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Human activity prediction has become increasingly valuable in many applications. This paper, initially
from the perspective of cognition science, presents a novel approach to learning a hierarchical spatio-
temporal pattern of human activities to predict ongoing activities from videos that contain only the
onsets of the activities. Spatio-temporal pattern can be learned by a Hierarchical Self-Organizing Map
(HSOM), which consists of two self-organizing maps (i.e., action map and actionlet map) connected via
associative links trained by Hebbian learning. Ongoing activities can be predicted by Variable order
Markov Model (VMM), which provides the means for capturing both large and small order Markov
dependencies based on the training actionlet sequences. Experiments of the proposed method on four
challenging 3D action datasets captured by commodity depth cameras show promising results.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Human action recognition, the automatic recognition of ongo-
ing actions performed by humans, is an active research topic in
computer vision. It has a variety of real-world applications, includ-
ing video surveillance, video retrieval, and even health-care. Over
the past few decades, research has primarily concentrated on pro-
cesses of learning and recognizing actions from video sequences
[1,2]. In contrast, less attention has been paid to early detection
of unfinished activities from video streams where early prediction
of ongoing activity is extremely valuable [3]. For instance, in a
supermarket, it would be beneficial to equip a surveillance system
that can provide real-time surveillance, detect suspicious activities,
and raise the alarm for theft before it happens.

Neurobiological studies [4] have concluded that the human
brain can perceive actions by observing only a few actionlets1
and component action units obtained from temporal decomposition
during action execution. In the neuropsychological perspective, Fris-
ton [7] has linked the hierarchical theory of action with the organi-
zation of the brain and also described how action representations are
selected, maintained, and inhibited at multiple levels of abstraction
and how layers are mediated by effective connectivity.

In this vein, this paper uses a Hierarchical Self-Organizing Map
(HSOM) [8] to generate model whose structure can capture the
natural hierarchy which can be layered as actionlet and action
from a small granularity to a large, thus make it easier to compre-
hension and decomposition activities at varying levels of abstrac-
tion present in human activity. Furthermore, a worthwhile
approach is proposed to describe actions as sequences of consecu-
tive actionlets and recognize action depend on a little actionlets
extracted from the beginning of this action.

This paper proposes a novel framework, shown in Fig. 1, for
human activity recognition from partially observed videos that
use sequences of 3D skeleton joint positions as input. To obtain
meaningful action units, we first learn superior segmentation
points S ¼ fs1; . . . si; . . . ; sj; . . . ; smgð1 < i < j < mÞ to segment 3D
trajectory of an action, as shown in Fig. 2a. Then decompose action,
using motion velocities, the direction of motion, and the curvatures
of trajectories, into a sequence of actionlets, as shown in Fig. 2b.
The detailed process can be viewed clearly in our previous work
[9]. The features of actions na and actionlets nal are extracted from
these segmented trajectories. Two Self-Organizing Maps (SOMs)
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Fig. 1. The general framework of the proposed approach.
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Fig. 2. (a) The trajectory of an action of high hand wave is segmented by red stars. (b) The action high hand wave can be decomposed by five actionlets through motion
velocities, the direction of motion, and the curvatures of trajectories. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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constitute the Hierarchical SOM. na is mapped to one SOM as Tna ,
and nal is mapped to the other SOM as Tnal . Thus, numerically sim-
ilar adjacent features of actions and actionlets can be mapped to a
single representative vector m (model vector) on a SOM, which
itself is a form of clustering process. Unlike actions that have labels
(for example, high hand wave) that can be acquired from human
natural language, actionlets do not have such labels. Therefore,
Tnal can be scattered in plots named with English alphabets referred
as the labels of actionlets according to the Davies–Bouldin index
value [10], which is a good candidate for map unit clusters. The
associative weights between Tna and Tnal can be obtained through
Hebbian learning [11], which can measure the important degree
(ID) of an actionlet in each action. Thus, complex actions can be
represented by sequences of the English letters, which are seen
as context. With the help of the context and a Variable order Mar-
kov Model (VMM) [12], the probability of the next possible action-
let or the whole action can be predicted.

