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Abstract: On the basis of spherical vector wave functions and coordinate 
rotation theory, the expansion of the fields of an incident Gaussian beam 
with arbitrary propagation and polarization directions in terms of spherical 
vector wave functions is investigated, and beam shape coefficients are 
derived. Using the results of electromagnetic scattering by a uniaxial 
anisotropic sphere, the analytical expressions of the radiation force and 
torque exerted on a homogeneous absorbing uniaxial anisotropic sphere by 
the arbitrary incident Gaussian beam. We numerically analyze and discuss 
the following: the effects of an anisotropic absorbing dielectric on the axial 
and transverse radiation forces exerted by an off-axis Gaussian beam on a 
uniaxial anisotropic sphere; the variations in the axial, transverse, and 

resultant radiation forces (with incident angle β and polarization angle α) 
imposed by an obliquely Gaussian beam on a uniaxial anisotropic sphere; 
and the results on the characteristics of the three components of the 
radiation forces versus the center-to-center distance between the sphere and 
beam. Selected numerically results on the radiation torque exerted on a 
stationary uniaxial anisotropic transparent or absorbing sphere by a linearly 
polarized Gaussian beam are shown, and the results are compared with 
those exerted an isotropic sphere. The accuracy of the theory and code is 
confirmed by comparing the axial radiation forces with the results obtained 
from references. 
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1. Introduction 

Since the pioneering work of Ashkin and associates [1–3], optical tweezers have attracted 
considerable attention and have been extensively applied in various fields. In principle, small 
particles (e.g., biological cells) with micrometer and sub-micrometer dimensions can be 
trapped and non-intrusively manipulated under the radiation force (RF) generated by tightly 
focused laser beams. Researchers have used various methods to compute the RF exerted on 
homogeneous isotropic spherical particles. For a particle much smaller than the incident 

wavelength ( d λ<< ), the Rayleigh regime is considered, and RF can be calculated by 

Rayleigh dipole approximation (RDA) [4, 5]. By expanding the incident field into a plane 
wave spectrum, Rohrbach et al. [6] extended the validity range of Rayleigh theory to particle 

sizes as large ~0.7λ. Conversely, for a particle much larger than the incident wavelength 

(typically / 10d λ > ), the geometrical optics regime is considered; in this case, ray optics 

theory (ROT) is a highly applicable and efficient approach to calculating RF [7–12]. For a 
particle whose size is of incident wavelength order, both RDA and ROT are inapplicable 

because diffraction phenomena cannot be neglected in this case. To cover the entire d/λ 
range, a rigorous electromagnetic theory has been developed for a spherical particle 
interacting with a laser beam. In this theory, expanding an incident beam in terms of spherical 
vector wave functions (SVWFs) is necessary. Kim and Lee [13] used the complex-source-
point method to expand the incident field components of Hermite–Gaussian laser beams, and 
calculated the optical potential well exerted on a homogeneous sphere. Using the surface 
integral method, Barton expanded the incident field components of a Gaussian beam [14] and 
studied the net RF and torque for a spherical particle [15]. Gouesbet et al. [16] proposed 
generalized Lorez-Mie theory (GLMT), which employs a set of beam shape coefficients to 
describe the incident beam [17]. Applying GLMT, Ren et al. [18, 19], Lock et al. [20], 
Nahmias et al. [21], and Martinot-Lagarde et al. [22] investigated the RF exerted on a 
spherical particle. Nahmias et al. [23] and Mao et al. [24] compared the RFs obtained by ROT 
and GLMT, and described the limitations of ROT, which confirm that GLMT is a complete 
beam-scattering theory for particles of all sizes. 

