two solutions of cλ − λ2
+ 1 = 0.
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Applying the (General) L. Hospital’s rule to the expression of φ′

1(ξ), we have limξ→+∞ φ′

1(ξ) = 0. On the other hand,

φ2(ξ) =
1
c

 ξ

−∞

e−
β
c (ξ−s)g(φ1(s − cτ))ds,

therefore, maxξ∈R φ2(ξ) ≤
1
β
maxu∈[0,K+] g(u). Notice that λ2 − λ1 ≥ 2, thus we get |φ′

1(ξ)| ≤ maxξ∈R φ2(ξ) ≤

1
β
maxu∈[0,K+] g(u). This completes the proof. �

Lemma 2.3. If g ∈ C2

[0, K+

], R

and |g ′(K)| < 1, then there exists ξ ∗

∈ R such that, for any ξ ≥ ξ ∗,

|g ′(φ1(ξ))| < |g ′(K)| + ϵ, |g ′(φ1(ξ − cτ))| < |g ′(K)| +
ϵ

4
,

and

|g ′(φ1(ξ − cτ))| + |g ′′(φ1(ξ − cτ))φ′

1(ξ − cτ)| < |g ′(K)| +
ϵ

2
,

where ϵ = min{
1−|g ′(K)|

2 , 2β − 1}.

Proof. By Lemma 2.2 and the fact that g ∈ C2

[0, K+

], R

, the results are obvious. �

In order to investigate the stability of traveling wave solutions of (1.1), we need to establish the global existence and
uniqueness result of solution (u1, u2) to the Cauchy problem (1.1) and (2.1).

We first establish the non-negativity of all global solutions.

Proposition 2.4 (Non-Negativity). Let (u1(t, x), u2(t, x)) be the solution of (1.1) and (2.1) in (0, +∞) × R. If u10(s, x) ≥ 0 in
[−τ , 0] × R and u20(x) ≥ 0 in x ∈ R, then ui(t, x) ≥ 0 in (0, +∞) × R, i = 1, 2.

Proof. We want to prove the non-negativity of ui(t, x) in each of the intervals [nτ , (n + 1)τ ] one by one, i = 1, 2, n =

1, 2, . . . . For t ∈ [0, τ ], we have −τ ≤ t − τ ≤ 0, so u10(t − τ , x) ≥ 0. Thus g(u10(t − τ , x)) ≥ 0 by the non-negativity of
g . Therefore u2(t, x) satisfies the following differential inequality

∂

∂t
u2(t, x) + βu2(t, x) = g(u10(t − τ , x)) ≥ 0, t ∈ [0, τ ].

Applying the standard comparison principle for linear parabolic equations, we can obtain u2(t, x) ≥ 0 on [0, τ ]. By repeating
this procedure to each of the intervals [nτ , (n + 1)τ ], n = 1, 2, . . . , we have u2(t, x) ≥ 0 on (0, +∞). Similarly, by the
non-negativity of u2(t, x) on (0, +∞), u1(t, x) also satisfies the following differential inequality

∂

∂t
u1(t, x) −

∂2

∂x2
u1(t, x) + u1(t, x) = u2(t, x) ≥ 0, t ∈ [0, τ ].

Applying the standard comparison principle for linear parabolic equations again, we have u1(t, x) ≥ 0 on [0, τ ]. Repeating
the same procedure to each of the intervals [nτ , (n + 1)τ ], n = 1, 2, . . . , there holds u1(t, x) ≥ 0 on (0, +∞). This
completes the proof. �

Next, we give the global existence and uniqueness result of solution (u1, u2) to the Cauchy problem (1.1) and (2.1).

Proposition 2.5 (Global Existence and Uniqueness). Assume that u10(s, x) ≥ 0, u20(x) ≥ 0 and are continuous for s ∈

[−τ , 0], x ∈ R, respectively. For a given traveling wave solution (φ1(x + ct), φ2(x + ct)), if u10(s, x) − φ1(x + cs) ∈

C

[−τ , 0];H1(R)


and u20(x) − φ2(x) ∈ H1(R) ⊂ C(R), then there exists a unique global solution (u1(t, x), u2(t, x)) of

the Cauchy problem (1.1) and (2.1) such that ui(t, x) − φi(x + ct) ∈ C

[0, +∞);H1(R)


, i = 1, 2.

Let Ui(t, x) = ui(t, x) − φi(x + ct), i = 1, 2, where (φ1(x + ct), φ2(x + ct)) is a given traveling wave solution of (1.1).
Then the Cauchy problem (1.1) and (2.1) can be rewritten as

∂U1

∂t
(t, x) =

∂2U1(t, x)
∂x2

− U1(t, x) + U2(t, x) (2.3)

∂U2

∂t
(t, x) = −βU2(t, x) + G(t − τ , x), (t, x) ∈ R+ × R, (2.4)

with 
U1(s, x) = U10(s, x), (s, x) ∈ [−τ , 0] × R,
U2(0, x) = U20(x), x ∈ R,

(2.5)

where G(t − τ , x) = g (U1(t − τ , x) + φ1(x + ct − cτ)) − g (φ1(x + ct − cτ)). Thus, Proposition 2.5 is equivalent to the
following result.
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Proposition 2.6. Suppose the assumptions of Proposition 2.4 all hold, then there exists a unique global solution
(U1(t, x),U2(t, x)) of the Cauchy problem (2.3)–(2.5) such that

Ui(t, x) ∈ C

[0, +∞);H1(R)


, i = 1, 2.

The proof of Proposition 2.5 depends on the following two results on the local existence, uniqueness, extension of
solutions and the boundedness of solutions of (2.3)–(2.5).

Proposition 2.7 (Local Existence and Uniqueness). For U10(s, x) ∈ C

[−τ , 0];H1(R)


and U20(x) ∈ H1(R) ⊂ C(R), s ∈

[−τ , 0], x ∈ R, there exists t0 > 0 such that problem (2.3)–(2.5) has a unique solution (U1(t, x),U2(t, x)) ∈ C

[0, t0);H1(R)


.