From the spatio-temporal perspective, an action can be charac-
terized by the spatio-temporal information of actionlets, which can
be effectively used in the learning and predicting processes. Sup-
pose an action and actionlet in context are regarded as a word
and a letter, respectively. These processes can be described as per-
son A predicting the meaning of a sentence written by person B.
For example, eat apple and eat banana represent two different
meaning of English words. When person B is writing, letters are
shown one by one, such as eat na. The word eat banana can be pre-
dicted by person A because the ID of letters a; n and e is high in
word eat banana (especially a), and the causality between na and
eat banana exists. However, if the next letter extracted is p, the
sequence of letters becomes eat nap. Thus, the word eat apple
may be predicted because the ID of letters a and p is not low in
the word eat apple and ap has more direct causality with eat apple
than eat banana.

The major contributions in this paper include: (1) HSOM is pro-
posed to systematically exhibit the intrinsic hierarchical structure
of human activity accordance with human cognition and percep-
tion from global to local as well as coarse to fine, thus making it
easier to comprehension and decomposition activities at varying
levels of abstraction present in human activity; and (2) Hebbian
learning between actions and actionlets is modeled that allows
for the representation of the important degree of actionlets in each
action.

The rest of the paper is organized as follows, Section 2 presents
the related work; Section 3 elaborates on the proposed method of
action and actionlet representation, mapping, clustering, learning
and prediction; Section 4 presents our experimental results and
discussion; and Section 5 concludes this paper.

2. Related work

Action recognition. There has been tremendous amount of
work on human action recognition from static images and 2D video
sequences. Wang et al. [13] learns multiple features from a small
number of labeled videos, and automatically utilizes data distribu-
tions between labeled and unlabeled data to boost the recognition
performance. Sadanand and Corso [14] present the conception of
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Action Bank, which comprised of many individual action detectors
sampled broadly in semantic space as well as viewpoint space.
Merler et al. [15] propose semantic model vectors extracted using
a set of discriminative semantic classifiers, each being an ensemble
of SVMmodels trained from thousands of labeled web images, for a
total of 280 generic concepts.

With the development of the commodity depth sensors like
Microsoft Kinect [16], there has been a lot of interests in human
action recognition from depth data. Wang et al. [17] presents a
new superpixel-based hand gesture recognition system based on
a novel superpixel earth mover’s distance metric, together with
Kinect depth camera. Li et al. [18] employed a bag-of-3D-points
graph approach to encode actions based on 3D projection of body
silhouette points. Xia et al. [19] mapped 3D skeletal joints to a
spherical coordinate system and used a histogram of 3D Joint Loca-
tions (HOJ3D) to achieve view-invariant posture representation.
But these current algorithm only works well when the human sub-
ject is in an upright position facing the camera. The human body
viewed partly will lead to that the results of experiment are not
very reliable.

Action prediction. Most of the existing work in action predic-
tion aims at recognizing unfinished action videos. The goal of
human activity prediction was proposed by Ryoo [3]. He consid-
ered the unseen part of an event as a latent variable and used
two bags of words to construct histograms for ongoing activity
recognition. However, his approach failed to account for the
sequential nature of temporal events. Cao et al. [20] extended
Ryoo’s work to recognize human activities from partially observed
videos in the general case. Additionally, an early event detector
Hoai and De la Torre [21] was proposed to augment the training
set using partial events as positive examples, which is different
from our goal. There is also some emerging researches [22–24,6]
termed early recognition, where the task is to classify an incoming
temporal sequence as early as possible while maintaining a level of
detection accuracy. However, these methods have worked on
human activity prediction more from static images and 2D video
sequences than from depth data.

Recently, several works have presented various ways to handle
activity recognition and prediction based on neural network.
Martinez-Contreras et al. [25] describes a new method to deal with
the temporal features needed for the detection of human actions
using a SOM to model temporal templates in the lower dimen-
sional space formed by the neurons whose characteristics are
tracked in time by means of a HMM to carry out the action recog-
nition process. Sumpter and Bulpitt [26] introduced feedback to
the second competitive network to suggest a novel approach for
learning long-term spatio-temporal patterns of objects in image
sequences, using a neural network paradigm to predict future
activities. Hu et al. [27] constructed activity patterns for anomaly
detection and activity prediction using a fuzzy self-organizing neu-
ral network. Sun and Liu [28] introduced Recurrent Self Organizing
Map (RSOM) trajectories to represent the ongoing human activi-
ties, and the Dynamic Time Warping-Edit (DTW-E) distance was
specially proposed to measure the structural dissimilarity between
RSOM trajectories. However, all these methods do not predict
human activity from the view of the hierarchical theory of action
and sub-action.