Compared with studies on RF calculations for isotropic spherical particles, those devoted 
to RF prediction for anisotropic particles are considerably rare. Anisotropic medium has 
drawn increasing attention because of their wide applicability in optical signal processing, 
and microwave engineering, and so on. In past decades, many scholars have studied the 
interaction of a plane wave with anisotropic particles [25–29], especially with uniaxial 
anisotropic spherical particles [30–33]. Researchers from our group recently studied the 
scattering characteristic of a uniaxial anisotropic sphere illuminated by on-axis, off-axis, and 
arbitrarily incident Gaussian beams, and discussed the scattered, internal, and incident fields 
[34, 35]. The RF exerted on an anisotropic sphere may represent varied properties because of 
the differences in the internal fields of anisotropic and isotropic spheres. Thus, the RF exerted 
by a focused laser beam on an anisotropic spherical particle is also a critical and interesting 
study object. The authors have recently investigated the RF exerted by an off-axis Gaussian 
beam on a uniaxial anisotropic sphere [36]. Since that a uniaxial anisotropic sphere has a 
primary optical axis, the internal and scattered fields created when the beam’s propagation 
direction is not parallel to the primary optical axis of the anisotropic sphere will be distinct 
from the fields created when the beam’s propagation direction is parallel to the primary 
optical axis. Thus, the RF exhibits different characteristics. Prediction of the RF exerted by an 
off-axis obliquely incident Gaussian beam on a uniaxial anisotropic sphere is still in its 
infancy, but is an endeavor of considerable merit. Comparing the RF, the performance the 

#166959 - $15.00 USD Received 18 Apr 2012; revised 8 Jun 2012; accepted 22 Jun 2012; published 5 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16423



radiation torque causes rotation of a particle is also very useful and interesting phenomenon. 
Chang and Lee [37] and Barton [15] studied the radiation torque exerted on an isotropic 
sphere by a linearly and circular polarized Gaussian beam. Xu [38] investigated radiation 
torque exerted on a spheroid by a Gaussian beam. Because the internal field is made up of 
two EM waves with different velocities and polarization directions, the radiation torque 
exerted on a uniaxial anisotropic sphere by an arbitrary direction incident Gaussian beam will 
be not always zero like that exerted on an isotropic sphere. Thus, it is worthy to research this 
problem which is still solved. 

In this paper, based on the GLMT [16] and coordinate rotation theory of SVWFs the field 
components of an incident Gaussian beam with arbitrary propagation and polarization 
directions are expanded in terms of SVWFs in a fixed rectangular coordinate system. 
According to the orthogonality of associated Legendre functions and trigonometric functions, 
we derive the analytical expressions of the transverse and axial RFs and radiation torque 
exerted on a uniaxial anisotropic sphere in the incident Gaussian beam. Numerical 
calculations of the radiation force and torque are carried out, and their physical interpretations 
are presented. 

In the subsequent depiction, a time dependence of the form exp(-iωt) is assumed and 

suppressed, where ω is the circular frequency. 

2. Theory 
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Fig. 1. (a) Uniaxial anisotropic sphere is illuminated by an incident Gaussian beam with 
arbitrary directions of propagation and polarization. (b) Rotation relationships of two 
coordinate system. 

Consider a homogeneous uniaxial anisotropic sphere of radius a centrally located in a 
spherical coordinate system. The primary optical axis is coincident with the z-axis. As 
Fig. 1(a) shows, the particle is obliquely illuminated by an x'-polarized Gaussian beam that 
propagates in the z'-direction in Cartesian coordinate system O'x'y'z', with the beam center 
located at O'. The coordinates of beam center O' are (x0, y0, z0) in Oxyz. Temporary coordinate 
system Ox”y”z” is established parallel to O'x'y'z' and is known as the beam system. We 
denote the propagation direction of the beam as two angles in particle coordinate system 

Oxyz; that is, incident angle β with reference to the z-axis, and polarization angle α between 
the x-axis and the propagation direction of the beam on the xoy-plane. Then, Oxyz can be 

obtained by rotating Ox”y”z” with Euler angles β and α (Fig. 1(b)). 