Furthermore, if [0, T0) is its maximal interval of existence and (U1(t, x),U2(t, x)) ∈ C

[0, T0);H1(R)


, then either T0 = +∞

or T0 < +∞, and in the latter case limt→T−

0
∥Ui(t, ·)∥H1(R) = +∞.

It can also be proved by using the standard iteration method (see [50–52]). Thus the proof is omitted here.

Proposition 2.8 (Boundedness). If (U1(t, x),U2(t, x)) ∈ C

[0, T );H1(R)


is a solution of (2.3)–(2.5) for 0 < T < ∞. Then

there exists positive constants C, independent of T , such that for 0 ≤ t < T ,

∥Ui(t)∥H1(R) ≤ C


∥U10(0)∥2
H1 + ∥U20(0)∥2

H1 +

 0

−τ

∥U10(s)∥2
H1ds


e

L̃2
2β−1 t , i = 1, 2.

Proof. Multiplying (2.3) and (2.4) by 2U1(t, x) and 2U2(t, x), respectively, we have

(U2
1 )t − 2(U1U1x)x + 2U2

1x + 2U2
1 = 2U1U2, (2.6)

(U2
2 )t + 2βU2

2 = 2G(t − τ , x)U2. (2.7)

Integrating (2.6) and (2.7) over [0, t] × R, t ∈ [0, T ), respectively, we obtain

∥U1(t)∥2
L2 + 2

 t

0
∥U1x(s)∥2

L2ds + 2
 t

0
∥U1(s)∥2

L2ds = ∥U10(0)∥2
L2 + 2

 t

0


R
U1(s, x)U2(s, x)dxds

≤ ∥U10(0)∥2
L2 +

 t

0
∥U1(s)∥2

L2ds +

 t

0
∥U2(s)∥2

L2ds, (2.8)

and

∥U2(t)∥2
L2 + 2β

 t

0
∥U2(s)∥2

L2ds = ∥U20(0)∥2
L2 + 2

 t

0


R
G(s − τ , x)U2(s, x)dxds. (2.9)

Combining (2.8) and (2.9), we obtain

∥U1(t)∥2
L2 + ∥U2(t)∥2

L2 + 2
 t

0
∥U1x(s)∥2

L2ds +

 t

0
∥U1(s)∥2

L2ds + (2β − 1)
 t

0
∥U2(s)∥2

L2ds

≤ ∥U10(0)∥2
L2 + ∥U20(0)∥2

L2 + 2
 t

0


R
G(s − τ , x)U2(s, x)dxds. (2.10)

By the mean-value theorem, there exists a function Ū1(t, x), between φ1(x + ct) and φ1(x + ct) + U1(t, x), such that

|G(s − τ , x)| = |g ′(Ū1)U1(s − τ , x)| ≤ L̃|U1(s − τ , x)|,

where L̃ = maxŪ1∈[0,+∞) |g ′(Ū1)|. Therefore, combining the Cauchy–Schwarz inequality, |ab| ≤ εa2 + ( 1
4ε )b

2 for ε > 0, we
have

2
 t

0


R
G(s − τ , x)U2(s, x)dxds

 ≤ 2L̃
 t

0


R

|U1(s − τ , x)U2(s, x)|dxds

≤ 2L̃
 t

0


R


εU2

2 (s, x) +
1
4ε

U2
1 (s − τ , x)


dxds

= 2L̃ε
 t

0
∥U2(s)∥2

L2ds +
L̃
2ε

 t−τ

−τ

∥U1(s)∥2
L2ds

≤ 2L̃ε
 t

0
∥U2(s)∥2

L2ds +
L̃
2ε

 0

−τ

∥U10(s)∥2
L2ds +

L̃
2ε

 t

0
∥U1(s)∥2

L2ds. (2.11)
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Letting ε =
β−

1
2

L̃
in (2.11), we obtain

2
 t

0


R
G(s − τ , x)U2(s, x)dxds ≤ (2β − 1)

 t

0
∥U2(s)∥2

L2ds

+
L̃2

2β − 1

 0

−τ

∥U10(s)∥2
L2ds +

 t

0
∥U1(s)∥2

L2ds


.

Substituting the above inequality into (2.10), we have

∥U1(t)∥2
L2 + ∥U2(t)∥2

L2 + 2
 t

0
∥U1x(s)∥2

L2ds ≤ ∥U10(0)∥2
L2 + ∥U20(0)∥2

L2 +
L̃2

2β − 1

 0

−τ

∥U10(s)∥2
L2ds

+
L̃2

2β − 1

 t

0
∥U1(s)∥2

L2ds. (2.12)

Applying Gronwall’s inequality to (2.12), we have

∥U1(t)∥2
L2 + ∥U2(t)∥2

L2 ≤


∥U10(0)∥2

L2 + ∥U20(0)∥2
L2 +

L̃2

2β − 1

 0

−τ

∥U10(s)∥2
L2ds


e

L̃2
2β−1 t

for t ∈ [0, T ), i.e.

∥Ui(t)∥2
L2 ≤


∥U10(0)∥2

L2 + ∥U20(0)∥2
L2 +

L̃2

2β − 1

 0

−τ

∥U10(s)∥2
L2ds


e

L̃2
2β−1 t , (2.13)

for t ∈ [0, T ) and i = 1, 2. Similarly, we can prove that

∥Uix(t)∥2
L2 ≤ C


∥U10(0)∥2

L2 + ∥U20(0)∥2
L2 +

L̃2

2β − 1

 0

−τ

∥U10(s)∥2
L2ds


e

L̃2
2β−1 t , (2.14)

for some positive C > 0, t ∈ [0, T ) and i = 1, 2.
Therefore, relations (2.13) and (2.14) lead to

∥Ui(t)∥2
H1(R)

≤ C


∥U10(0)∥2

H1 + ∥U20(0)∥2
H1 +

 0

−τ

∥U10(s)∥2
H1ds


e

L̃2
2β−1 t , 0 ≤ t < T ,

i = 1, 2, for some positive C > 0. �

Proposition 2.6 now follows fromPropositions 2.7 and 2.8, and Proposition 2.5 follows immediately fromPropositions 2.4
and 2.6.