Unlike existing methods based on neural networks, our method
segments sequences of 3D joint positions as an input to the neural
network, not only learning an action on one SOM, but also learning
an actionlet on the other SOM. This makes HSOM much easier to
construct as the organization of brain through Hebbian learning
and makes the learning process much more efficient. Therefore,
this process let us to obtain an important prior knowledge that
informative action information is increasing when new observa-
tions are available.
3. Proposed method

In this section, we present a HSOM model (two-layers) to imi-
tate human learning and cognition about how an action is decom-
posed into actionlets and how to comprehend an action from
actionlets point of view.

We will first extract the spatio-temporal feature na and nal as
input vectors to HSOM constituted by Tna and Tnal . Next, we will
learn two process of action decomposition and comprehension
through Hebbian learning. Also, in this section, we will discuss
uncertainties in action comprehension process through VMM.
Finally, we will present a technique that models human cognition
thereby creating information that facilitates the human prediction
process.

3.1. Action and actionlet representation

To achieve efficient and effective prediction, a well-structured
training and learning mechanism should be developed. For each
frame t of a sequence, the real world 3D position of each joint of
the skeleton is represented by three coordinates x; y, and z. There-
fore, a joint point trajectory in 3D space can be parameterized as a
matrix:

RðtÞ ¼ ½p1;p2;p3; . . . ;pt; . . . ;pn�; ð1Þ

where pt ¼ ½xt ; yt; zt ;v t ;Dht;D/t ;Dht; kt ;dt �T ; fxt; yt ; ztg are the coor-
dinates of a joint point at frame t; v t is the motion velocity of the
joint point at frame t; Dht ; D/t ; Dht are the directions of up–down,
left–right and further-closer information of a joint point at frame
t; kt is the curvature of a joint point at frame t; dt is the distance
between the hip center and the joint point; n is the number of
frames (trajectory length) and t is the time-stamp index.

Five trajectories of head, left hand, right hand, left foot, and
right foot are required to analyze an action. The trajectory having
a maximum velocity shows the distinguishing characteristics of
an action. For example, a high hand wave action captures a variety
of motions only related to the right or left arm. Therefore, segmen-
tation points can be extracted from this trajectory having a maxi-
mum velocity. To obtain superior segmentation points si, we use
the value of curvature k, as this point is closer to the hilltop,
whereas the value of Dh; Dh or D/ at this point are zero crossing.
The actionlet, derived from the set of segmentation points
S ¼ fs1; . . . ; si; . . . ; sj; . . . ; smg, is a meaningful atomic action. Hence,
an action can be decomposed into a sequence of actionlets. There-
fore, the feature of an actionlet can be parameterized as follows:

nTal ¼ R1ðsi : sjÞ; . . . ;Rkðsi : sjÞ; . . . ;R5ðsi : sjÞ
� �

; ð2Þ
where Rkðsi : sjÞ ¼ ½psi

; . . . ;psj
�, with k ¼ 1;2;3;4;5 denoting head,

left hand, right hand, left foot, and right foot, respectively.
In this paper, an action is referred to as a single period of a

human motion pattern and the periodic motion in multi-period
action video are eliminated by methods as shown in [9]. Therefore,
the feature of an action can be parameterized as follows:

nTa ¼ nal1 ; nal2 ; . . . ; naln
� �

; ð3Þ
where nal1 ; nal2 ; . . . ; naln are aperiodic sequences.

3.2. Action and actionlet map construction

There are large intra-class variations in the human actions. Dif-
fer in thousands ways of people’s movements, whatever select any
one as template is not suitable. Therefore, na and nal will be clus-
tered to find the pattern of action and actionlet via unsupervised
learning rather than supervised learning.
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A SOM [8] is a type of artificial neural network for the visualiza-
tion of high-dimensional data using unsupervised learning. It also
produces some kind of abstractions of high-dimensional data. The
map is defined as a grid array whose neurons are uniformly
arranged, and each neurons of the i-th location is associated with
a parametric real vector mi ¼ ½mi1;mi2; . . . ;min�T 2 Rn, which is
called a model vector. The model vectors m of neurons are initial-
ized either to small random values or sampled evenly from the
subspace spanned by the two largest principal component eigen-
vectors. The input vector, na and nal, has the same dimension with
the model vector m.

