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The modified input estimation (MIE) has been introduced recently and it provides fast initial 
convergence rate as well as satisfactory tracking performance in low and medium maneuvering target 
cases. Unfortunately, it fails to track a high maneuvering target accurately due to modeling errors 
relating to the target acceleration dynamics. In this paper, an improvement on the MIE is proposed for 
maneuvering target tracking. With the advantage of reduced sensitivity to modeling errors, a set of 
fading memory is selected to indicate different maneuver levels. The proposed method jumps between 
these different fading memories according to a Markov chain. Therefore, it can assign different fading 
memories different weights in different stages of the target motion to compensate for the influence of 
model errors. Experimental results show that the proposed method has more efficiency in tracking a 
maneuvering target than the MIE with conventional fading memory and the simple MIE. 
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INTRODUCTION 
 
Target maneuvers, referring to unpredictable changes in 
target motion, may cause serious inaccuracies in 
modeling the system. A Kalman filter using a single state 
space model is restricted in accuracy of the estimate. To 
solve this problem, the multiple model (MM) algorithm 
was introduced. The MM adaptive estimation approach is 
based on the fact that the behavior of a target cannot be 
characterized at all times by a single model, but a finite 
number of models can adequately describe its behavior 
in different regimes (Mazor et al., 1998). In this algorithm, 
each model characterizes a specific motion of a target, 
which makes it possible to describe the whole motion. 
Blom and Bar-Shalom (1988) proposed a safe adaptation 
or “soft switching” approach, interacting multiple model 
(IMM). Using this technique, problems relating to 
identification - based adaptation are substantially 
mitigated. The basic idea of the IMM algorithm is to weigh 
each mode by  probability  and  combine  these estimates  
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without hard decision (Bar-Shalom et al., 1989). 
Although, the IMM filter is efficient in tracking man-
euvering targets, it requires a priori, the suitable choice 
for modeling transition probability. Moreover, the filter 
performance may not be satisfactory under the presence 
of external inputs that comply with none of the models 
(Lee and Tahk, 1999). 

Input estimation (IE) (Chan et al., 1979; Lee and Tahk, 
1999; Whang et al., 1994) is a totally different approach 
which detects the existence of target maneuvers and 
directly estimates the magnitude of the unknown 
maneuvers from the residuals and uses the estimates to 
update the Kalman filter. Unfortunately, basic IE schemes 
need additional effort for the estimation and detection of 
acceleration, and the maneuver detection delay is 
inevitable. Among the input estimation, modified input 
estimation (MIE) has been recently proposed 
(Khaloozadeh and Karsaz, 2009). In their approach, the 
acceleration is treated as an additive input term in the 
corresponding state equation. This modeling method has 
provided a special augmentation in the state space model 
which considers both the state vector and an unknown 
acceleration vector as  a  new  augmented  state.  In  this  



 

 
 
 
 
scheme, the original state  and  acceleration  vectors  are 
estimated simultaneously with a standard Kalman filter. 
MIE provides fast initial convergence rate as well as 
satisfactory tracking performance in low and medium 
maneuvering target cases. It does not need the 
maneuver detection stage and also, it does not consume 
any time for maneuver detection. Although, the MIE is 
theoretically optimal, it fails to track a high maneuvering 
target accurately due to modeling errors relating to the 
target acceleration dynamics. 

To overcome different modeling errors, fading memory 
(Sorensen and Sacks, 1971; Statman, 1987) has been 
introduced. It can reduce sensitivity to modeling errors 
and help to reach more accuracy in tracking maneuvering 
targets. In conventional methods, the factor of the fading 
memory is determined off-line by the designers and 
remains constant in the process of filter. However, in non-
maneuvering mode, larger factor leads to larger filter gain 
which overcompensate the state of filter; in high 
maneuvering mode, smaller factor leads to smaller filter 
gain which incompletely compensate the state. To 
overcome the drawback of the conventional fading 
memory, the fuzzy fading memory was proposed (Bahari 
et al., 2009) recently. In their method, the factor of fading 
memory is determined using fuzzy logic based on the 
values of target acceleration. Although, it can intelligently 
adjust the factor and improve the efficiency of MIE, the 
fuzzy fading memory has to detect the target maneuver 
and a fuzzy set must be selected in advance. When fuzzy 
membership functions are employed for fuzzy sets, a 
threshold selected by using the prior knowledge is 
necessary. Similar improvements on MIE have been 
proposed recently (Bahari and Pariz, 2009; Beheshtipour 
and Khaloozadeh, 2009), similar to the algorithm of 
Bahari et al. (2009), but their methods have poor real-
time performances and the tracking accuracy depends on 
the fuzzy reasoning rules which have been designed off-
line. 