Define a weight function as

w(ξ) =


e−γ (ξ−ξ∗), for ξ < ξ∗,
1, for ξ ≥ ξ∗,

(2.15)

where γ =
c∗
2 . Next, we are going to state our main result regarding the exponential asymptotic stability of the traveling

wave solutions of system (1.1).

Theorem 2.9 (Stability). Suppose that g ∈ C3

[0, K+

], R

, |g ′(K)| < min{1, 2β−1

2 } and β > 1
2 . For a given traveling wave

solution 8(x + ct) = (φ1(x + ct), φ2(x + ct)) of (1.1) with the speed c satisfying

c > max

2(L + L1 + 1 − 2β)

c∗
, c∗


. (2.16)

If the initial perturbation is
u10(s, x) − φ1(x + cs) ∈ C


[−τ , 0];H1

w(R)

,

u20(x) − φ2(x) ∈ H1
w(R) ⊂ C(R),

wherew(x) is theweighted function given in (2.15), then there exist positive constants δ0 = δ0(β, τ , g, c) andµ = µ(β, τ , g, c)
such that, when sups∈[−τ ,0]


∥u10(s, ·) − φ1(· + cs)∥H1

w(R)


+∥u20(·)−φ2(·)∥H1

w(R) ≤ δ0, the unique solution (u1(t, x), u2(t, x))
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of the Cauchy problem (1.1) and (2.1) exists globally, and satisfies

ui(t, x) − φi(x + ct) ∈ C

[0, ∞];H1

w(R)

∩ L2


[0, +∞);H2

w(R)

, i = 1, 2

and

sup
x∈R

|ui(t, x) − φi(x + ct)| ≤ Ce−µt , t ≥ 0, i = 1, 2.

3. Proof of main result

This section is devoted to the proof of the stability result, i.e., Theorem 2.9, by means of the weighted energy method.
Let (u1(t, x), u2(t, x)) be the solution of the Cauchy problem (1.1), (1.2) and (2.1), and (φ1(x+ ct), φ2(x+ ct)) be a given

traveling wave solution of (1.1). Let ξ := x + ct andVi(t, ξ) = ui(t, x) − φi(ξ), i = 1, 2,
V10(s, ξ) = u10(s, x) − φ1(x + cs), (s, x) ∈ [−τ , 0] × R,
V20(ξ) = u20(x) − φ2(x), x ∈ R.

(3.1)

Then the original problem (1.1) and (2.1) can be reformulated as

V1t(t, ξ) + cV1ξ (t, ξ) = V1ξξ (t, ξ) − V1(t, ξ) + V2(t, ξ) (3.2)

V2t(t, ξ) + cV2ξ (t, ξ) + βV2(t, ξ) − g ′ (φ1(ξ − cτ)) V1(t − τ , ξ − cτ) = Q (t − τ , ξ − cτ) (3.3)

with the initial conditions
V1(s, ξ) = V10(s, ξ), (s, ξ) ∈ [−τ , 0] × R,
V2(0, ξ) = V20(ξ), ξ ∈ R,

(3.4)

where

Q (t − τ , ξ − cτ) = g (φ1(ξ − cτ) + V1(t − τ , ξ − cτ)) − g (φ1(ξ − cτ)) − g ′ (φ1(ξ − cτ)) V1(t − τ , ξ − cτ).

Therefore, Theorem 2.9 is equivalent to the following result.

Theorem 3.1. Suppose that g ∈ C3

[0, K+

], R

, β > 1

2 , |g
′(K)| < min{1, 2β−1

2 }. For a given traveling wave solution
(φ1(ξ), φ2(ξ)) of (1.1) with the speed c satisfying (2.16). If

V10(s, x) − φ1(x + cs) ∈ C

[−τ , 0];H1

w(R)

,

V20(x) − φ2(x) ∈ H1
w(R) ⊂ C(R),

wherew(x) is theweighted function given in (2.15), then there exist positive constants δ0 = δ0(β, τ , g, c) andµ = µ(β, τ , g, c)
such that, when sups∈[−τ ,0]


∥V10(s, ·)∥H1

w(R)


+ ∥V20(·)∥H1

w(R) ≤ δ0, the unique solution V(t, ξ) = (V1(t, ξ), V2(t, ξ)) of the
Cauchy problem (3.2)–(3.4) exists globally, and satisfies

Vi(t, ξ) ∈ C

[0, ∞];H1

w(R)

∩ L2


[0, +∞);H2

w(R)

, i = 1, 2

and

sup
x∈R

|Vi(t, ξ)| ≤ Ce−µt , t ≥ 0, i = 1, 2. (3.5)

Let

X(r − τ , r + T ) =

(V1, V2)|V2 ∈ C


[r, r + T ];H1

w(R)

∩ L2


[r, r + T ];H2

w(R)

,

V1 ∈ C

[r − τ , r + T ];H1

w(R)

∩ L2


[r − τ , r + T ];H2

w(R)


and

Mr(T ) := max


sup
t∈[r−τ ,r]

∥V1(t)∥H1
w
, sup

t∈[r,r+T ]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2


,

where τ ≥ 0 and T > 0. When r = 0, we denoteM(T ) = M0(T ). For simplicity, in what follows, we denote Vi(t) = Vi(t, ·).
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With the help of the continuity argument, the proof of Theorem 3.1 depends on the following two results about local
estimate of solutions and a prior estimate.