The training process for constructing Tna is based on three
procedures.

(1) Competition: The winning neuron c is determined by the
node location whose model vector mi has the minimum
Euclidean distance to the input vector na as
Fig. 3.
(c) Diffe
c ¼ min
i

knaðtÞ �miðtÞk; ð4Þ

where t = 0, 1, 2, . . . is the index of iteration step, k � k denotes
the Euclidean distance.
(2) Cooperation: The neighborhood function h is a decreasing
function of the distance between the i-th and c-th nodes as
a smoothing kernel. A typical choice is often taken to be
the Gaussian
hcðxÞ;i ¼ aðtÞ exp �kri � rck2
2r2ðtÞ

 !
; ð5Þ

where 0 < aðtÞ < 1 is the learning rate factor, ri 2 R2

and rc 2 R2 are the locations in the display grid. rðtÞ is the
‘‘effective width” of the topological neighborhood.
(3) Adaptation: The update process for each neuron is adapted
with respect to its lateral distance from the wining neuron
as follow:
miðt þ 1Þ ¼ miðtÞ þ hcðxÞ;iðnaðtÞ �miðtÞÞ: ð6Þ
The training process for constructing Tnal is also based on
three procedures above.
After the training process for constructing SOM, the neurons in
SOM can help us to understand na and nal as its topological struc-
tures also denote the characteristics of na and nal. In our system,
two SOMs are needed to construct the HSOM, which shows hierar-
chical relations in human activity. The first SOMmaps na to Tna and
the second SOM maps nal to Tnal .

3.3. Clustering of actionlets

Action labels are easily labeled in real life, such as walk, sit
down, stand up, and throw. In our experiment, each action was
labeled as A1;A2; . . . ;An to facilitate quantitative analysis of the
map and the data. Unlike actions with labels that are shown on a
(a) (b)

(a) The input vectors nal are first clustered using the SOM to produce the model vec
rent English letters are represented by different clusters in Tnal .
map grid, an actionlet is hardly labeled or highly generalized using
our human language. Therefore, similar neural units in Tnal need to
be grouped and labeled later. To find initial partitioning, we use the
Davies–Bouldin index value [10], which is a metric for evaluating
map unit clusters to scattered the Tnal in plots with actionlet sym-
bolized by English letters. This process may be represented in
Fig. 3.

The Davies Bouldin Index is defined as the ratio of Sc and dce and
the best clustering minimizes

DBI ¼ 1
C

Xc
k¼1

max
l–k

ScðQkÞ þ ScðQlÞ
dceðQk;QlÞ

� �
; ð7Þ

where C is the number of clusters, fQiji ¼ 1; . . . ;Cg is a set of clus-

ters, Sc ¼
P

i
kxi�ckk
Nk

is the within-cluster distance, dce ¼ kck � clk is

the between-clusters distance, xi 2 Qi; Nk is the number of samples
in cluster Q and ck ¼ 1

Nk

P
xi2Qk

xi. By definition, the lower the DBI, the

better the separation of the clusters and the tightness inside the
clusters.

Let L be a finite set of English letters discussed above, as well as
labels of actionlets. Thus, after partitioning and labeling to Tnal ,
each action can be represented by a sequence of actionlet symbols
from L. For example, one sample vector na, labeled A1, can be rep-
resented as actionlet symbols through the segmentation of the
action. After the completion of training, this kind of action will cor-
respond to training data sequence r = #diik#ik#dik#diik#ib
k#iik#dkkf#dkik#dkk#didik, which means the action has ten sam-
ples separated by # and each sample can be represented as a
sequence of actionlet symbols.
3.4. Hebbian learning between two SOMs

The Canadian Psychologist Donald Hebb [11] speculated in
1949 that ‘‘When neuron A repeatedly and persistently takes part
in exciting neuron B, the synaptic connection from A to B will be
strengthened.” Simultaneous activation of neurons leads to pro-
nounced increases in synaptic strength between them. Thus Hebb’s
principle can be described as a method for determining how to
alter the weights between two patterns of Tna and Tnal , their rate
of co-occurrence and the strength of their co-activated in the rep-
resentation. When an action activates Tna , the associative weights
can be used to project to several neurons onto Tnal (action decompo-
sition process). This spurs a production such that actions having
the same semantic meaning possess several identical or similar
actionlets, in general. For example, an action of wave hands can
be represented as actionlet sequences with bffij, bfifj, and bifj, as
shown in Fig. 4. Conversely, when several actionlets activate Tnal ,
the associative weights can be used to project a neuron onto
Tna (action comprehension process), spurring a composition such
that these actionlets correspond to an action.

