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Abstract - To accommodate the model mismatch in clutter rate, a 
cardinality probability hypothesis density (CPHD) filter with 
unknown clutter rate has been proposed by Mahler. It has proved to 
be a promising algorithm for multi-target tracking in complex 
environment. However, in Mahler’s algorithm, the calculation of 
the number of clutters without observations is determined by the 
hybrid cardinality distribution and hybrid probability of misses, it
will cause the confusion between undetected targets and clutters. 
To solve this problem, an improved CPHD filter is proposed which 
increases an estimation of the number of targets based on the 
measurement likelihood in the process of update and then modifies 
the hybrid cardinality distribution by treating the confused targets 
as detected ones more reasonably. Simulation results show that the 
improved CPHD filter is superior to the traditional method in both 
the estimates of clutter number and target state.
Index Terms - cardinalized probability hypothesis density filter; 
unknown clutter rate; hybrid cardinality distribution; multi-target 
tracking; random finite set

I. INTRODUCTION

Uncertainties, including the number of targets, the 
association of measurements with targets and clutter rate, 
make multi-target tracking (MTT) become an urgent problem 
to be solved. Recently, some researchers have presented the 
theory of random finite sets (RFSs) [1] which treat the finite 
target sets as random finite sets and in which the number of 
random variables is a discrete random variable. On the basis 
of RFSs, probability hypothesis density (PHD) filter [2] has
been proposed to solve the multi-target tracking problem. This
filter convert the complex arithmetic on the multi-target state 
space to a simplified solution on the single-target state space, 
and effectively solve the combinatorial problem in data 
association [3]. However, it has a disadvantage that the 
Poisson assumption for target number distribution may lead to 
an exaggerating effect of missed detection problem [4]. This 
problem has been solved by the cardinalized probability 
hypothesis density (CPHD) filter [5, 6] through the increased 
estimation of cardinality. To obtain the closed form solutions 
of PHD and CPHD, sequential Monte Carlo (SMC) [7] and 
Gaussian mixtures [8] have been used. Recent works have 
shown that the PHD/CPHD filters are promising approaches
for multi-target tracking.

In MTT environment, there is a significant source of un-
certainty, clutter, in addition to the process and measurement 
noise associated with each target. Usually, the comprehensive
information of clutter like state, number and probability of 
detection can’t be obtained directly. However, these in-
formation of clutter are extremely important in Bayesian 

multi-target filtering. Without it, PHD/CPHD filters result in 
large errors. Therefore, in order to adapt PHD/CPHD filters to 
the more complex and real tracking environment, Mahler has 
presented a CPHD filter with unknown clutter rate [9] which 
carry on the estimation to the posterior hybrid cardinality 
distribution and the number of clutters. It exhibits similar 
performance to the same error value as that for the standard 
PHD filter and has lower computational complexity than the 
standard CPHD filter. Unfortunately, that the calculation of 
the number of clutters without observations is determined by 
the hybrid cardinality distribution and hybrid probability of 
missing detection which are composed of information of 
target and clutter, it will cause the confusion between
undetected targets and clutters.

To solve this problem, an improved CPHD filter with un-
known clutter rate is proposed in this paper. We increase an 
estimation of the number of target based on the measurement 
likelihood in the process of update. By defining the difference
between the estimations in continuous two scans as the 
number of confusion, we treat the confused targets as detected 
ones and modify the hybrid cardinality distribution. 
Simulation results show that the proposed algorithm is 
superior to the traditional method in both the aspects of clutter 
number estimate and target state estimate.

The remainder of the paper is organized as follows. First 
of all, we present the PHD algorithm as Background 
knowledge in Section 2. Then, a brief introduction to the 
CPHD filter with unknown clutter rate is presented in Section 
3. Section 4 discusses the major problem in the CPHD tracker 
with unknown clutter rate and presents the improved CPHD 
filter with unknown clutter rate. Simulation results are
presented in Section 5. Finally, some conclusions are provided 
in Section 6.

II. PHD ALGORITHM

The PHD filter was proposed in [2] as a first-order multi-
target moments approximation to the Bayes recursion (1) and 
(2).
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Let 1k kv � and kv denote the intensities associated with the 

predicted and posterior multi-target state, then the PHD 
recursion is 
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Where , ( )S kp 
 is the probability of target 

existence, 1( )k kf � 
 
 is the single-target transition density, 

( )k� 
 is the intensity of target births, ( )kg 
 
 is the 

measurement likelihood, , ( )D kp x is the probability of target 

detection and ( )k z
 is the intensity of clutter. As (3) and (4), 
the PHD algorithm propagates the posterior intensity of the 
RFS of targets in time and does not require any data 
association computations.

