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a b s t r a c t

Inferring the topology of a network from observable dynamics is a key topic in the research of
complex network. With the observation error considered, the topology inferring is formulated as a
connectivity reconstruction problem that can be solved through optimization estimation. It is found
that the different optimization methods should be selected to deal with the different degrees of noise,
different scales of observable time series and such other situations when it comes to the problem of
connectivity reconstruction, which has not been analyzed and discussed before yet. In this paper, four
regression methods, namely least squares, ridge, lasso and elastic net, are used to solve the problem
of network reconstruction in different situations. In particular, a further analysis is made of the effects
of each regression method on the network reconstruction problem in detail. Through simulation of a
variety of artificial and real networks, as it has turned out, the four regression methods are effective
in respect to network reconstruction when certain conditions are respectively satisfied. Based on the
experimental results, it is possible to reach some interesting conclusions that can guide our readers
to know the internal mechanisms for network reconstruction and choose the appropriate regression
method in accordance with the actual situation and existing knowledge.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic phenomena such as bifurcation, chaos and unstable
oscillations exist in the propagation model of real-world net-
works. The interaction topology of complex network strongly
affects its collective dynamics and thus the function of entire
system [1]. In many fields of science and society, one may be
encountered with the situation in which the system of interest is
composed of networked elements, called nodes, but the pattern
of node-to-node interaction or the network topology is far from
available. To infer the network connectivity from dynamical ob-
servable series is a crucial research on complex systems, which is
known as a problem of data mining in practice [2–4]. Its potential
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applications include: Gene regulation network reconstruction,
derived from gene expression data, aims to find the relations
between genes, and such relations can help to cure and control
genetic diseases [5–7]. Epidemic network reconstruction can help
to reveal the process of infectious disease propagation and pre-
vent the spread of other epidemics [8]. Protein–protein network
reconstruction has an important significance in understanding
the cellular functional mechanism and finding the evolutionary
mechanism of organisms [9] and so on.

Methods for inferring topologies based on dynamical obser-
vation have been proposed in the recent literatures [2,10–27].
The common observations stem from many kinds of models,
such as oscillatory dynamics of chaotic systems, dynamics of
systems based on the modeling of evolutionary game, binary data
of spreading networks and so on. Almost all of the data-based
complex networks or systems can be converted into a signal
reconstruction problem which in turn can be solved through
adoption of such methods as reverse engineering [28], heuristic
search [2,23], compressive sensing [29], regression [30,31] and so
on.

Most of the above-mentioned algorithms focus on continuous-
time dynamical models to describe the node dynamics [12,14,22].
However, the discrete-time dynamical models are easier to deal
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with and they are as common as the continuous-time models in
the real world. The focus of our concern, therefore, is the discrete-
time-dynamics-based method for network reconstruction.

In the existing relevant literatures, some algorithms took ac-
count of the observation error [19,25,32], while others did
not [10,12]. In this paper, the observation error is taken into
account, and meanwhile its influence on network reconstruction
is analyzed in detail, with the latter known as a blank in the
existing literatures.

What is more, there has been no analysis and discussion of
how to choose the most appropriate optimization method in deal-
ing with different problems of network reconstruction. However,
this move is extremely necessary in that it can help to understand
the internal mechanisms for network reconstruction.

In summary, our contributions are listed as follows:
(1) Adoption of the power series expansion method is in-

tended for the dynamics of each node to get a general represen-
tation for all nodes, and there is no need for our algorithm to
know the specific expressions of chaotic systems in that it can
appropriately expand the series to a relatively higher power to
hold all terms.

(2) Detailed analysis is made of the effects of the degrees of
observation error as well as the scale of observation series on the
problem of network reconstruction.

(3) Both analysis and discussion are conducted in the light
of the features and group selection effects of several regression
methods on the network reconstruction whose measurements
contain the observation error.

(4) Some interesting conclusions are reached in the paper.
And some advice is given to our readers so that they can make
choices of regression methods based on their own needs and
existing knowledge when it comes to the problem of network
reconstruction.

The rest of this paper is organized as follows: Section 2 is a
list of some works in relation to network reconstruction pub-
lished in recent years. Section 3 is concerned with the problem
of formulation. Section 4 is a description of several regression
methods as solutions to the problem of network reconstruction.
Section 5 deals with our experiments as well as further discus-
sion about the effects of several regression methods on network
reconstruction. And the last section serves as the conclusion of
this paper.

2. Related works

The past fifteen years have witnessed rapid development of
contemporary complex graph theory with broad applications in
interdisciplinary science and engineering. The combination of
graph, information, and nonlinear dynamical systems theories
with tools from statistical physics, optimization, engineering con-
trol, applied mathematics, and scientific computing enables the
development of a number of paradigms to address the problem of
nonlinear and complex systems reconstruction. A detailed review
of such methods can be found in Ref. [16]. It reviewed some
data-based methods used to address the problem of nonlinear
and complex system reconstruction with its focus on compres-
sive sensing method. Now the recent advances are listed in re-
spect to this forefront and rapidly evolving field, with a focus on
data-based network reconstruction algorithms. According to the
types of observation data, there are three common categories as
follows:

Firstly, the complex network is reconstructed with coupled
oscillatory dynamics [10,12,19]. The basic idea is that the math-
ematical functions determining the dynamical couplings in a
physical network can be expressed by power-series expansions.
The task is then to estimate all the nonzero coefficients, which

can be accomplished by some signal reconstruction methods. By
presupposing a knowledge of the functional form of the dynami-
cal units and of the coupling functions between them, Shandilya
et al. came up with a solution to the inverse problem of finding
the network topology through observing a time series of state
variables [10]. That is, this method needs to know the specific
expressions of chaotic systems in advance. In [12], their ideas
were to expand the vector field or map of the underlying system
into a suitable function series and then to use the compres-
sive sensing technique [29] to estimate the various terms in
the expansion. From their point of view, the functions can be
expressed in power series expansions, and the interaction net-
work can be reconstructed through learning the relation between
the measured time series and their expanded power series via
compressive sensing [29]. Based on adaptive control and the
Barbalet’s lemma, a response network with a general form was
constructed to recover the unknown topology of the considered
network by Zhang et al. [14].