Formally, Tna is defined as a graph GðA; EÞ, where A is a set of
neurons, and E � A� A is a set of connections between the neu-
m
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Fig. 4. An action of wave hands can be represented as actionlet sequences with bffij; bfifj, and bifj, as shown in this figure (a), (b), and (c), respectively. Notably, actions with
similar feature vectors may map to the same neuron. For example, the feature vectors of high wave hands and horizontal wave hands can map to the same neuron. In other
words, one neuron can be mapped to only one action model vector, or some action model vector can map to the same neuron.

Fig. 5. (a) Dark neurons are the winning neurons and light gray neurons are the neighborhood neurons. The winning neuron and its neighbors in region Nc are activated to
different extents, while neurons outside Nc are retained. (b) Each neuron in Tnal has associative links with every neuron in Tna . Some weights are smaller and some weights are
bigger according to the Hebbian learning results. (c) These weights on associative links are classified in terms of the label of action. The important degree of an actionlet can be
obtained from the sum of these classified weights.
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rons. Each neuron k in a Tna has an associated model vector mk.
Given an input vector na, the localized output response ak of a neu-
ron k in Tna is computed as

ak ¼
1� kna�mkk�dmin

dmax�dmin
; k 2 Nc

0; otherwise

(
; ð8Þ

where Nc is the set of neighbors of winner c, as shown in Fig. 5a; and
dmin and dmax are the smallest and the largest Euclidean distances of
na to node’s weight vectors, respectively, within Nc . Given an input
vector nal, the localized output response al of a neuron l in Tnal may
also be computed as

al ¼
1� knal�mlk�dmin

dmax�dmin
; l 2 Nc

0; otherwise

(
: ð9Þ

The HSOM are bi-directionally linked with associative connec-
tions. Simultaneously with input vectors, the associative weights
between the active neurons in Tnal and Tna are updated using Heb-
bian learning

Dwkl ¼ aðtÞakal; ð10Þ
where wkl is the unidirectional associative weight leading from
node k in Tna to node l in Tna ; aðtÞ is a learning rate.

The associative weight vectors can be normalized by:

wklðt þ 1Þ ¼ wklðtÞ þ DwklP
l½wklðtÞ þ Dwkl�2

n o1=2 : ð11Þ

If the size of the grid arrays of Tna and Tnal are s1 ¼ m1 � n1 and
s2 ¼ m2 � n2, respectively, the associative weights between them
can be seen as a weight matrix W s1�s2 ¼ ðw1;w2; . . . ;ws2 Þ, as
depicted in Fig. 5b. The important degree of an actionlet l in each
action, the spatial character of spatio-temporal patterns, can be
computed as
IDl ¼ wT
l K ; ð12Þ

where IDl is an n-dimension vector, n is the number of prediction
action needed, wl is the l-th column of the weight matrix W , as
illustrated as Fig. 5c and K is a matrix representing the amount of
input vectors with the same label that has been mapped to one neu-
ron in Tna .

3.5. Probabilistic suffix tree

VMM, according to the correlation between the characteristic of
a simple symbolic sequence, provides the means for capturing both
large and small order Markov dependencies based on the training
data sequence r. The main objective of VMM is to predict the next
possible actionlet or the whole activity. In this paper, the data
sequence r of every kind action will correspond to a Probabilistic
Suffix Tree (PST) [29]. PST, which is used to construct the D-
bounded VMM, also provides a conditional probability distribution
pðliþ1jl1l2 . . . liÞ for an ongoing actionlet sequence l1l2 . . . li over L,
where li is the label of an actionlet.