III. CPHD FILTER WITH UNKNOWN CLUTTER RATE

A. Hybrid Random Finite Sets

Let (1)� denote the state space of targets, (0)� denote the 
state space of clutters. Define the hybrid state space

(1) (0)� � �� ���                                 (5)
where � denotes a disjoint union. It’s noteworthy that a 
superscript (1) is used to denote functions or variables 
pertaining to actual targets, while a superscript (0) is used to 
denote functions or variables on the space of clutters. And for 
any space � , let ( )�� denote the set of all finite subsets of
� . At time k, the multi-target state evolves to ( )kX ���� ��� and 
is given by 

(1) (0)
k k kX X X� ���                           (6)

where (1) (1)( )kX ��� and (0) (0)( )kX ��� . The actual multi-
target state and clutter multi-target state at time k are stated as 
follows.

(1)
1 1

(1) (1) (1)
1 k1( )

k k

k kk k
x X

X S x
� �

��
�

� ���               (7)

(0)
1 1

(0) (0) (0)
1 k1( )

k k

k kk k
c X

X S c
� �

��
�

� ���              (8)

where (1)
11( )kk kS x �� is the RFS of targets that have survived at 

scan k from multi-target state (1)
1kX � , (1)

k� is the RFS of targets 

that appear spontaneously at scan k , (0)
11( )kk kS c �� is the RFS 

of clutters that have survived at scan k from multi-target state
(0)

1kX � , (0)
k� is the RFS of targets that appear spontaneously at 

scan k.
The multi-target measurement kZ is modeled by RFS,

(1) (1) (0) (0)( ) ( )k k k k kZ D X D X� �               (9)

where (1) (1)( )k kD X denotes measures produced by actual 

targets, (0) (0)( )k kD X denotes measures produced by clutters.

B. The Gaussian Mixture CPHD Recursion

The CPHD filter with unknown clutter rate propagates 
three parameters: the posterior intensity ( )kv 
�� , posterior 

hybrid cardinality distribution ( )k� 
�� and the number of 

clutter (0)
kN . The steps of prediction and update are described

as follows.
Prediction: At time k-1, suppose the posterior intensity 

for targets (1)
1kv � is a Gaussian mixture of the form

1
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given the posterior mean number of clutters (0)

1kN � , and the 

posterior hybrid cardinality distribution 1k� ��� . Then at time k, 
the prediction of them is presented as follow.
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and (1)
k� denotes the posterior intensity for birth targets, (1)

,S kp
and (0)

,S kp denote the survival probability of target and clutter,

respectively. 
1

(1) ( )
k k

f
�


 
 denotes the transition density of targets;
(0)

,kN� denotes the number of birth clutter; ,k���� denotes the 

posterior cardinality distribution of birth hybrid; � denotes 
the hybrid probability of survival; ,� 
 
 � denotes the inner 
product.

Update: Suppose the predicted intensity for targets
(1)

1( )k kv x� is a Gaussian mixture of the form

1
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1
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For a given measurement set kZ , ( )kg 
 
 denotes the 

single target measurement likelihood. (1)
,D kp and (0)

,D kp denote 
the detection probability of target and clutter, respectively. 

( )k� 
� denotes the spatial likelihood. Updates of (1)
1( )k kv � 
 , 

(0)
1k kN �

and 1( )k k� � 
�� are stated as follows:
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where � denotes the hybrid probability of miss. In the CPHD 
filter with unknown clutter rate, compared with the standard 
CPHD, the estimation of number of clutter is added in the 
process of recursion, which is composed of the part of 
detection and that of missing detection, and the estimation of 
cardinality of target is changed into the estimation of 
cardinality of entirety. Also the estimation of number of target 
is added, which is obtained by the hybrid cardinality 
distribution and the number of clutter. As these estimations
are introduced, the algorithm can solve the problem of 
unknown clutter rate.

IV. IMPROVED CPHD FILTER WITH UNKNOWN CLUTTER RATE

A. The problem of confusion

Because the number of undetected clutter in the CPHD 
filter with unknown clutter rate is decided by both the hybrid 
probability of misses and the hybrid cardinality distribution, 
instead of the probability of undetected clutter, the hybrid 
probability of misses will influence the accuracy of the 
estimation to the number of target.

In the actual circumstances, target and clutter have 
different detection probabilities for their different 

characteristics. Generally, the detection probability of target is 
larger than that of clutter. Therefore, besides the considerable 
gap between the number of target and clutter, the hybrid 
probability of missing detection (Eq. 18) is almost equal to the 
miss probability of clutter (Eq. 20). It results in that the 
entirety which is composed of targets and clutters is treated as 
clutters only in the recursion calculation based on the hybrid 
probability of misses. In other words, the missing target is 
regarded unreasonably as the missing clutter. On the contrary, 
if the hybrid probability of misses is almost equal to 
probability of misses of target, the missing clutter will be 
regarded falsely as the missing target. Of cause, it will seldom 
take place actually.

To solve the problem of confusion between missing 
detected target and clutter, we present an improved CPHD 
filter with unknown clutter rate here.

B. Improved method

The step of prediction is same with the original algorithm 

and no longer repeated here. The step of update is revised as 

follows.