2.1. Description of the incident and scattered fields 

In terms of SVWFs, the incident Gaussian beam can be expanded in temporary coordinate 
system Ox”y”z” as follows [39]: 
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Here, k0 = 2π/λ and λ is a surrounding medium wavelength, µ0 denotes the permeability of 
the surrounding medium, and E0 is the amplitude of the electric field at the beam center. 

SVWFs ( ) ( , )l
mn kM r  and ( ) ( , )l

mn kN r  can be found in [34]. ,
m
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n TMg ′′  are the beam shape 

coefficients obtained by applying the local approximation of GLMT in beam system 
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In the above-mentioned equations,
0

w  is the beam waist radius, and (x0”, y0”, z0”) are the 

coordinates of beam center O′  in Ox”y”z”. According to the coordinate rotation relationship, 

(x0”, y0”, z0”) can be derived from (x0, y0, z0) by: 
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For two coordinate systems Oxyz and Ox”y”z”, with a rotation relationship determined by 

Euler angles β and α, the SVWFs have the following relationships [35, 42, 43]: 
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Coefficient ( , , )m s nρ  slightly differs from that described in [35, 42, 43] because the 

current study adopts the anti-clockwise rotation of the two coordinate systems, whereas in 

[35, 42, 43] the clockwise relationship is employed. Moreover, we use only Euler angles α 

and β to denotes that the incident direction of the Gaussian beam is arbitrary; that is, 

arbitrarily incident and polarization-oriented β and α, respectively. This depiction not only 
maintains generality, but also enables the simplification of the problem compared with the 
depiction in [35]. Substituting Eq. (6) into Eq. (1), we derive the expanded form of the 
incident field in particle coordinate system Oxyz: 
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and ( , , )s m nρ  can be obtained by interchanging m with s in Eq. (7). 

The scattered fields can be expanded with the SVWFs as follows: 
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For a uniaxial anisotropic sphere whose permittivity and permeability tensors ε  and µ  

are characterized by 
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the internal fields can be expanded in terms of the SVWFs using Fourier transform [30, 34, 
35]. Utilizing the continuity of the tangential electric and magnetic field components at r = a, 
the scattering coefficients can be obtained thus [30, 34]: 
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The solution of unknown expansion coefficient 
mn q

G ′  can be found in [35]. The expressions 

of coefficients e
mnqA , e

mnqB , e
mnqC , h

mnqA , h
mnqB , and h

mnqC  are detailed in [30]. 

2.2. Derivation of radiation force 

Assuming a steady-state condition, the RF exerted by the beam on the particle is proportional 
to the net momentum removed from the incident beam. It can be expressed as a close 
spherical surface integral surrounding particle [15]: 

 
2

2 2 2

0 0
0 0

1 1
ˆRe ( ) sin .

2 2
r r r r a

E H E H e r d d
>

 = + − +  ∫ ∫F E H
π π

ε µ ε µ θ θ φ  (15) 

where ε  and µ  are the permittivity and permeability of the surrounding medium, 

respectively. The EM fields indicate the superposition of the incident and scattered EM fields: 

,i s i s= + = +E E E H H H . 

Scattering theory indicates that for spherical particles, the axial components of the 
incident and scattering fields are very small and can be negligible in the far region. Then, the 
RF can be written as: 

 

2
* * * * * * * *
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i i i s s i s s i i i s s i s s

i i i s s i s s i i i s s inc s s

r a

E E E E E E E E E E E E E E E E

H H H H H H H H H H H H H H H H r d d
>

= − + + + + + + +

+ + + + + + + +

∫ ∫F
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θ θ θ θ θ θ θ θ φ φ φ φ φ φ φ φ

ε

µ θ θ φ

  (16) 
The numerical calculation of the surface integral of Eq. (16) can be avoided by 

substituting the series expressions for electromagnetic field components and using the 

approximate expressions of Ricatti-Bessel functions at r λ≫ : 

 1( ) ( ) exp( ),n

n
kr i ikrξ +→ −  (17) 

After substantial algebraic computation and application of the numerous recursion, product, 
and orthogonality relationships of associated Legendre functions and trigonometric functions, 
Eq. (16) can be directly integrated, and the net force on the particle can be expressed as a 
series over the expansion coefficients of the incident and scattered fields [36]: 
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where c  is the speed of light in vacuum, 
0

n  represents the refractive index of the surrounding 

medium, 2 2

0 0 0 0 0
/ (4 )P k w Eπ ωµ=  denotes the power of the incident beam. 