Proposition 3.2 (Local Estimate). Consider the Cauchy problem with the initial time r ≥ 0,
V1t(t, ξ) + cV1ξ (t, ξ) = V1ξξ (t, ξ) − V1(t, ξ) + V2(t, ξ),
V2t(t, ξ) + cV2ξ (t, ξ) + βV2(t, ξ)

− g ′ (φ1(ξ − cτ)) V1(t − τ , ξ − cτ) = Q (t − τ , ξ − cτ), (t, ξ) ∈ [r, +∞) × R
V10(s, ξ) = u10(s, ξ) − φ1(ξ − cs) := V1r(s, ξ), (s, ξ) ∈ [r − τ , r] × R,
V20(ξ) = u20(ξ) − φ2(ξ) := V2r(0, ξ), ξ ∈ R.

(3.6)

If V1r(s, ξ) ∈ H1
w(R), s ∈ [−τ , 0], V2r(0, ξ) ∈ H1

w(R) and Mr(0) ≤ δ1 for a given constant δ1 > 0, then there exists
t0 = t0(δ1) > 0 such that V(t, ξ) ∈ X(r − τ , r + t0) and Mr(t0) ≤

√
2(1 + τ)Mr(0).

The proof can also be derived from an elementary energy method and a standard method, so we omit it here.

Proposition 3.3 (A Prior Estimate). Let V(t, ξ) = (V1(t, ξ), V2(t, ξ)) be a local solution of the Cauchy problem (3.2)–(3.4),
where V(t, ξ) ∈ X(−τ , T ), i = 1, 2. Then there exist positive constants µ, δ2 and C7 > 0 independent of T > 0 such that, if
M(T ) ≤ δ2, then for 0 ≤ t ≤ T , i = 1, 2,

e2µt


2

i=1

∥Vi(t)∥2
H1

w


+

 t

0
e2µs

∥V1(s)∥2
H1

w
ds ≤ C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds


(3.7)

and

2
i=1

∥Vi(t)∥2
H1

w
≤ C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds

e−2µt . (3.8)

In order to obtain the prior estimate (Proposition 3.3), we make an extension for the function g as follows:

ḡ(u) =


g(0) + g ′(0)u +

g ′′(0)
2!

u2
+

g ′′′(0)
3!

u3, u ∈ [−σK+, 0)

g(u), u ∈ [0, K+
]

g(K+) + g ′(K+)(u − K+) +
g ′′(K+)

2!
(u − K+)2 +

g ′′′(K+)

3!
(u − K+)3, u ∈ (K+, (σ + 1)K+

],

where σ ≥ 1 is any fixed constant and K+ > 0 is defined in (C2).
Define

B+

µ,w(ξ) = −c
w′(ξ)

w(ξ)
+ 1 − 2µ −


w′(ξ)

w(ξ)

2

− e2µτ w(ξ + cτ)

w(ξ)
|g ′(φ1(ξ))|, (3.9)

B−

µ,w(ξ) = −c
w′(ξ)

w(ξ)
+ 2β − 2µ − 1 − |g ′(φ1(ξ − cτ))|, (3.10)

B̄+

µ,w(ξ) = B+

µ,w(ξ) (3.11)

B̄−

µ,w(ξ) = B−

µ,w(ξ) − |g ′′(φ1(ξ − cτ))φ′

1(ξ − cτ)| (3.12)

and

C+

1 (µ) =
1
4
cc∗ + 1 − 2µ − Le2µτ , C+

2 (µ) =
1 − |g ′(K)|

2
− 2µ − L


e2µτ

− 1

,

C−

1 (µ) =
1
2
cc∗ + 2β − 1 − L − 2µ, C−

2 (µ) =
2β − 1

2
− |g ′(K)| − 2µ,

C+

3 (µ) = C+

1 (µ), C+

4 (µ) = C+

2 (µ), C−

3 (µ) = C−

1 (µ) − L1, C−

4 (µ) = C−

2 (µ).

In order to prove Proposition 3.3, we need to prove the following result. For the sake of convenience, we denote ḡ by g in
the following.

Lemma 3.4 (Key Inequality). Let w(ξ) be the weight function given in (2.15), if (2.16) holds and |g ′(K)| < min{1, 2β−1
2 }, then

for all ξ ∈ R and 0 < µ < µ0 := min

µ′

i, i = 1, 2, . . . , 8

,

B±

µ,w(ξ) > C±

0 (µ) = min

C±

1 (µ), C±

2 (µ)


> 0, (3.13)
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and

B̄±

µ,w(ξ) > C̄±

0 (µ) = min

C±

3 (µ), C±

4 (µ)


> 0, (3.14)

where µ′

i > 0 (i = 1, 2, . . . , 8) are the unique solution to the equation C±

i (µ) = 0 (i = 1, 2) and C̄±

i (µ) = 0 (i = 3, 4),
respectively.

Proof. We distinguish among two cases: (we only prove (3.13), and the proof of (3.14) is similar). First we prove B+
µ,w(ξ) >

C+

0 (µ) > 0 holds.
Case 1: ξ < ξ∗. From (2.15), we have w(ξ) = e−γ (ξ−ξ∗). Note also that w(·) is non-increasing. Thus we obtain

B+

µ,w(ξ) = −c(−γ ) + 1 − 2µ − (−γ )2 − e2µτ w(ξ + cτ)

w(ξ)
|g ′(φ1(ξ))|

≥ γ c + 1 − γ 2
− 2µ − Le2µτ

>
1
4
cc∗ + 1 − 2µ − Le2µτ

= C+

1 (µ) > 0.

Case 2: ξ ≥ ξ∗. In this case, w(ξ) = w(ξ + cτ) = 1, w′(ξ)

w(ξ)
= 0. Thus, we have

B+

µ,w(ξ) = 1 − 2µ − e2µτ
|g ′(φ1(ξ))|

= (1 − |g ′(φ1(ξ))|) − 2µ −

e2µτ

− 1

|g ′(φ1(ξ))|

> (1 − |g ′(K)| − ϵ) − 2µ − L

e2µτ

− 1


≥
1 − |g ′(K)|

2
− 2µ − L


e2µτ

− 1


= C+

2 (µ) > 0.