Secondly, the complex network is reconstructed with evo-
lutionary game dynamics [2,13,15,23]. Evolutionary game is a
common type of interaction in a variety of complex networked,
natural and social systems. Given such a system, uncovering the
interacting structure of the underlying network is the key to
understanding its collective dynamics. Game-data-based meth-
ods can always be solved by a signal reconstruction method to
uncover the network topology. Wang et al. proposed a method
of addressing the problem of how to uncover network topology
using evolutionary-game data based on compressive sensing [13].
Ref. [15] decomposed the task of reconstructing the whole net-
work into recovering local structures centered at each node. Wu
et al. proposed a two-stage evolutionary algorithm to reconstruct
the network node by node. In the first stage, possible vectors
corresponding to each node were obtained by a genetic method
and in the second stage, the true vector of each node was fur-
ther confirmed by a heuristic local search [23]. Ref. [2] took the
network reconstruction as a non-convex problem and solved this
problem by a memetic algorithm.

Thirdly, the complex spreading network is reconstructed from
binary data [11,20,25,26]. Among the various types of collective
dynamics on complex networks, propagation or spreading dy-
namics is of paramount importance as it is directly relevant to
issues of tremendous interests such as epidemic and disease out-
break in the society and virus spreading on computer networks.
Despite stochastic spreading among the nodes, the available time
series of a spreading network are always polarized (binary). Li
et al. offered a solution to the network reconstruction problem
by developing a data-based linearization approach for binary-
state dynamics [11]. They decomposed the task of reconstructing
the whole network into local structures center at each node and
regarded the local structure reconstruction as a sparse signal
reconstruction problem that can be addressed by employing a
convex optimization method named Lasso [30]. By exploiting the
expectation–maximization (EM) algorithm, Ref. [25] developed a
method to ascertain the neighbors of any node in the network
based on binary data, thereby recovering the full topology of the
network.

In addition, there are some other dynamical data-based meth-
ods. For example, Alderisio et al. proposed an approach including
a systematic algorithm to perform the ex post analysis of the
reconstructed network and select appropriate cut-off thresholds
to remove false positive [19]. A method of integrating QR decom-
position and compressed sensing was proposed to solve the re-
construction problem of complex networks with the assistance of
the input noise [22]. Ref. [27] took the statistical properties, such
as clustering coefficient, into consideration and it investigated
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the relationship between clustering property and accuracy of net-
work reconstruction based on small-world networks. However, it
aims at small-world network, which makes it very limited.

As seen from the papers mentioned above, the data-based net-
work reconstruction, no matter what kind of observation data is,
can always be converted into a solution to a signal reconstruction
problem. The common methods such as reverse engineering [28],
heuristic search [2,23], compressive sensing [29], regression [30,
31] and so on can be used to reconstruct the unknown signal.
However, little attention has been paid to how to choose the
appropriate reconstruction methods when dealing with complex
network in different situations, which cannot give readers good
advice on how to select optimization methods. In addition, the in-
ternal mechanisms of network reconstruction can be well learned
by analyzing the effect of several regression methods on time
series, which was neglected by others.

3. Problem formulation

A networked system can be viewed as a large dynamical sys-
tem that generates oscillatory time series at various nodes when
each node is described by oscillatory dynamics. Timme [1] has
proved that the network topology precisely controls the dynamics
of the nodes. The dynamics of nodes in turn reflect the topological
structure of networks. The dynamics of many networks can be
described by

xi (k + 1) = f ii (xi (k)) + ε

N∑
j=1

C ijxj (k) , (i = 1, 2, . . . ,N) , (1)

where xi (k) = [x1i (k) , x2i (k) , . . . , xmi (k)] ∈ Rm represents the set
of externally accessible dynamical component of node i at time
k ∈ Z. The function f ii (·) : Rm

→ Rm is the intrinsic dynamics of
node i. N is the number of accessible nodes and ε (0 < ε < 1) is
the coupling strength. And C ij is the coupling matrix between the
dynamical components at nodes i and j which can be denoted by

C ij =

⎛⎜⎜⎜⎜⎜⎝
c1,1ij c1,2ij · · · c1,mij

c2,1ij c2,2ij . . . c2,mij

...
...

. . .
...

cm,1
ij cm,2

ij · · · cm,m
ij

⎞⎟⎟⎟⎟⎟⎠ . (2)

The term cn,lij , (n = 1, 2, . . . ,m; l = 1, 2, . . . ,m) in C ij denotes the
coupling from the lth component of node j to the nth component
of node i. For any two nodes, there are m2 possible coupling
terms. Nodes i and j are coupled if there is at least one nonzero
element in the matrix C ij, i.e. there is an edge between them in
the network. On the contrary, if all the elements of C ij are zeros,
there is no edge between nodes i and j. We assume that there is
no coupling from node to itself in this paper, that is, C ii = 0.

3.1. Specific form

For the sake of easy understanding, a specific 1-dimensional
(1-D) discrete-time chaotic system is used as an example to
explain, and then a general form is given for a variety of discrete-
time dynamical models.

The nodes are 1-dimensional (1-D) oscillators (x ∈ R), then
the m × m coupling matrix C ij degenerates to a scalar.

In (1), it is assumed that xi (i = 1, 2, . . . ,N) is available obser-
vation and C ij is the variable to be solved ultimately. However, it
can be found that the function f ii is unknown as well, which is
common in practice. Thus, it is our goal to get the values of C ij
without knowing the exact expression of f ii.

Concretely, we consider the networks of discrete-time chaotic
Logistic system [33]:

f (x(k)) = µx(k)(1 − x(k)), (3)

where x(k) represents the externally accessible dynamical vari-
able at time k. The values of interest for the parameter µ are those
in the interval (0, 4]. Different values of µ represent different
chaotic behaviors. The details of this chaotic map can be seen
in [33].

From (1) and (3), a network of chaotic Logistic oscillators is
described by:

xi (k + 1) = µxi(k)(1 − xi(k)) + ε

N∑
j=1

Cijxj (k),

(i = 1, 2, . . . ,N) .