To solve the problems mentioned previously, this paper 
presents a novel interacting fading memory modified 
input estimation algorithm for maneuvering target tracking. 
With the advantage of reduced sensitivity to modeling 
errors, a set of fading memory is selected to indicate 
different maneuver level. The proposed method jumps 
between these different fading memories according to 
Markov chain. Therefore, it does not include any hard 
decision and the compensation to the state of filter is 
more accurate. 

 
 
MODIFIED INPUT ESTIMATION 

 
Modified input estimation (MIE) technique was proposed by 
Khaloozadeh and Karsaz (2009) in their work. In this method, the 
acceleration is treated as an additive state term in the 
corresponding state equation. It is assumed that a target moving in 
a   two-dimensional  plane  and  the  acceleration  is  treated  as  an  
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additive term.  The   kinematic   and measurement equations with 
maneuvering model are given by: 
 

( 1) ( ) ( ) ( )X n F X n C u n G w n+ = + +                                 (1) 

 
and 

 
( 1) ( 1) ( 1)z n H X n v n+ = + + +                                            (2) 

 
where the state vector at time n is 

( ) [ ( ), ( ), ( ), ( )]
T

x y
X n x n v n y n v n= ; representing the positions 

and velocities in x and y directions, ( )z n  is the measurement 

vector, ( ) [ ( ), ( )]
T

x y
u n a n a n= is the acceleration input vector. It is 

assumed that the acceleration u is a completely unknown input 
which models the target maneuvers. When there is no maneuver, u 
is 0.  

Let T denotes the time interval between two consecutive 
measurements; G, F, C and H are all functions of T, as follows: 
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Furthermore, ( )w n  and ( )v n  are assumed to be mutually 

independent and zero-mean white noise with covariance ( )Q n  and 

( )R n , respectively. 

The additive maneuver term ( )u n  is treated as a new state and 

the maneuvering model (Equation 1) can be revised to a 
nonmaneuvering model with an augmented kinematic equation as: 
 

( 1) ( )
( )

( 1) 0 ( ) 0

X n F C X n G
w n

u n I u n

+          
= +       

+           
                      (3) 

 
or 
 

( 1) ( )
Aug Aug Aug Aug Aug

X n F X n G W+ = +                             (4) 

 
The augmented measurement equation can be expressed as: 
 

( )
( 1) [ ] ( ) ( 1)

( )

X n
z n H F H C H G w n v n

u n

 
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or 
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Obviously, the augmented measurement noise 
Aug

V  is time 

correlated with the process noise 
Aug

W , while it is still a white 

process. By defining the cross-covariance 
Aug

T , one can obtain: 
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The optimal target maneuver estimator for the augmented system 
is: 
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The new Kalman gain is modified on the basis of ( )
Aug

T n  as: 
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INTERACTING FADING MEMORY MODIFIED INPUT 
ESTIMATION  
 
The MIE has ability to tracking a maneuvering target, because the 
acceleration as an unknown input is treated as a part of the state of 
the target and the original state and acceleration vectors are 
estimated simultaneously. But it would not  be  functionally accurate  

 
 
 
 
when the target begins to maneuver with high acceleration. In this 
situation, different target acceleration dynamics, including abrupt 
changes in target speed and direction were not modeled correctly 
and completely in process model of MIE.  

One successful approach to overcome this mismodeling is fading 
memory that applies an exponentially decaying weight to past 
measurements. Based on fading memory, the augmented predicted 
covariance instead of Equation 10 is: 

 
 

 

 

 2
( 1 | ) ( ) ( | ) ( ) ( ) ( ) ( )

T T

A u g A u g A u g A u g A u g A u g A u g
P n n F n P n n F n G n Q n G nα+ = +
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        (11) 

 
where α is a factor of fading memory. By choosing 1α ≥ , one can 

determine how much the filter forgets the past measurements. 

