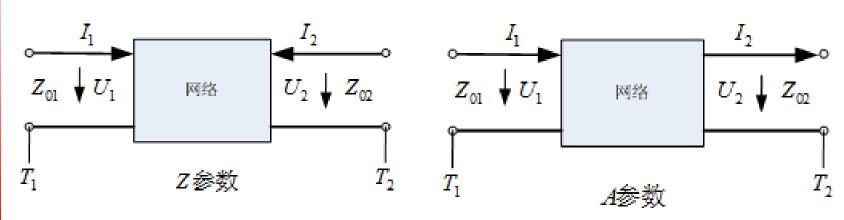


第二章 微波网络

- ♦ § 2.1 微波网络的概念
- ♦ § 2.2 二端口网络及其网络参量

3、转移参数A



用 T_2 面上的电压电流来表示 T_1 面上的电压和电流的网络方程,且规定进网络的方向为电流的正方向,出网络的方向为电流的负方向。则有

$$\begin{cases} U_{1} = A_{11}U_{2} + A_{12}I_{2} & I_{1} \\ I_{1} = A_{21}U_{2} + A_{22}I_{2} & Z_{01} & U_{1} \\ U_{1} \\ I_{1} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} U_{2} \\ I_{2} \end{bmatrix} & I_{1} \\ I_{2} \\ I_{3} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{22} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix}$$

 A_{11} 和 A_{22} 为电压、电流转移系数。

 A_{12} 和 A_{21} 为转移阻抗、导纳。

归一化转移参数A

$$\begin{split} \overline{Z}_{01} = & Z_{01} / Z_{01} = 1, \quad \tilde{U}_{1} = & U_{1} / \sqrt{Z_{01}}, \quad \tilde{I}_{1} = & I_{1} \sqrt{Z_{01}} \\ \overline{Z}_{02} = & Z_{02} / Z_{02} = 1, \quad \tilde{U}_{2} = & U_{2} / \sqrt{Z_{02}}, \quad \tilde{I}_{2} = & I_{2} \sqrt{Z_{02}} \end{split}$$

代入A参数方程得:

$$\begin{bmatrix} \tilde{U}_1 \\ \tilde{I}_1 \end{bmatrix} = \overline{A} \begin{bmatrix} \tilde{U}_2 \\ \tilde{I}_2 \end{bmatrix} \qquad \sharp + \quad \overline{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\bar{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \sqrt{\frac{Z_{02}}{Z_{01}}} & \frac{A_{12}}{\sqrt{Z_{01}Z_{02}}} \\ A_{21} \sqrt{Z_{01}Z_{02}} & A_{22} \sqrt{\frac{Z_{01}}{Z_{02}}} \end{bmatrix}$$

A参数和 Z参数关系

$$\begin{cases} U_1 = \frac{A_{11}}{A_{21}}I_1 + \frac{\det A}{A_{21}}(-I_2) = Z_{11}I_1 + Z_{12}(-I_2) \\ U_2 = \frac{1}{A_{21}}I_1 + \frac{A_{22}}{A_{21}}(-I_2) = Z_{21}I_1 + Z_{22}(-I_2) \end{cases}$$

故有:

- 1、对于无耗网络
 - Z_{ij} 为纯虚数, A_{12} 、 A_{21} 为虚数, A_{11} 、 A_{22} 为实数
- 2、对于互易网络

$$Z_{21} = Z_{12}$$
, deltA = 1

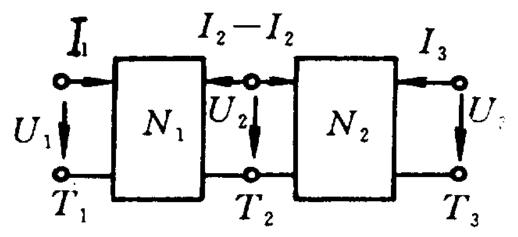
3、对于对称网络

在微波电路中经常会遇到由多个二端口网络的级联。例如,在滤波器阻抗变换器和分支定向耦合器等元件中经常会碰到。为了要解决几个网络的级联的问题,常应用[A]矩阵。

当网络N₁和网络N₂相级联时,并设各参考面上电压电流及其方向如下图所示,则网络N₁和N₂的转移矩阵分别为

$$\begin{bmatrix} U_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}_1 \begin{bmatrix} U_2 \\ -I_2 \end{bmatrix} \qquad \begin{bmatrix} U_2 \\ -I_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}_2 \begin{bmatrix} U_3 \\ -I_3 \end{bmatrix}$$