(4)

Since Cii = 0, (4) can be rewritten as (5),

xi (k + 1) = µxi(k)(1 − xi(k)) + ε

N∑
j=1,j̸=i

Cijxj (k) . (5)

Our goal is to estimate the value of Cij, which is the coefficient of
each xj (k) , (j ̸= i). We define

f ii (xi(k)) = µxi(k)(1 − xi(k))

= [β i
i ]0 + [β i

i ]1xi(k) + [β i
i ]2(xi(k))

2

=

2∑
l1=0

[β i
i ]l1 (xi(k))

l1 ,

(6)

which only contains the dynamics of node i itself. To keep in line
with (6), define

f ij (xj(k)) = εCijxj (k)

= [β i
j ]0 + [β i

j ]1xj(k) + [β i
j ]2(xj(k))

2

=

2∑
l1=0

[β i
j ]l1 (xj(k))

l1 ,

(j = 1, . . . ,N, j ̸= i) ,

(7)

which only contains the dynamics coupling from node j to i. So
(5) can be rewritten as

xi (k + 1) =

N∑
j=1

f ij (xj(k)) =

N∑
j=1

2∑
l1=0

[β i
j ]l1 (xj(k))

l1 . (8)

We transfer (8) into matrix formation as follows:

xi(k + 1) = ϕ(k) · βi, (9)

where ϕ(·) = [1, x1, (x1)2, . . . , xN , (xN )2] ∈ R2N+1,
βi = [[β i

]0, [β
i
1]1, [β

i
1]2, . . . , [β

i
N ]1, [β

i
N ]2]

T
∈ R2N+1, and [β i

]0 =∑N
j=1 [β i

j ]0 for constant term. From (9), it can be found that the
power series expansion method can expand the dynamics of each
node to a series of terms with the same base (the elements in
ϕ(·)). And the neighbors of node i are totally contained in βi. The
problem of network reconstruction can be transferred to solve
the linear model of (9).

In fact, a relative higher order of power can guarantee that
all terms of chaotic system are included at the cost of a higher
computational burden. Here once the highest power of expansion
terms is chosen as more than 2, the dynamics of each node can be
represented accurately without knowing the specific expression
of chaotic system.

But in practice of signal processing, the observation error
during the experiment is unavoidable. It is assumed that the
observation error is ηi ∼ N(0, σ 2), then the measurements can
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be represented as yi = xi + ηi. Thereafter, for q measurements of
node i, we have⎛⎜⎝ yi(2)

...

yi(q + 1)

⎞⎟⎠ =

⎛⎜⎝ ϕ̃(1)
...

ϕ̃(q)

⎞⎟⎠ · β̃i, (10)

where ϕ̃(·) = [1, y1, (y1)2, . . . , yN , (yN )2] ∈ R2N+1. The initial
value of each node yi(1) is assumed to be in the range (0, 1)
without loss generalization. Let y i = [yi(2), . . . , yi(q + 1)]T ∈ Rq,
and Φ̃ = [̃ϕT(1), . . . , ϕ̃T(q)]T ∈ Rq×(2N+1), (10) can be rewritten
as the formation of

y i = Φ̃ · β̃i. (11)

Once we compute β̃i, the adjacency relations of node i with other
nodes can be revealed by observing whether the corresponding
terms of other nodes are zeros or not (compare the terms with a
threshold δ, and set zero if the term is smaller than δ). For exam-
ple, if the terms corresponding to node j have nonzero elements,
there exists an edge between i and j. Otherwise, there exists no
edge between i and j. Like this, the adjacency relations of other
nodes can be revealed as well. Thus the network construction can
be completed.

3.2. General form

It is evident that many chaotic systems, such as discrete-time
Rössler system [34], Hénon map [35], Tinkerbell map [36], are
polynomials of various kinds of power terms. In this section, these
polynomial discrete systems will be taken into account so as to
build a more general model. For each node i, it is defined that the
nth component of f ii (xi) in (1) as

[
f ii (xi)

]
n and then expand it by

a power series of order up to L:[
f ii (xi)

]
n =

L∑
l1=0

· · ·

L∑
lm=0

[(
β i
i

)
n

]
l1,...,lm

(
x1i

)l1
· · ·

(
xmi

)lm
, (12)

where xni (n = 1, . . . ,m) is the nth component of the dynami-
cal variable at node i. And

[(
β i
i

)
n

]
l1,...,lm

, the coefficient of each
product term, is to be determined from measurements.

To contain as many coupling terms as possible, it is defined
that the nth component of each term C ijxj (k) (j ̸= i) in (1) as a
power series with the similar form of [f ii (xi)]n in (12) as follows:[
f ij

(
xj

)]
n

= [C ijxj]n

=

L∑
l1=0

· · ·

L∑
lm=0

[(
β i
j

)
n

]
l1,...,lm

(
x1j

)l1
· · ·

(
xmj

)lm
,

(j = 1, . . . ,N, j ̸= i) .

(13)

Then get

xni (k + 1) =

N∑
j=1

[f ij(xj(k))]n. (14)

For each dynamical component xni , the observation error ηn
i ∼

N(0, σ 2) is taken into consideration, that is yni = xni + ηn
i . Similar

to (8)–(10), the model can be deduced from (14) as

yn
i = Φ̃ · β̃

n
i (15)

where yn
i = [yni (2), . . . , y

n
i (q + 1)]T ∈ Rq, Φ̃ = [̃ϕT(1), . . . , ϕ̃T(q)]T

∈ Rq×p with ϕ̃(k) = {(y1i (k))
l1 · · · (ymi (k))

lm} ∈ Rp,

(i = 1, . . . ,N; ln = 0, . . . , L; n = 1, . . . ,m). p is the total
number of power series which are served as features. After the
coefficients β̃

n
i ∈ Rp of all components for node i are determined,

the adjacency relations of node iwith other nodes can be revealed
by observing whether the corresponding terms of other nodes are
zeros or not (compare the terms with a threshold δ, and set zero
if the term is smaller than δ). Repetition of this process holds true
for all other nodes.

4. Regression methods to infer the connectivity coefficients

Some classical regression methods, such as least squares, ridge
regression [37], lasso [30], elastic net [38] and so on [31], can
work out of β̃i from y i = Φ̃ · β̃i with appropriate parameters
respectively. A brief discussion will be made about the least
squares, ridge regression, lasso and elastic net in the following.
Actually, they differ from each other with different regularization
terms.