2.3. Derivation of radiation torque 

In view of the conservation law of angular momentum, the radiation torque exerted on a 
uniaxial anisotropic spherical particle equals the average rate at which the angular momentum 
is transported into the particle. For a steady-state scattering problem, it can be expressed as an 
integral through the spherical surface centered at the center of the uniaxial anisotropic sphere 
[15, 37, 38]: 

 
2 2* *1 1 1

ˆRe ([ ] ) ,
2 2 2S

n E H dSε µ ε µ= − ⋅ + − − ×∫T EE HH I I r
� �

�  (20) 

where n̂  is the unit vector normal to the surface; I
�

 is the unit dyad tensor; and r is the 

distance vector from the origin to the enclosing surface. If the spherical surface of radius r>a 
is chosen, then, 
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2
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π π

φ φ θ θ θ φε µ ε µ θ θ φ

  (21) 
Similarly, substituting the incident and scattered fields into the outward EM fields 

,i s i s= + = +E E E H H H , and applying the recursion and orthogonality relationships of 

associated Legendre functions and asymptotic formulae of spherical Bessel functions [37], the 
three components of the radiation torque exerted on a uniaxial anisotropic sphere can be 
derived: 
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3. Numerical calculations 

On the basis of theory developed in the preceding section, we present our numerical results. 

3.1. Validation of theory and codes 

We perform two comparisons to verify the accuracy of our theory. The scattering coefficients 
or scattered fields are calculated and compared with the results obtained from [35] to verify 
the accuracy of our results. Figure 2 shows the axial RF from our theory, compared with the 
results in [36] in which the obliquely incident Gaussian beam is reduced to an on-axis 
incident Gaussian beam. The accuracy of the results in [36] is verified by comparison with the 
experimental results otained form [7]. It can be found they are in excellent agreement, which 

confirms the validity of the theory and code in the present paper. 
0

100mWP = , and d  

denotes the distance of the sphere center from the beam center. The remaining figures possess 

similar conditions too. Moreover, the curve denoted by “w0 = 0.4 µm” indicates that the 
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uniaxial anisotropic spherical particle can be captured by a focused Gaussian beam, similar to 
an isotropic sphere. The negative RF only indicates that the direction of the RF is negative but 
does not reflect the magnitude of the RF. 
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Fig. 2. Comparison of the axial RF from the theory when the obliquely incident Gaussian beam 
is reduced to an on-axis incident Gaussian beam with the results in reference [36]. 

3.2. Effects of anisotropic absorbing dielectric 

Figures 3(a) and 3(b) shows the variations of the axial RF zF  with d  exerted on a uniaxial 

anisotropic sphere with different complex permittivity tensor elements. “A” and “B” denote 

the imaginary part of permittivity tensor elements tε  and zε , respectively. It can be found 

that the influence of the imaginary part of tε on the axial RF is more sensitive than that of the 

imaginary part of zε . The same conclusion can be obtained from wave numbers 
2 2 2 2

1,3 / (cos / sin )t t k t z kk = +ω ε µ θ µ µ θ  and 2 2 2 2
2,4 / (cos / sin )t t k t z kk = +ω ε µ θ ε ε θ  in the 

uniaxial anisotropic sphere [30]. The influence of 
t

ε  on the wave vectors in the uniaxial 

anisotropic sphere is larger than that of zε . Thus, the influence of 
t

ε  on the scattered field 

and RF may be more sensitive than that of zε . The axial RF increases with the increase of the 

imaginary part of tε  when the imaginary part of zε  is invariable. The axial RF also increases 

with the increase of the imaginary part of zε  when the imaginary part of tε  is invariable. 