A PST uses a suffix tree for the storage structure, where the
degree of each node D varies between zero and kLk. The label of
a parent node is a suffix of labels of its children nodes, which
induces a ‘‘suffix set” S consisting of the labels of all nodes. Each
node also corresponds to a probability vector v, which stores the
conditional probability of the next symbol of the symbolic
sequences in this node. The goal of the PST learning algorithm is
to assign a conditional probability distribution PðrjsÞ over L to
associate a meaningful context s 2 S with the next alphabet, where
the next possible actionlet r 2 L.

The algorithm for constructing a PST consists of three stages:
first, a set of ‘‘meaningful” contexts s is extracted from the training
data sequence r, which forms a ‘‘suffix set” S; second, a suffix tree is
built by excluding nodes that do not provide stochastic informa-
tion; third and finally, we smooth the probability distributions
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associated with the tree nodes and normalize the resulting condi-
tional distribution. Fig. 6 shows an example PST constructed from a
training sequence of actionlets.
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Fig. 7. Early action recognition results with the number of clusters Tnal from 1 to 35.
3.6. Action prediction

The key contribution of this work is the idea that the pre-
dictability can be ensured by the important degree of actionlets
in each action acquired through Hebbian learning between actions
and actionlets, while causality of actionlets can be encoded as a PST
with variable temporal scale.

Given an ongoing actionlet sequence l ¼ l1l2 . . . li, we can now
construct our prediction function by using the result of learning
from the important degree of actionlets and causality of actionlets:

pcðlÞ ¼
Xklk
j¼1

IDlj
c Pðljjl1l2 . . . lj�1Þ: ð13Þ

Formula (13) ultimately predicts which kind of activity class
cðc ¼ 1; . . . ;CÞ the sequence belongs to. The prediction model
pcðlÞ is computed over the ongoing actionlet sequence l ¼ l1l2 . . . li
of this class c belonging to the training set. The prediction result
c0 has a maximal prediction score pcðlÞ

c0 ¼ argmaxcfpcðlÞ; c ¼ 1; . . . ; Cg: ð14Þ
Thus, giving partially observed a video, the probability of the

next possible actionlet or the whole action can be predicted from
the prediction model pcðlÞ for which maximal prediction score
has been obtained.
4. Experimental results

The performance of the activity prediction is primarily evalu-
ated based on its accuracy, that is, the percentage of actions recog-
nized correctly. We chose MSR-Action3D [18], 3D Online Action
Dataset [30], UTKinect-Action [19], and UCF Kinect Dataset [31]
for evaluating the early activity prediction accuracy and the full
recognition accuracy.
4.1. Discussion on parameters setting

Similar to other action recognition methods, our solution
depends on two important types of parameters, the sizes of the
grid arrays of Tna and Tnal and the number of clusters of Tnal .
Fig. 6. An example PST corresponding to depth D ¼ 3 and training sequence r ¼ cacbca
indicating the conditional possibilities of the next potential alphabet of a; b, and c are p
pðajcÞ ¼ jacj

ja� j.
The first type of parameter refers to the sizes of the grid arrays
of Tna and Tnal ; s1 and s2. The larger the size of grid array, the more
easily the over-fitting phenomenon occurs, and conversely, the
smaller the size of grid array, the more easily the under-fitting phe-
nomenon occurs. In the SOM Toolbox [32], the default number of
neurons is 5

ffiffiffi
n

p
where n is the number of training samples. Hence,

this parameter could be set in terms of the rule given in our paper.
The second important parameter kLk is the number of clusters

of Tnal , which determines the upper bound D on the Markov order.
This parameter directly affects the early activity recognition rate as
suggested by Fig. 7. From this figure, we find that the smaller the
number of clusters are, the lower the early action recognition accu-
racy would be.
4.2. MSR Action3D Dataset

The MSR Action3D Dataset aims at providing 3D data extracted
from the depth sequence. The MSR Action3D is a set of temporally
segmented actions that have been pre-processed to remove the
background. The dataset consists of the following actions: high
arm wave, horizontal arm wave, hammer, hand catch, forward punch,
high throw, draw x, draw tick, draw circle, hand clap, two hand wave,
side-boxing, bend, forward kick, side kick, jogging, tennis swing, tennis
serve, golf swing, and pick up and throw. These actions performed by
ccbc over alphabet
P ¼ fa; b; cg. The vector of nodes c of the first layer is 2