The least squares model is as follows:

βi
ls

= arg min
βi

{
1
2q

y i − Φ̃ · βi

2
2}, (16)

where q is the number of the measurement data. ∥·∥2 is L2-norm.
The closed solution to least squares is

βi
ls

= (Φ̃
T
Φ̃)−1Φ̃

Ty i. (17)

Least squares is easy to solve for its closed solution. However,
when there are many correlated nodes, which is common in
some real networks such as gene network, it will lead to many
correlated features in matrix Φ̃, and their coefficients can become
poorly determined. In addition, the least squares method needs
to meet the requirement that the number of measurements can-
not be less than the number of features. It means that enough
measurements are needed to reconstruct the network by the least
squares.

By imposing a size constraint on the coefficients as in (16),
named ridge regression [37] in (18), the above-mentioned prob-
lem of least squares is alleviated.

βi
ridge

= arg min
βi

{
1
2q

y i − Φ̃ · βi

2
2 + λ

βi

2
2}, (18)

where λ is a nonnegative regularization parameter which can
be determined by cross-validation [31]. Its closed solution is as
follows:

βi
ridge

= (Φ̃
T
Φ̃ + λI)−1Φ̃

Ty i, (19)

where I ∈ Rp×p is an identity matrix to prevent Φ̃
T
Φ̃ noninvert-

ible. Ridge regression is also easy to solve for its closed solution.
However, it shrinks the coefficients to smaller values rather than
zero, which is not very suitable for most of the existing sparse
network reconstruction problem.

Similar to ridge regression, lasso includes a penalty term that
constraints the size of the estimated coefficients as follows [30]:

βi
lasso

= arg min
βi

{
1
2q

y i − Φ̃ · βi

2
2 + λ

βi


1}, (20)

where ∥·∥1 is L1-norm. In the experiments, we use L1-norm of the
coefficient t (

βi


1 ≤ t) as tuning parameter instead of penalty

term λ in (20). As the increase of t , lasso sets more coefficients
to zeros. This feature selection function allows the number of
measurements to be much smaller than the number of features.
Thus lasso can be used to solve sparse network reconstruction
problem.

The elastic net penalty is a compromise of ridge and lasso [38].
It has the form as follows:

βi
en

= arg min
βi

{
1
2q

y i − Φ̃ · βi

2
2 + λ1

βi


1 + λ2

βi

2
2}, (21)
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where both λ1 and λ2 are tuning parameters which are chosen
by cross-validation [31]. Similar to the Lasso, (t, λ2) serves to
parameterize the elastic net in the later experiments. The second
regularization term λ2 encourages highly correlated features to be
averaged while the first regularization term t encourages a sparse
solution in the coefficients of these averaged features. This means
that elastic net has both the feature selection function and the
group selection function.

Since both lasso and elastic net have no closed solutions,
their problems are more complicated to solve than those of least
squares and ridge. Here, the lasso and elastic net methods can be
solved by LARS [39] and LARS-EN [38].

In order to further enhance the readability of our paper, our
network reconstruction method can be summarized in Algorithm
1 as follows.

Algorithm 1 Network reconstruction process

Input:
The order of power series L and a threshold δ;
q-dimensional measurements of each node yn

i , (n =

1, . . . ,m; i = 1, . . . ,N) in Eq. (15).
Output:

The topology of network.
1: Construct Φ̃ΦΦ = [ϕ̃T(1), . . . , ϕ̃T(q)]T ∈ Rq×p, where ϕ̃(k) =

{(y1i (k))
l1 · · · (ymi (k))

lm} ∈ Rp, (i = 1, . . . ,N; ln = 0, . . . , L; n =

1, . . . ,m);
2: For each component of node i, solve the yn

i = Φ̃ΦΦ · β̃n
i by any

regression method to obtain the estimation of β̃n
i ;

3: Compare the corresponding coefficients of each other node
j(j = 1, . . . ,N; j ̸= i) in the estimation of β̃n

i with δ, and get
the connectivity information of node i with other nodes;

4: Repeat 2∼3 until the whole network is reconstructed.

5. Analysis and discussion of the internal mechanisms of net-
work reconstruction

To verify our proposed method and the application of four
optimization methods for complex network reconstruction, some
experiments are conducted in this section. Then for each experi-
ment, analysis is made of the laws and mechanisms behind it in
detail. And some interesting rules will be found herein.

5.1. Test networks

Some test networks involved in our experiments include LFR
Benchmark [40], random network (ER) [41], small-world (SW)
network [42], scale-free network (SF) [43], some real networks
like Karate club network [44], Dolphins social network [45], Books
about US politics (Polbook) [46], American college football (Foot-
ball) [47], co-authorships network of scientists (Netscience) [48].

5.2. Parameter settings

In our paper, we take 1-D discrete-time Logistic map [33] and
2-Dimensional (2-D) discrete-time Hénon map [35] as examples
to describe the dynamics of complex networks. It is assumed
that the dynamics of certain types of networks conform these
two different models. In fact, our algorithm is also applicable to
dynamical networks that conform to other chaotic models such
as discrete-time Lorenz [49], Rössler system [34] and so on.

Logistic map can be seen in Eq. (4). The parameter µ can be
set to the range of (0, 4], we set µ = 3.7 in order to exhibit

chaotic behavior and avoid divergence. In this paper, the initial
measurement for each node is randomly set to the range of (0,1).

From the expanded form of (4), it can be found that the powers
of all terms are no more than 2. For simplicity, we assume the
component as x (the number of components m = 1) and choose
the power series for it such that ls = {1, 2}, that means x, x2. Thus
for each node i, the number of the coefficients to be estimated is
p = N · max(ls) + 1 = 2N + 1, where N is the number of nodes,
max(·) is the maximum operation and ‘‘1’’ represents the constant
term (x0). The coupling between node dynamics is assumed to
occur between the variables in the Logistic system, leading to the
following coupling matrix: Cij = 1 if nodes i and j are connected
and Cij = 0, otherwise. We set the coupling strength ε = 0.005
for Logistic map.