When 1α = , there is no “fading in the memory” and the gain is 

equal to the Kalman gain.  
From the view of model, a maneuver target motion can be 

described by different models. However, in MIE, the maneuver term 
is treated as a new state and any maneuvering model can be 
revised to a nonmaneuvering model; therefore, a maneuver target 
motion can be characterized as different maneuver levels. 
Maneuver level is defined as a nominal acceleration level. A low 
maneuver level represents a slow and varying acceleration and a 
high maneuver level represents an abrupt change in acceleration. 
In fact, different factor of fading memory (to simplify, call it fading 
memory directly) implies different maneuver level of the target. 

Similar to IMM, a set of fading memory is selected in advance to 
indicate different maneuver level. The proposed method jumps 
between these different fading memories according to a Markov 
chain. In this algorithm, each fading memory characterizes a 
specific maneuver level of a target, which makes it possible to 
describe the whole motion. The resulting algorithm is “decision free” 
in the sense that at each time the probabilities of each fading 
memory being the prevailing one are evaluated. 

Assuming that there is a set of fading memories, including N 

different ones used for interaction. f
M  denotes the fading 

memory set. The transition between these fading memories is 
governed by a Markov chain, characterized by the transition 

probability 
ij

p , which is selected at the beginning of the algorithm. 

The algorithm can be divided into four parts, namely, interacting, 
filtering, fading memory probability calculation and estimate 
combination. 

 
 
Interaction of the estimates 
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Filtering 

 
The jth filter is updated by MIE from Equations 8, 9, 11 and 7 using  

j
α  as the jth fading memory. 

 
 
Fading memory probability 
 
The augmented residual (innovation) is: 
 

ˆ( 1) ( 1) ( 1) ( ) ( | )
j j j j j

Aug Aug Aug Aug Aug
v n Z n H n F n X n n+ = + − +     (15) 

 
The covariance of the innovation is: 
 

( ) ( ) ( 1| ) ( ) ( )
j j j T j T j

Aug Aug Aug Aug Aug
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Likelihood of the fading memory j is: 
 

( ) [ ( );0, ( )]
j j

j Aug Aug
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Fading memory probability is: 
 

1
( ) ( )j j jn n c

c
µ = Λ                                                                 (18) 

 

where ( )
j j

j

c n c= Λ∑  is a normalizing factor. 

 
 
Combination 

 

f
j M∀ ∈ ˆ ˆ( | ) ( | ) ( )

j

Aug Aug j

j
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 ˆ ˆ( | ) { ( | ) [ ( | ) ( | )][ ( | ) ( | )] } ( )
j j j T

Aug Aug Aug Aug Aug Aug j

j
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j j j T
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       (20) 

 
As implied by the aforementioned flow of the proposed algorithm, in 
maneuvering stage, the larger factor of fading memory will acquire 
a larger probability (can be seen as a weight in fact) to compensate 
for the influence of model errors relating to the target acceleration 
dynamics; whereas, in nonmaneuvering stage, the smaller fading 
memory will acquire a larger probability to avoid overcompensating 
the state of filter. In summation, the proposed algorithm assigns 
different fading memory, different weight in different stage of the 
target motion to compensate for the influence of model errors more 
accurately.  

The main advantages of the  proposed  algorithm  are  concluded  
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as follows: 
 
1. Since the target maneuver was described by the maneuver level, 
the proposed method does not need any maneuver model which 
has to be determined in advance in the traditional methods, such as 
IMM. 
2. Since the proposed algorithm mixes the estimates from different 
fading memories instead of choosing which fading memory is true in 
each time step, it is in fact a soft switching algorithm, which does 
not include any hard decision. Therefore, it does not consume any 
time for maneuver detection.3. 

 As a maneuver target motion can be characterized as different 
maneuver levels and each fading memory implies a specific 
maneuver level of a target, the proposed method jumps between 
these different fading memories according to a Markov chain. It also 
has the advantage of being implementable without a priori 
knowledge of the maneuvering characteristics of the target. 

 
 
SIMULATION RESULTS AND ANALYSIS 
 
Here, simulations were done to verify the efficiency of the 
novel modified input estimation with interacting fading 
memory. The proposed scheme was compared with the 
MIE and the MIE with conventional fading memory 
(MIECFM) in tracking maneuvering targets. 
 