Let C+

0 (µ) = min

C+

1 (µ), C+

2 (µ)

, then B+

µ,w(ξ) > C+

0 (µ) > 0 holds.
Next, we prove that B−

µ,w(ξ) > C−

0 (µ) > 0 holds.
Case 1: ξ < ξ∗. Thus,

B−

µ,w(ξ) = −c(−γ ) + 2β − 2µ − 1 − |g ′(φ1(ξ − cτ))|

≥
cc∗
2

+ 2β − 1 − 2µ − L = C−

1 (µ) > 0.

Case 2: ξ ≥ ξ∗. From (2.15), we have w(ξ) = 1, w′(ξ)

w(ξ)
= 0. By Lemma 2.3, we get

B−

µ,w(ξ) = 2β − 2µ − 1 − |g ′(φ1(ξ − cτ))|

≥ 2β − 1 − |g ′(K)| −
ϵ

4
− 2µ

≥ 2β − 1 − |g ′(K)| −
2β − 1

4
− 2µ

>
2β − 1

2
− |g ′(K)| − 2µ = C−

2 (µ) > 0.

Let C−

0 (µ) = min

C−

1 (µ), C−

2 (µ)

, then B−

µ,w(ξ) > C−

0 (µ) > 0 holds too.
The proof of (3.14) is similar, so we omit it here. �

Next, we begin to prove Proposition 3.3.

Proof. Multiplying (3.2) and (3.3) by e2µtw(ξ)V1(t, ξ) and e2µtw(ξ)V2(t, ξ), respectively, we obtain
1
2
e2µtwV 2

1


t
+


1
2
cwV 2

1 − wV1V1ξ


ξ

e2µt
+ e2µtwV 2

1ξ + e2µtw′V1V1ξ

+


−

c
2


w′

w


+ 1 − µ


e2µtwV 2

1 = e2µtwV1V2, (3.15)

and 
1
2
e2µtwV 2

2


t
+


1
2
cwV 2

2


ξ

e2µt
+


−

c
2


w′

w


+ β − µ


e2µtwV 2

2

= e2µtwg ′ (φ1(ξ − cτ)) V1(t − τ , ξ − cτ)V2 + e2µtwV2Q (t − τ , ξ − cτ). (3.16)
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For (3.15), by the Cauchy–Schwarz inequality xy ≤
x2
2 +

y2

2 , we have

|e2µtw′V1ξV1| = e2µtw|V1ξ
w′

w
V1| ≤

e2µtwV 2
1ξ

2
+

1
2
e2µt


w′

w

2

wV 2
1 ,

then (3.15) is reduced to
1
2
e2µtwV 2

1


t
+


1
2
cwV 2

1 − wV1V1ξ


ξ

e2µt
+

1
2
e2µtwV 2

1ξ

+


−

c
2


w′

w


+ 1 − µ −

1
2


w′

w

2

e2µtwV 2

1 ≤ e2µtwV1V2. (3.17)

Integrating (3.17) over R × [0, t] with respect to ξ and t , we further have

e2µt
∥V1(t)∥2

L2w
+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds +

 t

0


R


−c


w′

w


+ 2 − 2µ −


w′

w

2

e2µsw(ξ)V 2

1 (s, ξ)dξds

≤ ∥V10(0)∥2
L2w

+ 2
 t

0


R
e2µsw(ξ)V1(s, ξ)V2(s, ξ)dξds. (3.18)

Again, using the Cauchy–Schwarz inequality we have

|2e2µsw(ξ)V1(s, ξ)V2(s, ξ)| ≤ e2µsw(ξ)

V 2
1 (s, ξ) + V 2

2 (s, ξ)

.

Thus, (3.18) is reduced to

e2µt
∥V1(t)∥2

L2w
+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds +

 t

0


R


−c


w′

w


+ 1 − 2µ −


w′

w

2

e2µsw(ξ)V 2

1 (s, ξ)dξds

≤ ∥V10(0)∥2
L2w

+

 t

0


R
e2µsw(ξ)V 2

1 (s, ξ)dξds +

 t

0


R
e2µsw(ξ)V 2

2 (s, ξ)dξds. (3.19)

On the other hand, integrating (3.16) over R × [0, t] with respect to ξ and t , we further have

e2µt
∥V2(t)∥2

L2w
+

 t

0


R


−c


w′

w


+ 2β − 2µ


e2µsw(ξ)V 2

2 (s, ξ)dξds

− 2
 t

0


R
e2µsw(ξ)g ′ (φ1(ξ − cτ)) V1(s − τ , ξ − cτ)V2(s, ξ)dξds

≤ ∥V20(0)∥2
L2w

+ 2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds. (3.20)

Using the Cauchy–Schwarz inequality, we obtain

|2e2µsw(ξ)g ′(φ1(ξ − cτ))V1(s − τ , ξ − cτ)V2(s, ξ)|

≤ e2µsw(ξ)g ′ (φ1(ξ − cτ))

V 2
1 (s − τ , ξ − cτ) + V 2

2 (s, ξ)

.

Thus, the third term on the left-hand-side of (3.20) is reduced to2  t

0


R
e2µsw(ξ)g ′ (φ1(ξ − cτ)) V1(s − τ , ξ − cτ)V2(s, ξ)dξds


≤

 t

0


R
e2µsw(ξ)|g ′(φ1(ξ − cτ))|V 2

1 (s − τ , ξ − cτ)dξds

+

 t

0


R
e2µsw(ξ)|g ′(φ1(ξ − cτ))|V 2

2 (s, ξ)dξds

= e2µτ

 t−τ

−τ


R
e2µsw(ξ + cτ)|g ′(φ1(ξ))|V 2

1 (s, ξ)dξds +

 t

0


R
e2µsw(ξ)|g ′(φ1(ξ − cτ))|V 2

2 (s, ξ)dξds

≤ e2µτ

 0

−τ


R
e2µsw(ξ + cτ)|g ′(φ1(ξ))|V 2

10(s, ξ)dξds

+ e2µτ

 t

0


R
e2µsw(ξ + cτ)|g ′(φ1(ξ))|V 2

1 (s, ξ)dξds +

 t

0


R
e2µsw(ξ)|g ′(φ1(ξ − cτ))|V 2

2 (s, ξ)dξds.
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Therefore, (3.20) is reduced to

e2µt
∥V2(t)∥2

L2w
+

 t

0


R


−c


w′

w


+ 2β − 2µ


e2µsw(ξ)V 2

2 (s, ξ)dξds

− e2µτ

 t

0


R
e2µsw(ξ + cτ)|g ′(φ1(ξ))|V 2

1 (s, ξ)dξds

−

 t

0


R
e2µsw(ξ)|g ′(φ1(ξ − cτ))|V 2

2 (s, ξ)dξds

= e2µτ

 0

−τ


R
e2µsw(ξ)|g ′(φ1(ξ))|

w(ξ + cτ)

w(ξ)
V 2
10(s, ξ)dξds + ∥V20(0)∥2

L2w

+ 2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds. (3.21)