We take 2-D Hénon map [35] for an example and assume that
the components are x and y. Here lists the 2-D Hénon map:{

x(k + 1) = 1 − 1.4x2(k) + y(k)
y(k + 1) = 0.3x(k).

(22)

To ensure the divergence of measurements data, the initial val-
ues of Hénon map in this paper are set to continuous uniform
distribution of [0, 0.631] and [0, 0.189], respectively.

From (13), we should choose the power series for the compo-
nents as 0 ≤ l1 ≤ 2 and 0 ≤ l2 ≤ 2, that means 1, x, y, x2, y2,
xy, xy2, x2y, x2y2. However, it can be found that the powers of all
terms are no more than 2 in (22). Thus for simplicity, we choose
the power series for the components such that 0 ≤ l1 + l2 ≤

2, that means 1, x, y, x2, y2, xy. Thus the total number of the
coefficients to be estimated is p = N

∑2
ls=1 (ls + 1) + 1 = 5N + 1,

where ‘‘1’’ represents the constant term (x0y0) and ls = l1 + l2 =

{1, 2}. The coupling between node dynamics is assumed to occur
between y and y variables in the Hénon system, leading to the
following coupling matrix: C2,2

ij = 1 if nodes i and j are connected
and C2,2

ij = 0, otherwise. We set the coupling strength ε = 0.005
for Hénon map.

In fact, we can set the upper limit of ls to a slightly larger
number (e.g. 4 or 5) to ensure all terms to be contained in the
expanded power series for both chaotic systems. At this time,
there is no need to know the specific expressions of the chaotic
systems, but at the expense of some operational efficiency. Since
the core of this paper is not the choice of chaotic models, we will
not discuss the models and their parameters in detail.

Set the threshold δ slightly smaller than ε such as ε−0.01×ε
for all our following experiments.

5.3. Metric indices

In statistics, the mean squared error (MSE) of an estimator
measures the average of the squares of the errors. That is, the
average squared difference between the estimated value (β̂) and
the actual value (β). The MSE is always non-negative, and values
closer to zero are better. It can be used to measure the difference
of structures between the truth network and the reconstructed
network. And it is the sum of variance and the squared bias as
follows:

MSE(β̂) = E[(β̂ − β)2] = Var(β̂) + Bias(β̂, β)
2
, (23)

where E[·] is the mean operation, Var(β̂) = E[(β̂ − E(β̂))
2
] is the

variance of the estimated value and Bias(β̂, β)
2

= (E(β̂) − β)
2

is the squared bias between the estimated value and the actual
value.

In addition, four metrics are used to assess the performance
of the network reconstruction algorithm. They are True Positive
Rate (TPR, it is Recall as well), True Negative Rate (TNR), Accuracy
Rate (ACC), and Positive Predicted Value (PPV, it is Precision as
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well). Let NTP , NFP , NTN , NFN and NTotal = N(N − 1)/2 be the
total number of true positive, false positive, true negative, false
negative and possible links among all the nodes in the net-
work (undirected network applies), respectively. These metrics
are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TPR =
NTP

NTP + NFN

TNR =
NTN

NTN + NFP

ACC =
NTP + NTN

NTotal

PPV =
NTP

NTP + NFP
.

(24)

The larger the ACC, PPV, TPR and TNR values are, the better
the reconstruction performance is. The network reconstruction is
accomplished just when the values of TPR and TNR both reach 1
or the value of ACC reaches 1.

5.4. Effects of the measurement error on regression methods

Measurement error can affect the reconstruction of networks.
To test the effects of measurement error on four regression meth-
ods, experiments are conducted on a variety of test networks.

Here we choose the Dolphins networks on 1-D Logistic map
and the LFR Benchmark network on 2-D Hénon map to show
the results, respectively. Set the parameters of ridge, lasso and
elastic net as 10−6, 50 and (50, 10−6) for Dolphins network,
respectively and as 10−6, 100 and (100, 10−6) for LFR Benchmark
network, respectively. The results are shown in Figs. 1 and 2.
Each experimental result is an average of 100 repetitions in the
following parts.

Fig. 1(a) shows the bars of the squared bias and variance of
the reconstructed Dolphins network on 1-D Logistic map. And
Fig. 1(b) shows the bars of the squared bias and variance of the
reconstructed LFR Benchmark network on 2-D Hénon map. The
summation of the squared bias and variance is MSE which repre-
sents the estimated error of βi. The more accurate the estimation
of βi is, the higher the success rate of network reconstruction is.

It can be seen from the figures that the values of squared bias,
variance and MSE of the four regression methods grow with the
increase of σ . By comparing two figures in Fig. 1(a) or Fig. 1(b),
we can also find that both the values of squared bias and variance
grow rapidly with the increase of σ in the case of the least squares
and ridge methods, while growing slowly in the case of the lasso
and elastic net methods.

With the measurement error considered and the matrix Φ̃
composed of measurement data, all four regression methods be-
come biased estimators in estimating the β̃i of y i = Φ̃ · β̃i. Each
bar of squared bias in Fig. 1 demonstrates this.

Fig. 2(a) shows the curves of the TPR, TNR, ACC and PPV of the
Dolphins network on 1-D Logistic map. And Fig. 2(b) shows the
curves of the same metrics of the LFR Benchmark network on 2-D
Hénon map.

In the same range of noise, as shown in Fig. 2, lasso and elastic
net can accomplish the reconstruction of the test networks while
it becomes more and more difficult for the least squares and ridge
to finish reconstruct of the network as the noise increases.

In summary, four regression methods are biased estimators
when the measurement error is taken into consideration. The
increase of measurement error results in the increases of bias and
variance first, and then in the changes of MSE, TPR, TNR, ACC and
PPV. And a conclusion can be drawn that the network structure,
as estimated by least squares and ridge regression, will have more
and more deviation from the real network structure along with
the increase of measurement error, whereas lasso and elastic net
are relatively insensitive to a certain range of measurement error.