 
Example 1 
 
It is assumed that a target moves in a two-dimensional 
space. The sampling time is T=1s and the elements of 
the covariance matrices of the system and measurement 

noises are chosen as 1
ii

Q =  and 
2 2

(20)
ii

R m= , 

respectively. 
The initial state of a target is given by 

(0) [2000 180 / 0 0 / ]
T

X m m s m m s= , and the target 

moves with constant acceleration of 
2 2

( ) [9 / 9 / ]
T

u t m s m s=  for 0 13t s≤ ≤ . Then, it starts 

another higher maneuver with acceleration of 
2 2

( ) [ 20 / 20 / ]
T

u t m s m s= − −  up to the end of this 

simulation at 40t s= . The set 
f

M  is constructed by two 

fading memories, one is 
1

1α =  and the other is 
2

1.08α = . 

The initial probability of fading memory 
1

α  and 
2

α  is 0.7 

and 0.3, respectively. The transition probabilities between 
these two fading memories are taken as: 

 

0.7 0.3

0.3 0.7

 
 
 

. 

 
Figure 1 illustrates the actual target trajectory and that 
estimated by the MIE algorithm, the MIE with 
conventional fading memory (MIECFM) and the proposed 
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Figure 1. Target trajectory in Cartesian coordinates and the tracking results of the proposed 
method, MIE and MIECFM in Example 1. 

 
 
 

 
 
Figure 2. Absolute position error in X-direction. 

 
 

 

algorithm in x-y plane. The absolute tracking errors of 
position, velocity and acceleration in x direction depicted 
in Figures 2 to 4,  respectively  are  similar  to  those  in  y  

direction. Obviously, the proposed scheme has more 
efficiency in tracking a maneuvering target than the other 
two algorithms. 
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Figure 3. Absolute velocity error in X-direction. 
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Figure 4. Absolute acceleration error in X-direction. 

 
 
 
The probabilities of two different fading memories versus 

time are illustrated in Figure 5. It is seen that the 
probabilities of two different fading memories vary with 
sampling time; actually, target motion. In the beginning of 

high maneuvering stage, the fading memory 2 which is 
suitable for high maneuver level is growing to a prevailing 
one rapidly. In the following stage, since the maneuver 
level  is   decreasing  due  to  the  acceleration  remaining 
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Figure 5. Probabilities of two different fading memories versus time. 

 
 
 
Table 1. Estimation error in simulations of low, medium and high maneuvering target cases (RMSE). 
 

Maneuver 
level 

Parameter (m) 
RMSE Improvement 

Percentage to MIE 
(%) 

Improvement 
Percentage to MIECFM 

(%) 
MIE MIECFM 

Proposed 
method 

Low 
X-position 22.14 17.43 12.89 41 26 
Y-position 22.15 17.33 12.86 41 25 

       

Medium 
X-position 52.97 34.98 20.49 61 41 
Y-position 53.22 35.15 20.80 60 40 

       

High 
X-position 88.37 57.26 32.17 63 43 
Y-position 88.70 56.93 31.84 64 44 

 
 
 
constant, the probability (can be viewed as weight) of the 
fading memory 2 decreased gradually. The presented 
method has higher efficiency in tracking a maneuvering 
target than the MIE with conventional fading memory and 
the simple MIE, because of the interaction of different 
fading memories 
 
 
Example 2 

 
To evaluate the performance of tracking low, medium and 
high maneuvering target, similar simulations were pre-
formed as follows. In simulation of tracking medium 

maneuvering target, the parameters are the same as in 
Example 1.  

In tracking low and high maneuvering target, it starts 
another maneuver with same acceleration in x and y 

direction of 2
2 /m s−  and 2

40 /m s− up to the end, 

respectively. Each of the simulations was repeated 100 
times and root mean square errors (RMSE) of estimation 
were computed based on the Monte Carlo method. 
Estimation results are listed in Table 1. 

As seen in Table 1, obviously, in comparison to the 
method of intelligent fading memory based MIE (Bahari et 
al., 2009), the improvement percentages to MIE and 
MIECFM are much higher in the stage of maneuver. 



 

 
 
 
 
Conclusion 
 
An improvement on modified input estimation is 
presented in this paper. A set of fading memories which 
characterize the specific maneuver levels of a target 
make it possible to describe the whole target motion. The 
proposed method jumps between these different fading 
memories according to a Markov chain. Therefore, it has 
ability to assign different fading memory different weight 
in different stage of the target motion to compensate for 
the influence of model errors more accurately. As a soft 
switching algorithm, it does not consume any time for 
maneuver detection. Numerical examples show that the 
proposed scheme has more efficiency in tracking a 
maneuvering target than the conventional fading memory 
based MIE and the simple MIE. 
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