$$\begin{bmatrix} U_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}_1 \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}_2 \begin{bmatrix} U_3 \\ -I_3 \end{bmatrix}$$



级联后A参数为:

$$A = A_1 A_2 = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}_1 \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}_2$$

推广到多级级联:

$$A_{\stackrel{.}{\bowtie}} = \prod_{i=1}^n A_i$$

由于A参数方程为:

$$\begin{cases} U_1 = A_{11}U_2 - A_{12}I_2 \\ I_1 = A_{21}U_2 - A_{22}I_2 \end{cases}$$

所以求阻抗很方便:

$$Z_{in} = \frac{U_1}{I_1} = \frac{A_{11}U_2 - A_{12}I_2}{A_{21}U_2 - A_{22}I_2} = \frac{A_{11}Z_L - A_{12}}{A_{21}Z_L - A_{22}}$$

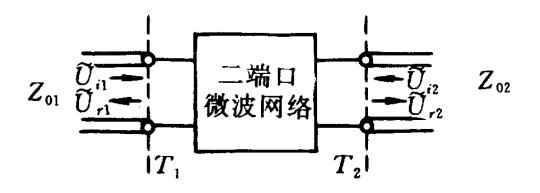
归一化:

$$\tilde{Z}_{in} = \frac{\tilde{U}_{1}}{\tilde{I}_{1}} = \frac{a_{11}\bar{Z}_{L} - a_{12}}{a_{21}\bar{Z}_{L} - a_{22}}$$

上面我们由参考面上的电压和电流之间的关系,定义了阻抗导纳和转移参量。实际上,在微波波段运用这些参量不太方便,一方面因为没有恒定的微波电压源和电流源,另一方面不容易得到理想的短路或开路终端。

1. 散射参量

规定二端口网络参考面T₁和T₂面上的归一化入射波电压的正方向是进网络的,归一化反射波的正方向是出网络的,如下图所示。应用叠加原理,可以写出用两个参考面上的入射波电压来表示两个参考面上的反射波电压的网络方程为:



$$\begin{cases} \tilde{U}_{r1} = S_{11}\tilde{U}_{i1} + S_{12}\tilde{U}_{i2} \\ \tilde{U}_{r2} = S_{21}\tilde{U}_{i1} + S_{22}\tilde{U}_{i2} \end{cases}$$

----用入射表示反射

写成矩阵形式:

$$\begin{bmatrix} \tilde{U}_{r1} \\ \tilde{U}_{r2} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} \tilde{U}_{i1} \\ \tilde{U}_{i2} \end{bmatrix}$$
$$\begin{bmatrix} \tilde{U}_{r} \end{bmatrix} = \begin{bmatrix} S \end{bmatrix} \begin{bmatrix} \tilde{U}_{i} \end{bmatrix}$$

$$ilde{U}_k = rac{U_k}{\sqrt{Z_{0k}}} = ilde{U}_{ik} + ilde{U}_{rk} \ ilde{I}_k = I_k \sqrt{Z_{0k}} = ilde{U}_{ik} - ilde{U}_{rk}$$