5.5. Feature selection function on network reconstruction

Since lasso and elastic net have L1-norm penalties, they both
have the function of feature selection. We define #Data = q/p as
the ratio of the measurements to features, which can represent
the ability of feature selection. Here q is the number of measure-
ments and p is a fixed value for a particular network (for example,
p = 2N + 1 = 125 for Dolphins network on 1-D Logistic map).
Lasso and elastic net can still estimate β̃i corresponding to each
node accurately when q ≪ p, and further reconstruct the network
structure completely. But least squares and ridge methods do
not have the feature selection function, enough measurements
are needed to completely reconstruct the networks for these two
methods. Thus, #Data can represent the proportion of measure-
ments required for completely network reconstruction and it can
also represent the performance of feature selection directly. The
less measurements are needed, the more robust the algorithm is.

In order to test the effect of #Data on the network reconstruc-
tion by the four regression methods, we do some experiments of
Dolphins network on 1-D Logistic map. Here fix the observation
error as 5 × 10−4, set the parameters of ridge, lasso, and elastic
net as 10−6, 50, (50, 10−6), respectively. ACC is used to evaluate
our results.

The effect of the available measurements on the network
reconstruction by the four regression methods is shown in Fig. 3.
Its vertical axis represents ACC, and the horizontal axis is #Data.

Fig. 3(a) indicates the relationships between #Data and ACC
when the network is reconstructed with the least squares and
ridge methods. Fig. 3(b) indicates the relationships by the lasso
and elastic net methods. As can be seen from Fig. 3, the more
number of edges is correctly reconstructed as the #Data (available
measurements) increases. By comparing (a) and (b) of Fig. 3, it is
also found that the least squares and ridge need more measure-
ments to completely reconstruct the network than the lasso and
elastic net do.

Tables 1 and 2 show the values of #Data and the correspond-
ing running time by Matlab R2014b when different networks are
completely reconstructed by four regression methods on 1-D Lo-
gistic map and 2-D Hénon map respectively. The least squares and
ridge are solved by computing Eqs. (16) and (18) directly (set the
parameter of ridge as 10−6). The lasso and elastic net are solved
by LARS [39] and LARS-EN [38] respectively (set the parameter λ2
of elastic net as 10−6, set t according to the scale of networks).
Polbook, Football and Netscience are directed networks by nature.
But we handle them into undirected networks herein. The con-
figurations of our computer are as follows: Intel (R) Core (TM)
i3-4170 CPU @3.7 GHz, 12G RAM and 64-bit operating system.

From Tables 1 and 2, it can be found that the required run-
ning time for each regression method increases along with the
gradual increase of N . When the required #Data is relatively
large (e.g. #Data > 0.1) for a specific test network by lasso
and elastic net, least squares and ridge require less running time
than lasso and elastic net. However, according to some results in
Table 2, we find that when the required #Data is small enough
(i.e. q ≪ p, e.g. #Data < 0.1) for a specific test network by
lasso and elastic net, the running time of least squares and ridge
increase dramatically, even several times more than the lasso and
elastic net. This is due to the fact that the least squares and ridge
methods require O(p3) operations, but the lasso and elastic net
methods require O(pt2 + t3) operations for their early stopping
after t steps. When q is slightly smaller than p (i.e. #Data is large),
the value of t is close to or even greater than p, then O(pt2 + t3)
is close to or even greater than O(p3). But when q ≪ p, LARS and
LARS-EN can be set to stop after t (t < p) steps (early stopping).
At this time O(pt2 + t3) = O(pt2) < O(p3).

Tables 1 and 2 verify that lasso and elastic net have the func-
tions of feature selection, while the least squares and ridge have
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Fig. 1. Changes of Squared bias and Variance with increase measurement errors in the case of four regression methods. (a) Dolphins network (N = 62) on 1-D
Logistic map. (b) LFR Benchmark network (N = 100) on 2-D Hénon map. For (a) and (b), the left ones of them mean the bars of least squares or ridge, the right
ones mean the bars of lasso or elastic net. That is, the regression results of least square and ridge are same with each other under the specific parameter settings
and enough measurements, and the results of lasso and elastic net are consistent under the specific parameter settings and enough measurements.

Table 1
Required #Data and running time of each test network when it is reconstructed completely with four regression methods. (1-D Logistic system, σ = 10−4 for least
squares and ridge, σ = 10−3 for lasso and elastic net. For each regression method, the left column is #Data and the right column is running time (Unit: seconds)).
N is the scale of network, and ⟨k⟩ means the average degree. Least squares and ridge need more observations but less time cost, while lasso and elastic net need
less observations but more time cost.

Network N ⟨k⟩ Least squares Ridge Lasso Elastic net

#Data Time #Data Time #Data Time #Data Time

Karate [44] 34 4.6 1.03 0.03 1.23 0.02 0.9 0.49 0.85 0.34
SF [43] 50 3.76 1.01 0.06 1.19 0.1 0.75 1.09 0.72 1.19
Dolphins [45] 62 5.1 1.05 0.15 1.25 0.06 0.65 2.13 0.65 2.35
ER [41] 100 14.86 1.04 0.5 1.26 0.25 0.62 6.6 0.62 6.83
Polbook [46] 105 8.4 1.04 0.56 1.29 0.27 0.61 7.58 0.61 7.53
Football [47] 115 10.66 1.05 0.84 1.28 0.39 0.51 9.7 0.51 8.82

LFR Benchmark [40] 100 10.1 1.04 0.55 1.25 0.28 0.69 6.65 0.69 7.18
500 14.8 1.03 37.88 1.26 36.93 0.46 94.76 0.46 102.69

SW [42] 300 4 1.05 8.01 1.3 5.96 0.36 29.83 0.36 25.11

no such function. In addition, as the size of network increases,
#Data corresponding to lasso and elastic net methods gradually
decrease. This is because p is proportional to N (we assume p =

C1N + 1, here C1 is a constant and C1 > 1), and the increase of N
will lead to the increase of p. Meanwhile, there is q < p or even

q ≪ p, and the increase of N will also lead to the increase of q
by assuming q = C0N (C0 is a constant and C0 < C1). However,
the increase of q with the growth of N is not faster than p with
the growth of N , then #Data will become smaller and smaller
with the growth of N . The requirement of an exceptionally small
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Fig. 2. Curves of four metrics named TPR, TNR, ACC and PPV with increasing measurement error on four regression methods. (a) Dolphins network (N = 62) on 1-D
Logistic map. (b) LFR Benchmark network (N = 100) on 2-D Hénon map. The TPR, TNR, ACC and PPV of the lasso and elastic net methods are always 1 as the σ

increases within limits, indicating that a certain range of observation errors have no effect on the lasso and elastic net to completely reconstruct the networks. But
when σ reaches to a certain extent (e.g. σ = 0.3 ∼ 0.4 × 10−4), least squares and ridge are impossible to reconstruct the network completely.