When the imaginary parts of tε  and zε  do not equal zero and increase, a great deal of 

photons are absorbed, thereby rapidly strengthening the scattering force. Thus, the RF quickly 
increases, so that the particle which can be originally captured is difficult to be captured. 
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Fig. 3. Effects of absorbing electric anisotropy on axial RF exerted. (a) the imaginary part of 

tε  “A” increases. (b) the imaginary part of permittivity tensor elements zε  “B” increases. 

The effects of the absorption of electric anisotropy on the variations of transverse RF yF  

with -x0 and yF  with 0y−  exerted by an off-axis Gaussian beam on a uniaxial anisotropic 

sphere are depicted in Fig. 4. The figure also exhibits the same characteristics illustrated in 
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Fig. 3; that is, the influence of tε  on the scattered field and RF may be more sensitive than 

that of zε . When the imaginary part of tε  is large (e.g., A = 0.2 in Figs. 4(a) and 4(b)), the 

transverse RF only slightly changes provided that the imaginary part of zε  exhibits a little 

increase (e.g., B from 0.1 to 0.5 in Figs. 4(a) and 4(b)). 
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Fig. 4. (a) Effects of absorbing electric anisotropy on transverse RF Fx. (b) Effects of absorbing 
electric anisotropy on transverse RF Fy. 

It can be seen that the uniaxial anisotropic sphere can be bound in the transverse direction 
when the anisotropic dielectric sphere is lossless. When the anisotropic dielectric sphere is 
lossy, the secondary extremum of the transverse RF occurs. Moreover, the value of the 

secondary extremum increases with the increasing imaginary parts of tε  and zε , whereas the 

peak value of the transverse RF decreases with the increasing imaginary parts of tε  and zε . 

Thus, when the imaginary parts of tε  and zε  are very large, the uniaxial anisotropic sphere 

may be not bound in the transverse direction (e.g., A = 0.2 and B = 0.5; A = 0.3 and B = 1.0 

in Figs. 4(a) and 4(b)). The variations of the transverse RF xF  with -x0 and yF  with 0y−  

exerted on a uniaxial anisotropic sphere are very similar, since permittivity tensor element tε  

and permeability tensor element tµ  in the x-direction and y-direction are the same. 

3.3. Effects of incident angle and polarization angle 

Figure 5(a) shows that the three components of the RF and the resultant RF Fe change with 

incident angle β exerted on a uniaxial anisotropic sphere under only electric anisotropy. The 

resultant RF Fe is calculated by 
2 2 2

e x y zF F F F= + + . The angles are varied only from 0° to 

90° to keep the incident orientation under the xoy-plane. Transverse RF yF  equals zero 

because polarization α also equals zero. Axial RF 
z

F  exhibits its maximum value at β = 36°, 

and its minimum value at β = 90°. Note that the minimum is not zero but –0.0742 pN, which 

results from the effect of 
z

ε . This characteristic is distinct from that of an isotropic sphere. 

For an isotropic sphere illuminated by a vertical Gaussian beam, axial RF 
z

F , which is 

vertical to the propagation direction of the incident wave, is zero. In Fig. 5(a), transverse RF 

x
F  increases with increasing incident angle, and exhibits its maximum value at of β = 90°. 