Update: Besides for updates of (1)
1( )k kv � 
 , (0)

1k kN �
and

1( )k k� � 
�� , we increase an estimation to the number of target 

based on the measurement likelihood. Compared with that in 
the previous scan, the difference is defined as ,c kN in (26). 
We call it number of confusion. On the bases of the number of 
confusion, we modify the hybrid cardinality distribution in the 
process of recursion.
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where
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The equation (24) is the estimation to the number of 
target, which is approximately equal to the number of detected 
target. 

As seen in the equation (26), if the estimation to the 
number of target in previous scan is larger than that in current 
scan, as , 1 , 0E k E kN N� � � , the missing detected targets will 
be unreasonably regarded as the missing detected clutters in 
the CPHD filter with unknown clutter rate. It is necessary to 
amend this mistake. By defining the difference between the 
estimations in continuous two scans as the number of 
confusion, we can treat the confused targets as detected ones
and modify the hybrid cardinality distribution in equation 
(25). On the other hand, the undetected clutters will be 
regarded as the undetected targets for , 1 , 0E k E kN N� � � . 
While the same result will appear when new target birth or 
inaccurate measurements are got, we do not make any change.

It is noteworthy that we hardly change the estimated 
number of entirety, although we modify the equation (17). 
This is because we only solve the confusion problem of 
undetected part.

V. SIMULATION RESULTS

Consider a three target scenario on the region [0,2000]m
� [0,2000]m. Targets move with constant velocity as shown in 
Fig.1. The sampling period is T=1s, and the target dynamic 
equation is described as

1k k kx Fx w�� 	

where state , , , ,, , ,k x k y k x k y kx � � � ��  � ! "
� � consists of the 

position and the velocity of a moving target at scan k, and
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where nI denotes the n n� identity matrices, 21v ms% �� is 
the standard deviation of the process noise.

Fig.1 Tracks in x-y plane. Start/Stop position for each track are shown with 
circular/triangle.

For simplicity, we assume that the target position can be 
observed, and that the measurement equation is described as

k k kz Hx v� 	

where 1 0 0 0
0 0 1 0

H �  
� # $

! "
, 2

2R I&%� and 4&% � is the 

standard deviation of the measurement noise.
The following parameters are used. The birth RFS is the 

Poisson distribution with intensity 
3

1

( ) 0.9 ( ; , )i
k

i

x x m� ��
�

�� P�

Where

' (1 500,1800,10,-60m�
)�

' (2 200,1600,40,-30m�
)�

' (3 700,1700,30,-50m�
)�

and ([100,100,100,100])diag� �P . The survival probability 
for actual targets is (1)

, 0.99S kp � . The detection probability for 
measurements is (1)

, 0.99D kp � . For the clutter model, the 

number of clutter is (0) 10kN � , the detection probability for 
measurements is (0)

, 0.5D kp � and the births is (0)
, 1kN� � while 

deaths are given by the survival probability of (0)
, 0.9S kp � .

Pruning and merging is used at each scan with the weight 
threshold 610T �� and the merging threshold 4U m� . The 
maximum number of targets is

max 20N � . The parameters of 
the OSPA distance are set to be 2p � and 70c m� . To 
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evaluate the average performance, 100 Monte Carlo (MC) 
trials are performed.

The average number of clutter is shown in Fig. 2. As seen
in the figure, the proposed method is more accurate than the 
traditional one in estimating to the clutter number. The
confusion that undetected targets were regarded as undetected
clutters is modified, therefore, the number of clutter of the 
proposed method is less than or equal to that of the traditional 
method.

Fig.2 The average number of clutter.

Fig. 3 The average number of entirety.

The number of target is obtained by the number of entirety 
minus the number of clutter. The average number of entirety 
and target are shown in Fig. 3 and Fig. 4, respectively.

Fig. 4 The average number of target

Fig. 5 The average OSPA distance.
As seen in Fig. 3, we solve the confusion problem of 

undetected part but not change the estimated number of 
entirety. Consequently, the number of entirety of the proposed 
method is almost same with that of traditional method. A
slight error is occurred only when target disappears, since it is 
impossible to distinguish whether target has disappeared or 
been missing detected. Therefore, the tracking performance 
will become worse when targets appearance and dis-
appearance very frequently, we should avoid it as far as 
possible.

Because the estimation of clutter number is more 
accurate and the estimation of entirety number is unchanged, 
the number of target of proposed method is more accurate 
than that of traditional method as seen in Fig. 4. The average 
OSPA distance is shown in Fig. 5. The error of proposed 
method is smaller than that of traditional method.

VI. CONCLUSIONS

To solve the confusion problem in Mahler’s CPHD filter 
with unknown clutter rate, an improved algorithm is proposed 
in this paper, which increases an estimation of the number of 
targets based on the measurement likelihood and then 
compares with the estimation in previous scan to modify the 
hybrid cardinality distribution by treating the confused targets 
as detected ones more reasonably. Simulation results show 
that the proposed method is superior to the traditional method 
in both the estimates of clutter number and target state. In the 
future, more uncertainties, such as the unknown probability of 
detection, should be taken into account to make the CPHD 
algorithm more adapted to the reality application.
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