解方程可得:
$$\tilde{U}_{ik} = \frac{1}{2}(\tilde{U}_k + \tilde{I}_k)$$
 写成矩阵: $\tilde{U}_i = \frac{1}{2}(\tilde{U} + \tilde{I})$

$$\tilde{U}_i = \frac{1}{2}(\tilde{U} + \tilde{I})$$

$$\tilde{U}_{rk} = \frac{1}{2} (\tilde{U}_k - \tilde{I}_k)$$

$$\tilde{U}_r = \frac{1}{2}(\tilde{U} - \tilde{I})$$

若 \tilde{U}_{ι} 和 \tilde{I}_{ι} 是线性关系,且 $\tilde{U}_{\iota}=\bar{Z}\tilde{I}_{\iota}$

$$\tilde{U}_r = (\overline{Z}-1) (\overline{Z}+1)^{-1} \tilde{U}_i$$
 $\vec{\Sigma}$ $\tilde{U}_r = S \tilde{U}_i$

$$\tilde{U}_r = S\tilde{U}_i$$

其中

$$S = (\overline{Z}-1) (\overline{Z}+1)^{-1} = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{bmatrix}$$
 ---散射矩阵

1、单端口网络:

$$S_{11} = \frac{\tilde{U}_{r1}}{\tilde{U}_{i1}} = \Gamma_1$$

即为端口的反射系数。

2、两端口网络:

$$\begin{cases} \tilde{U}_{r1} = S_{11} \tilde{U}_{i1} + S_{12} \tilde{U}_{i2} \\ \tilde{U}_{r2} = S_{21} \tilde{U}_{i1} + S_{22} \tilde{U}_{i2} \end{cases}$$

S₁₁和S₂₂是反射系数, S₁₂和S₂₁是电压传输系数。

3、多端口网络:

 S_{kk} 是反射系数, S_{ln} 是电压传输系数。

S参数的性质

1、互易性及对称性

若阻抗参数互易则 $\bar{Z}^T=\bar{Z}$,根据S参数和Z参数的关系,可得:

$$S^{T} = \left(\overline{Z} + 1\right)^{-1} \left(\overline{Z} - 1\right)$$

利用恒等式
$$\bar{Z}^2$$
-1= $(\bar{Z}+1)(\bar{Z}-1)=(\bar{Z}-1)(\bar{Z}+1)$

$$(\bar{Z}-1)(\bar{Z}+1)^{-1}=(\bar{Z}+1)^{-1}(\bar{Z}-1)$$

即:

$$S^T = S$$

若网络端口k和端口l对称,则:

$$S_{kk} = S_{ll}$$
 $S_{kl} = S_{lk}$

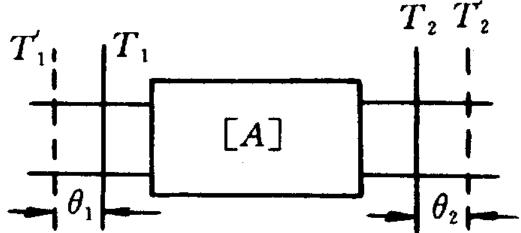
2、无耗性

$$S^TS^*=1$$
 或 $S^+S=1$

这就是无耗网络散射矩阵的性质,称为一元性或幺正性。

3、传输无耗条件下,参考面移动S参数幅值不变性 微波网络是一个分布参数系统,在传输线上移动参考面 的位置时,则各参考面上的电压和电流是不相同的,故表 征各参考面上的电压电流(或入射波和反射波电压)之间 关系的网络参量也随参考面移动而变化。这表明,一组 网络参量是对一种参考面位置而言的,参考面位置移动 后,网络参量就会改变。

对于用无耗传输线作为微波元件的连接线来说,参考面的移动使入射波和反射波的相位超前或滞后。因此,参考面的移动对于用入射波和反射波电压来表征网络特性的散射参量和传输参量的影响规律比较简单。为此我们只讨论参考面移动对S参量的影响,至于对其它网络参量的影响可根据网络参量之间的转换公式求得。