The resultant RF has the maximum at β = 50°. Thus, we can conclude that the RF does not 
remain constant under different incident angles. Figure 5(b) shows the variations of the 

direction of the resultant RF Fe with the incident angle. θ  and φ  are formed by the direction 

of the resultant RF with the z-axis and x-axis, respectively. The azimuth angle is zero because 

transverse RF yF  equals zero. Both transverse RFs 
x

F  and yF  equal zero when β = 0°; in 

Fig. 5(a), therefore, the values of θ and φ  are not given when β = 0°. θ  is always smaller 
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than the incident angle of the Gaussian beam. When axial RF 
z

F  is negative, θ  is greater 

than 90°. 
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Fig. 5. RF versus the incident angle β. (1) (a) is plotted the three components of the RF and the 

resultant RF versus β; (2) (b) is plotted the direction of the resultant RF. 
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Fig. 6. RF versus the incident angle β. (1) (a) is plotted the three components of the RF and the 

resultant RF versus β; (2) (b) is plotted the direction of the resultant RF. 

Similar to Fig. 5(a), Fig. 6(a) shows the variations of the three components of the RF and 

the resultant RF Fe with incident angle β exerted on a uniaxial anisotropic sphere with both 
electric and magnetic anisotropy. The comparison of Figs. 5(a) and 6(a) shows that transverse 

RF 
x

F  and axial RF 
z

F  are considerably larger when 
t

µ  and 
z

µ  are not equal to 
0

µ  than 

those when 
0t z

µ µ µ= = . Moreover, the variations with the incident angle are also more 

complex. Under many incident angles, transverse RF 
x

F  and axial RF 
z

F  are negative. The 

variations of the direction of the resultant RF Fe with the incident angle are shown in 
Fig. 6(b). A comparison of Figs. 6(a) with 6(b) indicates that the resultant RF Fe has the 

maximum value of 3755.4 pN at β = 90°, and its orientation angle o178.135θ = . That is, the 

maximal resultant RF is very large and occurs almost along the –z-axis. These properties, 
which are distinct from those of an isotropic sphere, may pertain only to the uniaxial 
anisotropic sphere and may be applicable to non-intrusive optical detection of optics material 
through giving the particle approach the surface of optics material a force vertical to the 

surface, thereby delivering or capturing the particle. Permittivity tensor elements 
t

ε  and 
z

ε  

and permeability tensor elements 
t

µ  and 
z

µ  impose remarkable influence on the variations 

of the axial and transverse RFs with the incident angle. Thus, the differences in the 
permittivity tensor elements and permeability tensor elements may cause distinct variations of 
the RF with the incident angle. 
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Fig. 7. Variation of RF with polarization angle α for different incident angles β. (a) Transverse 
RF Fx. (b) Transverse RF Fy. (c) Axial RF Fz. 

The three RF components change with polarization angle α for different incident angles β 

exerted on a uniaxial anisotropic sphere are shown in Fig. 7. Transverse RFs xF  and yF  

equal zero when β = 0°, as expected, and they increase as a whole with increasing incident 

angle β. However, the shape of the curve exhibits little change. As polarization angle α 

increases, transverse RF xF  decreases whereas yF  increases. Transverse RFs xF  and yF  

yield maximum values at β = 0° and β = 90°, respectively, and exhibit minimum values at β = 

90° and β = 0°, respectively. That is, when the incident Gaussian beam is x-axis polarized, 
x

F  

has the maximum value but yF  equals zero; when the incident Gaussian beam is y-axis 

polarized, yF  has the maximum value but xF  equals zero. This phenomenon is highly 

reasonable. In addition, the variations of the transverse RFs xF  and yF  with the polarization 

angle are almost oppositely symmetrical. This result may be attributed to the identical 

permittivity tensor element tε  and permeability tensor element tµ  along the x-direction and 

y-direction. Figure 7(c) shows that polarization imposes a minimal effect on axial RF zF  

because the change of the polarization angle causes almost no change in scattering along the 
propagation direction of the incident Gaussian beam. Note that the value of the axial RF when 

β = 90° is not zero but –0.10202 pN. This result is similar to that shown in Figs. 7(a) and 7(c). 