Fig. 3. ACC values of the reconstructed Dolphins network versus different #Data (available measurements) on 1-D Logistic map. (a) Least squares and ridge. (b)
Lasso and elastic net. More edges are correctly reconstructed as the #Data increases for all regression methods. Specifically, the least squares and ridge need #Data
of 1.09 and 1.15 at least to reconstruct the network completely respectively, whereas the lasso and elastic net, which have the feature selection function, only need
#Data of 0.62 to reconstruct the network completely..

amount of data is particularly important for situations where only
rare information is available.

By comparing Table 1 with Table 2, we can also find that
#Data corresponding to the same network on 2-D Hénon map is
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Table 2
Required #Data and running time of each test network when it is reconstructed completely with four regression methods. (2-D Hénon, σ = 10−4 for least squares
and ridge, σ = 10−3 for lasso and elastic net. For each regression method, the left column is #Data and the right column is running time (Unit: seconds)). Lasso
and elastic net need less measurements than least squares and ridge for each test network. Least squares and ridge need less running time than lasso and elastic
net do when the scale of test network is small, while the opposite is true when the scale of test network is large than 500.

Network N ⟨k⟩ Least squares Ridge Lasso Elastic net

#Data Time #Data Time #Data Time #Data Time

Karate [44] 34 4.6 1.02 0.09 1.08 0.05 0.34 0.27 0.34 0.28
SF [43] 50 3.76 1.04 0.27 1.07 0.16 0.28 0.65 0.28 0.61
Dolphins [45] 62 5.1 1.04 0.37 1.1 0.28 0.23 1.19 0.23 1.27
ER [41] 100 14.86 1.05 1.78 1.1 1.27 0.21 4.97 0.21 5.41
Polbook [46] 105 8.4 1.04 2.51 1.1 1.58 0.2 5.64 0.2 7.19
Football [47] 115 10.66 1.05 3.0 1.1 2.19 0.18 6.53 0.18 8.02

LFR Benchmark [40]
100 10.1 1.05 1.69 1.1 1.32 0.21 5.18 0.21 5.45
500 14.8 1.04 331.22 1.1 360.22 0.07 65.43 0.07 68.9
800 25.3 1.04 2038.24 1.09 2002.7 0.06 222.55 0.06 223.8

SW [42] 500 12 1.04 343.36 1.09 318.24 0.07 64.4 0.07 65.45
Netscience [48] 1589 3.45 1.04 21677.03 1.1 21933.64 0.05 816.49 0.05 841.72

smaller than on 1-D Logistic map. This is because 2-D Hénon map
can generate 2-component measurements with more information
than 1-component measurements which are generated by 1-D
Logistic map.

Therefore, when the size of networks is relatively large and
the observations are not enough, we can consider the lasso and
elastic net for network reconstruction. When the size of networks
is relatively small and there are enough observations, we can con-
sider the least squares and ridge to reconstruct the networks for
their lower computational burdens. And note that when the size
of network is large and the available measurements are relatively
small, the lasso and elastic net have lower computational burdens
than the least squares and ridge methods for their early stopping
functions.

5.6. The relationship of measurement data and error

During the experiments, it can be found that for any network,
the network reconstructing rate can be improved by increasing
the measurements when the observation error increases. Fig. 4(a)
and 4(b) show the changes of #Data with the increase of obser-
vation error under the premise of a 95% or higher reconstructing
success rate (TPR ≥ 0.95 and TNR ≥ 0.95) on 1-D Logistic map
and 2-D Hénon map, respectively. Test networks are Karate [44]
and SF network [43], respectively. For Karate network, we set the
corresponding parameters of the ridge, lasso and elastic net as
10−6, 20 and (20, 10−6). For SF network, we set the corresponding
parameters of the ridge, lasso and elastic net as 10−6, 50 and
(50, 10−6).

The left ones of Fig. 4(a) and 4(b) show the curves of the least
squares and ridge. The right ones of Fig. 4(a) and 4(b) show the
curves of the lasso and elastic net.

It can be seen from Fig. 4 that, regardless of the regression
method, chaotic map and network type, when the measurement
error increases, the reconstruction rate can be guaranteed by
appropriately increasing the number of measurement data. This is
because more measurement data can bring more effective infor-
mation and appropriately reduce the problem of data inaccuracy
due to the increase of measurement error.

5.7. Group selection function on network reconstruction

The ability of selecting ‘‘grouped’’ variables, a property is not
shared by the lasso, but is owned by elastic net. Now we will
analyze the effect of group selection on the problem of network
reconstruction.

Qualitatively speaking, a regression method exhibits the
grouping effect if the regression coefficients of a group of highly

correlated variables tend to be equal. Actually in this paper, the
power series expansion method will introduce some relevant
columns in Φ̃, which will lead to the similar coefficients in β̃i
corresponding to these relevant columns. Specifically, for each
node i, the coefficients corresponding to node j in β̃i will be
similar or even the same. However, all coefficients corresponding
to node j in β̃i serve as a basis for judging whether there is a
coupling from node j to i. Thus the use of elastic net to solve the
coefficient vector β̃i does not affect the accuracy of the network
reconstruction.

Even if the coefficients corresponding to some nodes have
strong correlations, the correctness of network reconstruction
will not be affected as well. There is no necessary relationship
between the strong correlation and edge of node pair. This is why
the results of lasso and elastic net in the previous experiments are
very similar with each other.

The group selection is important in prediction and classifi-
cation problems while the network reconstruction is concerned
with the regression coefficients themselves.

Therefore, according to our experimental results and theoret-
ical research, the group selection is not particularly helpful to
network reconstruction at least in the present situation.