Combining (3.19) and (3.21), we get

e2µt

∥V1(t)∥2

L2w
+ ∥V2(t)∥2

L2w


+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds

+

 t

0


R


−c


w′

w


+ 1 − 2µ −


w′

w

2


− e2µτ
|g ′(φ1(ξ))|

w(ξ + cτ)

w(ξ)


e2µsw(ξ)V 2

1 (s, ξ)dξds

+

 t

0


R


−c


w′

w


+ 2β − 2µ − 1


− |g ′(φ1(ξ − cτ))|


e2µsw(ξ)V 2

2 (s, ξ)dξds

≤ ∥V10(0)∥2
L2w

+ ∥V20(0)∥2
L2w

+ e2µτ

 0

−τ


R
e2µsw(ξ)|g ′(φ1(ξ))|

w(ξ + cτ)

w(ξ)
V 2
10(s, ξ)dξds

+ 2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds

≤ ∥V10(0)∥2
L2w

+ ∥V20(0)∥2
L2w

+ Le2µτ

 0

−τ


R
e2µsw(ξ)V 2

10(s, ξ)dξds

+ 2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds

i.e.

e2µt

∥V1(t)∥2

L2w
+ ∥V2(t)∥2

L2w


+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds

+

 t

0


R
e2µsB+

µ,w(ξ)w(ξ)V 2
1 (s, ξ)dξds +

 t

0


R
e2µsB−

µ,w(ξ)w(ξ)V 2
2 (s, ξ)dξds

≤ ∥V10(0)∥2
L2w

+ ∥V20(0)∥2
L2w

+ Le2µτ

 0

−τ


R
e2µsw(ξ)V 2

10(s, ξ)dξds

+ 2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds, (3.22)

where B+
µ,w(ξ) and B−

µ,w(ξ) are defined in (3.9) and (3.10), respectively. Therefore, by (3.13) in Lemma 3.4, we have

e2µt

∥V1(t)∥2

L2w
+ ∥V2(t)∥2

L2w


+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds

+ C+

0 (µ)

 t

0
e2µs

∥ ∥V1(s) ∥
2
L2w

ds + C−

0 (µ)

 t

0
e2µs

∥ ∥V2(s)∥2
L2w
ds

≤ ∥V10(0)∥2
L2w

+ ∥V20(0)∥2
L2w

+ C1

 0

−τ

e2µs
∥V10(s)∥2

L2w
ds

+ 2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds, (3.23)

where C1 = Le2µτ > 0.
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In addition, whenM(T ) < K+, by (3.24), we have

|Vi(t, ξ)| ≤ sup
ξ∈R

|Vi(t, ξ)| ≤ C2∥Vi(t, ξ)∥H1 ≤ C2∥Vi(t, ξ)∥H1
w

≤ C2M(T ) < σK+

for all t ∈ [−τ , T ]. Thus, for the nonlinearity Q (t − τ , ξ − cτ), using Taylor’s formula, we have

|Q (t − τ , ξ − cτ)| =
|g ′′(η)|

2!
V 2
1 (t − τ , ξ − cτ) ≤ L2V 2

1 (t − τ , ξ − cτ),

where η = φ1 + θV1 ∈ [−σK+, (σ + 1)K+
], θ ∈ (0, 1). By the standard Sobolev embedding inequality H1(R) ↩→ C(R)

and the modified embedding inequality H1
w(R) ↩→ H1(R) for w(ξ) > 0 defined in (2.15), we obtain

|Vi(t, ξ)| ≤ sup
ξ∈R

|Vi(t, ξ)| ≤ C2∥Vi(t, ξ)∥H1 ≤ C2∥Vi(t, ξ)∥H1
w

≤ C2M(t), (3.24)

(because
2

i=1 ∥Vi(t, ξ)∥2
H1

w
≤ M2(t) by the definition ofM(t)) where C2 > 0 is the embedding constant. Therefore

2
 t

0


R
e2µsw(ξ)V2(s, ξ)Q (s − τ , ξ − cτ)dξds


≤ 2

 t

0


R
e2µsw(ξ)|V2(s, ξ)| |Q (s − τ , ξ − cτ)|dξds

≤ 2C2L2M(t)
 t

0


R
e2µsw(ξ)V 2

1 (s − τ , ξ − cτ)dξds

= 2C2L2M(t)
 t−τ

−τ


R
w(ξ)e2µ(s+τ) w(ξ + cτ)

w(ξ)
V 2
1 (s, ξ)dξds

≤ C3M(t)
 0

−τ

e2µs
∥V10(s)∥2

L2w
ds +

 t

0
e2µs

∥V1(s)∥2
L2w
ds


, (3.25)

for some positive constant C3 > 0. Substituting (3.25) into (3.23), we have

e2µt

∥V1(t)∥2

L2w
+ ∥V2(t)∥2

L2w


+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds

+

C+

0 (µ) − C3M(t)
  t

0
e2µs

∥ ∥V1(s) ∥
2
L2w

ds + C−

0 (µ)

 t

0
e2µs

∥ ∥V2(s)∥2
L2w
ds

≤ ∥V10(0)∥2
L2w

+ ∥V20(0)∥2
L2w

+ C4 [1 + M(t)]
 0

−τ

e2µs
∥V10(s)∥2

L2w
ds, (3.26)

for some positive constant C4 = max{C1, C3} > 0.
One can find a positive constant δ2 > 0 such that C+

0 (µ) − C3δ2 > 0. Clearly, δ2 depends only on β, τ , L and the wave c ,
because µ depends on these parameters. When C−

0 (µ) > 0,M(T ) ≤ δ2, i.e.