TiO2, characterized by εt = 5.913ε0 and εz = 7.197ε0, is a typical uniaxial anisotropic 
medium. The transverse and axial RF exerted on a TiO2 sphere by a Gaussian beam with 
different incident angles as a function of the coordinates of beam center –x0 and –z0 are given 

in Figs. 8(a) and 8(b), respectively. Transverse RF yF  equals zero because the polarization 

equals zero (not plotted here). As incident angle β increases, axial RF Fz decreases, whereas 

transverse RF 
x

F  generally increases as a whole. When β = 0°, that is, the Gaussian beam 

propagates along the z-axis, the TiO2 sphere can be captured in the direction of the x-axis (see 

the curve denoted by “Fx(β = 0°)” in Fig. 8(a)). However, the particle will not be captured in 

the z-axis direction (refer to the curve denoted by “Fz(β = 0°)” in Fig. 8(b)) because 

permittivity tensor elements tε  and zε  are very large, while the refractive index of the 

surrounding medium is small. A small beam waist width and large refractive index of the 
surrounding medium should be selected to capture a uniaxial anisotropic sphere similar to the 

TiO2 sphere. The same conclusion is drawn in [36]. When β = 90°, that is, the Gaussian beam 
vertically illuminates the TiO2 sphere, the uniaxial anisotropic sphere can also be captured in 

the direction of the z-axis (see the curve denoted by “Fz(β = 90°)” in Fig. 8(b)); it is not 

captured in the direction of the x-axis (see the curve denoted by “Fx(β = 90°)” in Fig. 8(a)). 
When the TiO2 sphere is illuminated by an absolutely obliquely incident Gaussian beam (e.g., 

β = 45°), the TiO2 sphere is very difficult to capture in both the x-axis and z-axis directions. 
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Fig. 8. (a) Variation of RF with -x0 for different incident angle β. (b) Variation of RF with -z0 

for different incident angle β. 

3.4. Calculation and discussion of radiation torque 

In Fig. 9, x component of the radiation torque Tx is calculated when the beam center moves 
along y-axis. Here, the y and z components of the radiation torque zero due to the symmetry 

of the spherical particle, and are not plotted in Fig. 9. When εt = εz, the anisotropic sphere is 
reduced to an isotropic sphere. For lossless isotropic sphere, the x component of the radiation 
torque is always equal to zero, as it should be; while for lossless anisotropic sphere the x 
component of the radiation torque is not always equal to zero. This is because the internal 
field consists of two EM waves with different velocities and polarization directions, then the 
orbital angular momentum may be transferred to the anisotropic particle when propagation 
direction of the beam is not coincident with the primary optical axis of the anisotropic sphere. 
This radiation torque will cause the anisotropic to rotate with x-axis, thus, the primary optical 
axis will be changed so that the scattering field and radiation force will be changed. In this 
case, it may be difficult to capture the uniaxial anisotropic spherical particle in transverse 
direction. This performance on radiation force and torque is very different from that of an 
isotropic spherical particle. 
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Fig. 9. Torque about z-axis Tx versus the location of the beam center along y axis. 

For loss isotropic or anisotropic sphere, the orbital angular momentum may be transferred 
to the particle through absorption, resulting in an orbital torque. Comparing with lossless 

uniaxial anisotropic sphere, the radiation torques exerted on a positive(εt<εz) or 

negative(εt>εz) uniaxial anisotropic sphere increase in whole and are larger than those exerted 
on an lossless anisotropic sphere, and the secondary extremum is also eliminated. As the 
beam center moves away from the sphere center along y-axis, the lever-arm increases so that 
the torque increases. When the beam center locates at about the edge of the sphere, the 
radiation torque procures maxima. The position of the beam center when the maximal 
radiation torque occurs exerted on an anisotropic sphere is farther from the sphere center than 
that on an isotropic sphere. Less beam ling flux will incident on the sphere and less angular 
momentum will be transferred with the increasing of |y0|, thus the radiation torque decreases. 
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Moreover, it can be found that the radiation torques Tx for both isotropic and anisotropic 
sphere are zero, as expected. . 
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Fig. 10. Torque about y-axis Ty versus the incident angle β, the permittivity and permeability 

tensors elements are εt = εz = 2ε0, µt = µz = 1µ0 in case1; εt = 2ε0, εz = 4ε0, µt = µz = µ0 in case2; 