根据传输线理论可得T₁T₂和T'₁T'₂两对参考面之间入射波电压及反射波电压有如下关系:

$$egin{align} & ilde{U}_{i1}' = ilde{U}_{i1} e^{j heta_1}, & ilde{U}_{r1}' = ilde{U}_{r1} e^{-j heta_1} \ & ilde{U}_{i2}' = ilde{U}_{i2} e^{j heta_2}, & ilde{U}_{r2}' = ilde{U}_{r2} e^{-j heta_2} \ & ilde{U}_{r2}' = ilde{U$$

根据S参量的定义有

$$S'_{21} = \frac{\tilde{U}'_{r2}}{\tilde{U}'_{r1}} = \frac{\tilde{U}_{r2}e^{-j\theta_2}}{\tilde{U}_{i1}e^{j\theta_1}} = S_{21}e^{-j(\theta_2+\theta_1)}$$

$$S'_{11} = \frac{\tilde{U}'_{r1}}{\tilde{U}'_{r1}} = \frac{\tilde{U}_{r1}e^{-j\theta_1}}{\tilde{U}_{i1}e^{j\theta_1}} = S_{11}e^{-j2\theta_1}$$

$$S'_{22} = S_{22}e^{-j2\theta_1}$$

由于网络是可逆网络,故有

$$S'_{12} = S'_{21}$$

由此可得 $\begin{bmatrix} S' \end{bmatrix} = \begin{bmatrix} P \end{bmatrix} \begin{bmatrix} S \end{bmatrix} \begin{bmatrix} P \end{bmatrix}$

式中[P]为对角线矩阵,即

$$\begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} e^{-j\theta_1} & 0 \\ 0 & e^{-j\theta_2} \end{bmatrix}$$

如果新的参考面是由原参考面向网络方向移动,则 θ取负值,即 [P] 矩阵为

$$egin{bmatrix} \left[P
ight] = egin{bmatrix} e^{j heta_1} & 0 \ 0 & e^{j heta_2} \end{bmatrix}$$

由此不难得到多端口网络参考面向外移时的对

角线矩阵为

$$[P] = \begin{pmatrix} e^{-j\theta_1} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{-j\theta_n} \end{pmatrix}$$
$$[S'] = [P][S][P]$$

五、基本电路单元的参量矩阵

在微波电路中,一些复杂的网络可以分解成几个简单的网络,这些简单的网络称为基本电路单元。如果简单的电路单元的矩阵参量已知,则复杂网络的矩阵参量可以通过矩阵运算求得。在微波电路中常用的电路单元有串联阻抗、并联导纳,一段均匀传输线和理想变压器,分别如表中所示。

§ 2.2 二端口网络及其网络参量

表 基本电路单元的参量矩阵

电 路	[z]	[y]	[a]	[s]	[1]
Z_0 Z Z_0 Z_0 Z_0		$\begin{bmatrix} \frac{1}{z} & -\frac{1}{z} \\ -\frac{1}{z} & \frac{1}{z} \end{bmatrix}$	$\begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} \frac{z}{2+z} & \frac{2}{2+z} \\ \frac{2}{2+z} & \frac{z}{2+z} \end{bmatrix}$	$\begin{bmatrix} 1 + \frac{z}{2} & -\frac{z}{2} \\ \frac{z}{2} & 1 - \frac{z}{2} \end{bmatrix}$
Z_0 Y Z_0 (b)	$\begin{bmatrix} \frac{1}{y} & \frac{1}{y} \\ \frac{1}{y} & \frac{1}{y} \end{bmatrix}$		$\begin{bmatrix} 1 & 0 \\ y & 1 \end{bmatrix}$	$\begin{bmatrix} \frac{-y}{2+y} & \frac{2}{2+y} \\ \frac{2}{2+y} & \frac{-y}{2+y} \end{bmatrix}$	$\begin{bmatrix} \frac{2+y}{2} & \frac{y}{2} \\ \frac{-y}{2} & \frac{2-y}{2} \end{bmatrix}$
$ \begin{array}{cccc} & & & & & & \\ Z_0 & & Z_0 & & Z_0 & & \\ & & & & & & \\ & & & & & & \\ & & & &$	$\begin{bmatrix} -j \cot \theta & \frac{1}{j \sin \theta} \\ \frac{1}{j \sin \theta} & -j \cot \theta \end{bmatrix}$	$-j \operatorname{ctg} \theta -\frac{1}{j \sin \theta}$ $-\frac{1}{j \sin \theta} -j \operatorname{ctg} \theta$	$\begin{bmatrix} \cos \theta & j \sin \theta \\ j \sin \theta & \cos \theta \end{bmatrix}$	$\begin{bmatrix} 0 & e^{-j\theta} \\ e^{-j\theta} & 0 \end{bmatrix}$	$\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$
$Z_0 = Z_0$ $Z_0 = Z_0$ $Z_0 = Z_0$			$\begin{bmatrix} \frac{1}{n} & 0 \\ 0 & n \end{bmatrix}$	$\begin{bmatrix} \frac{1-n^2}{1+n^2} & \frac{2n}{1+n^2} \\ \frac{2n}{1+n^2} & \frac{n^2-1}{1+n^2} \end{bmatrix}$	$\begin{bmatrix} \frac{1+n^2}{2n} & \frac{1-n^2}{2n} \\ \frac{1-n^2}{2n^2} & \frac{1+n^2}{2n} \end{bmatrix}$