C+

0 (µ) − C3M(t) ≥ C+

0 (µ) − C3M(T ) ≥ C+

0 (µ) − C3δ2 > 0,

we have

e2µt

∥V1(t)∥2

L2w
+ ∥V2(t)∥2

L2w


+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds ≤ ∥V10(0)∥2

L2w
+ ∥V20(0)∥2

L2w
+ C5

 0

−τ

e2µs
∥V10(s)∥2

L2w
ds, (3.27)

for some positive constant C5 > 0. Therefore

e2µt
∥Vi(t)∥2

L2w
+

 t

0
e2µs

∥V1ξ (s)∥2
L2w
ds ≤ ∥V10(0)∥2

L2w
+ ∥V20(0)∥2

L2w
+ C5

 0

−τ

e2µs
∥V10(s)∥2

L2w
ds, (3.28)

for i = 1, 2.
Similarly, by differentiating (3.2)–(3.3) with respect to ξ , and multiplying the resultant equations by e2µtw(ξ)V1ξ (t, ξ),

and e2µtw(ξ)V1ξ (t, ξ), respectively, and then integrating them over R × [0, t] with respect to ξ and t , for t ≤ T , we obtain

e2µt

∥V1ξ (t)∥2

L2w
+ ∥V2ξ (t)∥2

L2w


+

 t

0
e2µs

∥V1ξξ (s)∥2
L2w
ds

+

 t

0


R
e2µsB̄+

µ,w(ξ)w(ξ)V 2
1 (s, ξ)dξds +

 t

0


R
e2µsB̄−

µ,w(ξ)w(ξ)V 2
2 (s, ξ)dξds
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≤ ∥V1ξ0(0)∥2
L2w

+ ∥V2ξ0(0)∥2
L2w

+

 0

−τ

e2µ(s+τ)
|g ′(φ1(ξ))| ∥V1ξ0(s)∥2

L2w
ds

+

 0

−τ

e2µ(s+τ)
|g ′′(φ1(ξ))φ′

1(ξ)| ∥V10(s)∥2
L2w
ds +

 t

0
e2µ(s+τ)

|g ′′(φ1(ξ))φ′

1(ξ)| ∥V1(s)∥2
L2w
ds

+ 2
 t

0


R
e2µsw(ξ)V2ξ (s, ξ)Qξ (s − τ , ξ − cτ)dξds, (3.29)

where the definitions of B̄+
µ,w(ξ) and B̄−

µ,w(ξ) can be seen in (3.11) and (3.12). Qξ (s − τ , ξ − cτ) denotes the differentiation
of Q (s − τ , ξ − cτ) with respect to ξ .

Using the same analysis as the above for the sixth item of the right-hand-side of (3.29) and combining the basic energy
estimate (3.27), we have

e2µt

∥V1ξ (t)∥2

L2w
+ ∥V2ξ (t)∥2

L2w


+

 t

0
e2µs

∥V1ξξ (s)∥2
L2w
ds

≤ C6


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds


, (3.30)

for some positive constant C6 > 0, provided thatM(T ) ≤ δ2. Here we omit the details of the proof.
Combining (3.27) and (3.30), we obtain

e2µt

∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w


+

 t

0
e2µs

∥V1ξ (s)∥2
H1

w
ds

≤ C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds


, (3.31)

for some positive constant C7 > 0, that is independent of T and Vi(t, ξ), i = 1, 2, that is to say,

e2µt


2

i=1

∥Vi(t)∥2
H1

w


+

 t

0
e2µs

∥V1ξ (s)∥2
H1

w
ds ≤ C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds


,

i.e. (3.7) holds for i = 1, 2. Then, from (3.7), we automatically reach, for 0 ≤ t ≤ T ,

2
i=1

∥Vi(t)∥2
H1

w
≤ C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds

e−2µt ,

i.e. (3.8) holds. The proof is complete. �

Finally, we prove Theorem 3.1. By Propositions 3.2 and 3.3 and the continuation argument, the proof of Theorem 3.1 is
similar to that of Mei and So [48,49]. We only show the outline here.

Proof. Let δ2, µ, C7 be positive constants in Proposition 3.3, independent of T . Set

δ1 = max


C7(1 + τ)M(0), δ2


, δ0 = min


δ2
√
2(1 + τ)

,
δ2

√
2C7(1 + τ)


, (3.32)

and

M(0) ≤ δ0 < δ2(≤δ1). (3.33)

By Proposition 3.2, there exists t0 = t0(δ1) such that V(ξ , t) ∈ X(−τ , t0) and

M(t0) ≤


2(1 + τ)M(0) ≤


2(1 + τ)δ0 ≤ δ2.