εt = (2 + 0.01i)ε0, εz = (4 + 0.01i)ε0, µt = µz = µ0 in case3; εt = 2ε0, εz = 4ε0, µt = 2µ0, µz = 2.8µ0 

in case4; εt = (2 + 0.01i)ε0, εz = (4 + 0.01i)ε0, µt = (2 + 0.01i)µ0, µz = (2.8 + 0.01i)µ0 in case5; εt 

= 2ε0, εz = 4ε0, µt = µz = µ0 in case6, respectively. 

Figure 10 shows the effect the incident angle β on the radiation torque. Because the 
spherical particle is illuminated by an on-axis Gaussian beam, the x and z components of the 
radiation torques are zero and not plotted in Fig. 10. When the anisotropic sphere is reduced 
to an isotropic sphere, the radiation torque is invariable and equal to zero in despite of the size 
of the incident angle (see case1). It can be observed that the negative radiation torque will 

cause the uniaxial anisotropic to rotate anticlockwise when the incident angle 0 <β<90 ; while 
the positive radiation torque will cause the uniaxial anisotropic to rotate clockwise when the 

incident angle 90 <β<180 . For the case that the sphere center and the beam center are the 

same, the distribution radiation torque is symmetrical with β = 90, and it equals zero when the 
uniaxial anisotropic sphere is vertically illuminated by a Gaussian beam resulting from the 

uniaxial anisotropic sphere is symmetrical with x-axis. For the case that z0≠0, namely, the 
sphere center and beam center are not the same, the radiation torque is not equal to zero(see 
case6) when the incident angle equals 90 resulting from that the symmetrical axis of the 
uniaxial anisotropic sphere and the propagation direction of the beam are not the same. It is 
also can be found that the radiation torque decreases in whole for loss both electrical 
anisotropic or electrical and magnetic anisotropic sphere compared with those lossless 
anisotropic sphere. It is different from that performance that the radiation torque changes with 
the location of the beam center along y-axis shown in Fig. 9. 

4. Conclusion 

The expansion expressions of an incident Gaussian beam with arbitrary propagation and 
polarization directions in terms of SVWFs in a fixed coordinate system are derived. The 
analytical expressions of the Radiation forces and torques exerted on a homogeneous 
absorbing uniaxial anisotropic sphere are obtained by the incident Gaussian beam. We 
numerically studied the following: the effects of the anisotropic absorbing dielectric on the 
variations of axial and transverse components of the RFs exerted on a uniaxial anisotropic 
sphere, as a function of the center-to-center distance between the beam and sphere; and the 
variations of the axial, transverse, and resultant RFs with the incident angle and polarization 
angle exerted by an obliquely Gaussian beam on a uniaxial anisotropic sphere. The numerical 
results exhibit some interesting phenomena, indicating that the properties of the RF exerted 
by an obliquely incident Gaussian beam on a uniaxial anisotropic sphere differ from those of 
the RF exerted on an isotropic sphere. The effects of the location of the beam center and 
incident angle on the radiation torque exerted on an transparent or absorbing uniaxial 
anisotropic sphere are numerically analyzed by a linearly polarized Gaussian beam, and the 
results are compared with those exerted on an isotropic sphere. Due to the length restriction, 
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the more cases such the effects of the polarization model of the beam, size parameter of the 
particles and so on are not discussed will be studied in our future work. The developed theory 
and numerical code presented in this paper serve as useful tools for theoretical and 
experimental studies on trapping or manipulating uniaxial anisotropic spherical particles. RFs 
exerted by an arbitrary direction incident Gaussian beam on multiple uniaxial anisotropic 
spheres will be the subject of future research. 
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