下面以表中(a)图所示的串联阻抗为例求它的[A]和[S]矩阵。

根据A参量的定义

$$A_{11} = \frac{U_1}{U_2} \Big|_{I_2 = 0} = 1$$

$$A_{12} = -\frac{I_1}{I_2}\Big|_{U_2=0} = Z$$

由网络的对称性,有

$$A_{11} = A_{22} = 1$$

由网络的互易特性,即 $A_{11}A_{22}A_{12}A_{21}=1$,有

$$A_{21} = \frac{A_{11}A_{22} - 1}{A_{12}} = 0$$

因此串联阻抗的 [A] 矩阵为

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix}$$

这里 [A] 是非归一化矩阵,如果两端口所接的阻抗分别为 Z_{01} 和 Z_{02} ,则归一化 \tilde{A} 矩阵为

$$\begin{bmatrix} \tilde{A} \end{bmatrix} = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{\frac{Z_{02}}{Z_{01}}} & \frac{Z}{\sqrt{Z_{01}Z_{02}}} \\ 0 & \sqrt{\frac{Z_{01}}{Z_{02}}} \end{bmatrix}$$

如果该网络的二端口所接的传输线特性阻抗均为Zo,则

$$\begin{bmatrix} \tilde{A} \end{bmatrix} = \begin{vmatrix} 1 & \frac{Z}{Z_0} \\ 0 & 1 \end{vmatrix} = \begin{bmatrix} 1 & \tilde{Z} \\ 0 & 1 \end{bmatrix}$$

下面可根据 [A] 与 [S] 参量的转换公式以及 网络的对称性和可逆性,可求得该网络的 [S] 矩阵。

$$\begin{cases} S_{11} = \frac{\tilde{A}_{11} - \tilde{A}_{22} + \tilde{A}_{12} - \tilde{A}_{21}}{\tilde{A}_{11} + \tilde{A}_{22} + \tilde{A}_{12} + \tilde{A}_{21}} = \frac{\tilde{Z}}{\tilde{Z} + 2} \\ S_{12} = \frac{2}{\tilde{A}_{11} + \tilde{A}_{12} + \tilde{A}_{21} + \tilde{A}_{22}} = \frac{\tilde{Z}}{\tilde{Z} + 2} \\ S_{21} = S_{12} = \frac{\tilde{Z}}{\tilde{Z} + 2} \\ S_{22} = S_{11} = \frac{\tilde{Z}}{\tilde{Z} + 2} \\ [S] = \frac{1}{\tilde{Z} + 2} \begin{bmatrix} \tilde{Z} & 2 \\ 2 & \tilde{Z} \end{bmatrix} \end{cases}$$