On the interval [0, t0], applying Proposition 3.3, we obtain (3.8) for t ∈ [0, t0], and

sup
t∈[0,t0]


2

i=1

∥Vi(t)∥2
H1

w

 1
2

≤ sup
t∈[0,t0]


C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds
 1

2

e−µt

≤


C7(1 + τ)M(0) ≤


C7(1 + τ)δ0 ≤

δ2
√
2(1 + τ)

. (3.34)
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Now, consider the Cauchy problem (3.6) at the initial time r = t0. Using (3.32)–(3.34), we obtain

Mt0(0) = max


sup

t∈[t0−τ ,t0]
∥V1(t)∥H1

w
, sup


∥V1(t0)∥2

H1
w

+ ∥V2(t0)∥2
H1

w

 1
2



≤ max


sup

t∈[−τ ,0]
∥V1(t)∥H1

w
, sup
t∈[0,t0]

∥V1(t)∥H1
w
, sup
t∈[0,t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2



= max


sup

t∈[−τ ,0]
∥V1(t)∥H1

w
, sup
t∈[0,t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2



≤ max

δ0,

δ2
√
2(1 + τ)


=

δ2
√
2(1 + τ)

≤ δ1. (3.35)

Applying Proposition 3.2 once more, we have V(t, ξ) ∈ X(−τ , 2t0) andMt0(t0) ≤
√
2(1 + τ)Mt0(0). On the other hand,

Mt0(0) = max


sup

t∈[t0−τ ,t0]
∥V1(t)∥H1

w
, sup


∥V1(t0)∥2

H1
w

+ ∥V2(t0)∥2
H1

w

 1
2



≤ max


sup

t∈[−τ ,0]
∥V1(t)∥H1

w
, sup
t∈[0,t0]

∥V1(t)∥H1
w
, sup
t∈[0,t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2



= max


sup

t∈[−τ ,0]
∥V1(t)∥H1

w
, sup
t∈[0,t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2



≤ max

δ0,

δ2
√
2(1 + τ)


=

δ2
√
2(1 + τ)

.

Therefore, we haveMt0(t0) ≤ δ2. Thus,

M(2t0) = max


sup

t∈[−τ ,0]
∥V1(t)∥H1

w
, sup

[0,2t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2



≤ max


sup

t∈[−τ ,0]
∥V1(t)∥H1

w
, sup

[0,t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2
, sup

[t0,2t0]


∥V1(t)∥2

H1
w

+ ∥V2(t)∥2
H1

w

 1
2



≤ max

M(0),

δ2
√
2(1 + τ)

,Mt0(t0)


≤ max

δ0,

δ2
√
2(1 + τ)

, δ2


= δ2.

We can apply Proposition 3.3 again to obtain (3.8) for 0 ≤ t ≤ 2t0 and

sup
t∈[0,2t0]


2

i=1

∥Vi(t)∥2
H1

w

 1
2

≤ sup
t∈[0,2t0]


C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds
 1

2

e−µt

≤


C7(1 + τ)M(0) ≤


C7(1 + τ)δ0 ≤

δ2
√
2(1 + τ)

.

Repeating the preceding procedure, we can prove V(t, ξ) ∈ X(−τ , ∞) and the relation (3.8) for all 0 ≤ t < ∞. Therefore,
for 0 ≤ t < ∞,

∥Vi(t)∥2
H1

w
≤ C7


∥V10(0)∥2

H1
w

+ ∥V20(0)∥2
H1

w
+

 0

−τ

∥V10(s)∥2
H1

w
ds

e−2µt . (3.36)

Also (3.5) follows from (3.36). This completes the proof of Theorem 3.1. �

4. Application

In this section, we shall apply the stability results obtained in Sections 2 and 3 to a special case, i.e. g(u) = pue−au(e <
p
β

≤ e2) in (1.1).
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We consider the following epidemic system with delay
∂

∂t
u1(t, x) =

∂2

∂x2
u1(t, x) − u1(t, x) + u2(t, x),

∂

∂t
u2(t, x) = −βu2(t, x) + pu1(t − τ , x)e−au1(t−τ ,x),

(4.1)

where e <
p
β

≤ e2 and a > 0, p > 0 are constants.
We have the following stability result.

Theorem 4.1. Assume βe < p ≤ min{βe2, βe1+
1
β , βe2−

1
2β }, β > 1

2 . For a given traveling wave solution 8(x + ct) =

(φ1(x + ct), φ2(x + ct)) of (4.1) with the speed c satisfying

c > max

c∗,
2

p +

2p2

aβe + 1 − 2β


c∗

 .

If the initial perturbation is
u10(s, x) − φ1(x + cs) ∈ C


[−τ , 0];H1

w(R)

,

u20(x) − φ2(x) ∈ H1
w(R) ⊂ C(R),

wherew(x) is theweighted function given in (2.15), then there exist positive constants δ0 = δ0(β, τ , g, c) andµ = µ(β, τ , g, c)
such that, when

sup
s∈[−τ ,0]


∥u10(s, ·) − φ1(· + cs)∥H1

w(R) + ∥u20(·) − φ2(·)∥H1
w(R)


≤ δ0,

the unique solution (u1(t, x), u2(t, x)) of the Cauchy problem (4.1) and (2.1) exists globally, and satisfies

ui(t, x) − φi(x + ct) ∈ C

[0, ∞];H1

w(R)

∩ L2


[0, +∞);H2

w(R)

, i = 1, 2

and

sup
x∈R

|ui(t, x) − φi(x + ct)| ≤ Ce−µt , t ≥ 0, i = 1, 2.

Obviously, (4.1) has two equilibria u− = (0, 0), and u+ = (K , K) = ( 1
a ln p

β
, 1

a ln p
β
). Moreover, it is easy to get that

K+
=

p
aβe and K−

=
g ′(0)

β
g(K+) =

p3

aβ2e
e−

p
βe . The conditions (C1) − (C3) always hold under the holding of assumptions

βu < pue−au <
2β
a ln p

β
, u ∈ [K−, K ] and βu > pue−au >

2β
a ln p

β
, u ∈ [K , K+

]. Therefore the existence of the traveling
waves of (4.1) is guaranteed by Proposition 2.1.

In addition, it is not difficult to examine that L = maxu∈[0,K+] |g ′(u)| = g ′(0) = p,

L1 =
p

aβe
max

u∈[0,K+]

|g ′′(u)| =
p

aβe
max

u∈[0,K+]

|p(2 − au)e−au
| =

2p2

aβe
,

and

|g ′(K)| = β ln
p
β

− β < min

1,

2β − 1
2


.

Thus, the proof is similar to Theorem 2.9 (i.e. Theorem 3.1).

Remark 4.2. The global existence and uniqueness of solutions of Cauchy problem (4.1) and (2.1) are guaranteed by
Proposition 2.4.
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