5 ;
2
5 ;

1
5

� �
,

ðajcÞ ¼ 2
5 ; pðbjcÞ ¼ 2

5, and pðcjcÞ ¼ 1
5, respectively, while the symbol c appears, where



W. Ding et al. / J. Vis. Commun. Image R. 35 (2016) 103–111 109
10 subjects facing the camera during performance. Ten subjects
performed each action three times each facing the camera. Actors
were requested to use their right arm or leg, when only one arm
or one leg is involved in the action. The frame rate was 15 frames
per second. The depth maps resolution was 320 � 240. This dataset
is a challenging one due to the noise in the extracted skeletons.

In order to allow a fair comparison with the state of the art
methods, the 20 actions were divided into three subsets as shown
in Table 1 in accordance with the same experimental settings as in
[18], where the samples of half of the subjects are used as training
data, and the rest of the samples are used as testing data. In this
paper, this kind experimental setting go by the name of cross-
subject test setting. We compared our approach on this setting to
some methods using skeleton inputs extracted from video streams,
as shown in Table 2, that our approach clearly outperforms other
methods.
Table 1
The three subsets of actions used in the experiments.

AS1 AS2 AS3

Horizontal Wave High Wave High Throw
Hammer Hand Catch Forward Kick
Forward Punch Draw X Side Kick
High Throw Draw Tick Jogging
Hand Clap Draw Circle Tennis Swing
Bend Hands Wave Tennis Serve
Tennis Serve Forward Kick Golf Swing
Pickup Throw Side Boxing Pickup Throw

Table 2
Recognition rate (%) of MSR-Action3D dataset.

Method Accuracy

Dynamic Temporal Warping [33] 54.0
Hidden Markov Model [34] 63.0
Bag of 3D Points [18] 74.7
Histogram of 3D Joints [19] 78.9
Eigenjoints [35] 82.3

Proposed method 88.6

Table 3
Early action recognition results with the action progress a progress step of 20% on
three sub-datasets of MSR-Action3D dataset.

Dataset 20% 40% 60% 80% 100%

AS1 64.1 75.0 87.5 88.3 89.1
AS2 60.0 71.6 81.6 82.5 82.5
AS3 77.5 80.8 92.5 93.3 94.1
Overall 67.2 75.8 87.2 88.0 88.6
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Fig. 8. Confusion matrix in AS1, AS2 a
Samples in MSR Action3D Dataset are about simple actions,
such as high arm wave, bend, and pick up and throw. These type
of action usually consists of 3–5 actionlets. Then we fit the predic-
tion task into the context of supervised classification problem. To
train a prediction model, we construct an order 6-bounded PST
and compute important degrees of actionlet in each action respec-
tively. To evaluate the prediction accuracy, we use the cross-
subject test setting. For the result of Table 3, the recognition rate
does not significantly increase after 40% of the action progress. This
is mainly because most of the discriminant information is con-
tained in the beginning of the action for this dataset. The confusion
matrix for the cross-subject-test is illustrated in Fig. 8. Prediction
errors occur if two actions are highly similar to each other, such
as forward punch and high throw in AS1. In AS2, draw circle is
repeatedly confused with another action, perhaps because the
curve of a circle in 3D space is segmented into several parts and
is not a complete curve.

4.3. 3D Online Action Dataset

This dataset is for continuous online human action (human-
object interaction) recognition from RGBD data created by Micro-
soft Research in 2014. There are seven action categories: Drinking,
eating, using laptop, reading cellphone, making phone call, reading
book, using remote. The dataset is designed for four evaluation
tasks: (1) same-environment action recognition; (2) cross-
environment action recognition; (3) action prediction on seg-
mented videos; (4) continuous action recognition. We evaluate
the first three tasks follow the setting in [30]. The recognition
results of the first two tasks are shown in Table 4. The results of
same-environment and cross-environment are almost the same,
which illustrate that our algorithm is not affected by the environ-
ment. Action prediction on segmented video sequences is tested to
evaluate the latency of our algorithm as shown in Fig. 9.

4.4. UTKinect-Action Dataset

UTKinect-Action Dataset was captured as part of research on
action recognition using a single stationary Kinect. In this dataset,
there are 10 actions types: walk, sit down, stand up, pick up, carry,
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Table 4
Recognition rate (%) of 3D Online Action Dataset.

Method Same-environment Cross-environment

Moving Pose [36] 38.4 28.5
Eigenjoints [35] 49.1 35.7

Proposed method 49.5 50.9



Fig. 9. Comparison of action prediction results with Moving Pose [36]. Fig. 10. Early action recognition results with the progress ranging from 10% to 100%
and a progress step of 10%.
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throw, push, pull, wave hands, and clap hands. Three channels
were recorded: RGB, depth and skeleton joint locations. The three
channel are synchronized. The frame rate is 30 f/s. Ten subjects
perform 10 different actions twice, making up 200 sequences con-
taining 6220 frames. The resolution of the depth map is 320 � 240
and the resolution of the RGB image is 640 � 480. To allow for
comparison with [19], we followed the same experimental set up
using Leave One Sequence Out Cross Validation (LOOCV) on the
200 sequences. For each test, one sequence was used for testing
and the other 199 sequences were used for training. We also com-
puted the mean accuracy obtained for each action separately, as
shown in Table 5.
4.5. UCF Kinect Dataset

In order to confirm the effectiveness of our approach, we also
evaluate the proposed method on a third dataset: UCF Kinect Data-
set. The dataset was collected byMicrosoft Kinect and OpenNI plat-
form. Ellis [31] presented the Latency Aware Learning (LAL)
algorithm for reducing the latency in recognizing the action. In
each frame only 15 skeleton joints, orientation and binary confi-
dence values of each joint are available, RGB images and depth
maps are not stored. Each video in the dataset consists of one per-
son performing one action. By comparing our method with meth-
ods of Eiengjoints [35] and STFC [9], as shown in Table 6, the
recognition accuracies for our method is inferior to their approach.
The UCF Kinect dataset includes 16 actions performed by 16 sub-
jects. Each subject performs all 16 actions 5 times for a total of
1280 action samples. The number of action samples (1280) is much
more than other dataset such as MSR Action3D Dataset (240 action
samples) and UTKinect-Action Dataset (200 action samples). Our
experiment to UCF Kinect dataset is implemented using the proto-
Table 5
UTKinect dataset: Recognition rate (%) of each action type.

Method HO3DJ [19] STFC [9] Ours

Accuracy 90.9 91.5 94.5

Table 6
Comparisons of recognition accuracies (%) of LAL, Eigenjoint and our method.

Method LAL [31] Eigenjoint [35] STFC [9] Ours

Accuracy 95.9 97.1 98.04 96.5
col of [31] which is the 4-fold cross-validation. If each action has 6
actionlet, there are 960 action samples and 5760 actionlet samples
which are used for training on two SOM Tna and Tnal respectively. So
the sizes of the grid arrays of Tna and Tnal will be larger. As discussed
in Section 4.1, the larger the size of grid array, the more easily the
over-fitting phenomenon occurs. Therefore, this is maybe a reason
that the clustering performance of our proposed method on UCF
Kinect dataset is inferior to Eigenjoint and STFC methods.

As our solution has the potential to recognize actions before
their completion, we present here the obtained results for early
recognition. Fig. 10 shows detailed performance of our approach
over all datasets, where the progress of activities ranges from
10% to 100% of their completion. For these dataset, the recognition
rate does not significantly increase after 40% of the action progress.
This is mainly because most of the discriminant information is con-
tained in the beginning of the action for these dataset. Besides pre-
dicting global activity classes, our model can also make local
predictions. That means the model can predict the most probable
next actionlet given observed actionlet sequence as context.
5. Conclusions and future work

In this paper, we have developed a novel approach for the
segmentation, classification and prediction of ongoing human
actions that takes 3D skeletal joint locations as input inferred from
depth maps. The major contributions include spatio-temporal
characteristic of action generated by HSOM that are connected
via associative links trained by Hebbian learning; and temporal
characteristic of action generated by PST for representing various
order Markov dependencies between actionlets. Acquiring these
characteristics relies on a good spatio-temporal decomposition of
action. We have empirically shown that incorporating spatial and
temporal is particularly beneficial for predicting activities. The
next step is to understand and predict human activities and object
affordances combining more contextual information, and more
importantly, of human interactions with the objects in the form
of associated affordances.
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