5.8. Comparisons with some other methods

At present, there are many network reconstruction algorithms
based on time series. Researchers took a variety of models to
simulate the time series which are assumed as observation data,
and then deduced the network structure according to the rela-
tionships between these time series. We compare our proposed
algorithm with other state-of-the-art methods [12,15,22,25] in
Table 3 without considering the observation error. Although dif-
ferent dynamic models are used to obtain the observation time
series, these algorithms convert the network reconstruction prob-
lem into the sparse signal reconstruction problem.

In order to be consistent with the contrast algorithms, we
choose the area under the receiver operating characteristic curve
(AUROC) and the area under the precision–recall curve (AUPR) to
evaluate the performance of network reconstruction. The AUROC
is created by plotting the TPR against FPR (False Positive Rate,
FPR = 1−TNR) and AUPR is created by plotting the PPV against
TPR at various threshold settings. Both AUROC and AUPR equal 1,
which indicates that links and null connections can be completely
distinguished from each other with a certain threshold.

From Table 3, it can be seen that the performance of EM-
SIS and EM-Game methods is slightly worse than other methods
which can reconstruct the whole test networks with appropriate
parameters. From these results, it can be found that the rela-
tionship between node dynamics and the structure of complex
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Fig. 4. The relationship curves of #Data and error about different methods. (a) Karate network (N = 34) on 1-D Logistic map. (b) SF network (N = 50) on 2-D Hénon
map. For (a) and (b), the left ones of them mean the curves of least squares and ridge, the right ones mean the curves of lasso and elastic net. For all regression
methods, it is possible to ensure the performance of network reconstruction by appropriately increasing the number of measurement data when the error gets bigger
and bigger.

Table 3
AUROC/AUPR comparisons of our method with some state-of-the-art algorithms. EM-SIS represents the algorithm in [25] which takes the SIS dynamics model, and
EM-Game takes the Game model. Sparse represents the algorithm in [15] which takes the ultimatum games (UG) dynamics model. QR means the algorithm in [22]
which takes a linear network system model. CS stands for the algorithm in [12] which takes the 2-D Hénon map. Ours takes the 2-D Hénon map as well.

Network EM-SIS [25] EM-Game [25] Sparse [15] QR [22] CS [12] Ours
AUROC/AUPR AUROC/AUPR AUROC/AUPR AUROC/AUPR AUROC/AUPR AUROC/AUPR

Karate 0.983/0.982 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
Dolphins 0.998/0.993 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
Football 0.996/0.973 0.999/0.998 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
Polbook 0.94/0.864 0.994/0.991 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
ER(500) 1.0/0.997 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
SW(500) 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
BA(500) 0.983/0.949 0.998/0.997 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

network is closely related indeed. By analyzing the time series of
node dynamics, it is possible to reconstruct the complex networks
completely. The regression methods, as mentioned above in our
paper, can be easily extended to deal with the time series from
other dynamic models.

Except for the reconstruction success rate, we are also con-
cerned about the required measurements and noise immunity
of the algorithms. When the test networks are reconstructed
completely, the less requirement of the observation data is and
the stronger the anti-noise ability is, the more robust and prac-
tical the algorithm is. With the same observation data from 2-D

Hénon map and on the premise of reconstructing the network
completely, we compare the required measurements (#Data) and
anti-noise ability of our method (lasso is selected) with CS-based
method [12] in Table 4.

From Table 4, we can see the comparisons of CS and our
method without the noise (σ = 0) and with the noise (σ = 10−4).
Without the noise, CS-based method needs less measurements
than ours. But it is impossible to reconstruct the networks com-
pletely when some noise is introduced. Therefore, our algorithm
is a trade-off between limited measurement data and noise.
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Fig. 5. The reconstruction of an undirected weighted network on 1-D Logistic map. (a) Original test network (b) Result of the least squares or lasso (c) Result of
the ridge or elastic net. The value near each edge means the weight between the node pair at the ends of each edge. The results of (b) and (c) prove that we can
reconstruct the undirected weighted networks with the weights which very close to the truth.

Table 4
Required #Data and anti-noise ability comparisons of our method with CS-based
method [12] when the test networks are reconstructed completely. σ = 0 means
no measurement error.
Network CS (σ = 0) CS (σ = 10−4) Ours (σ = 0) Ours (σ = 10−4)

Karate 0.22 – 0.22 0.28
Dolphins 0.13 – 0.2 0.23
Football 0.1 – 0.17 0.2

– means that the network cannot be reconstructed completely.

5.9. Extension to the weighted network

The previous experiments in this section are based on the
undirected and unweighted networks. However, there are not
any prior conditions under which to constrain our proposed
method only to be applied to the undirected and unweighted
networks. Therefore, the proposed method can be easily extended
to weighted networks by replacing the coupled matrix C ij with
a weight matrix. A very simple undirected weighted network
(N = 5) on 1-D Logistic map is taken as an example, which is
shown in Fig. 5. In this experiment, we set σ = 10−6, and set the
parameters of ridge, lasso and elastic net as 10−9, t = 10, (t , λ2)
= (10, 10−9). The threshold δ is used to determine whether there
is a link between two nodes and the estimated coefficients are
taken as the weights directly.

Fig. 5(a) is the topological graph of an undirected weighted
network, Fig. 5(b) is the reconstruction result of the least squares
or lasso, and Fig. 5(c) is the reconstruction result of the ridge or
elastic net.

From Fig. 5, it is found that the proposed method in this paper
can reconstruct all edges of the weighted network (TNR, TPR, ACC
and PPV are all 1). And the reconstructed weights are very close
to the true weights. Therefore, we can draw a conclusion that
the proposed method is also suitable for the reconstruction of
weighted networks.

5.10. Extension to the directed network

Our proposed method is not only suitable for weighted net-
works, but also suitable for directed networks. And it can also
show the similar rules obtained in the previous parts of this
section when reconstructing the directed networks by using four
regression methods.

Here we test several directed networks such as Children’s
friendship [50], Hens [51], Amazon books [52], ER network to
prove that the proposed method in this paper can completely
reconstruct directed networks. We set #Data = 1.5, σ = 0.3 ×

10−4, the parameters of ridge and elastic net as λ = λ2 = 10−6.
The parameter t (stop step) of lasso or elastic net is set according
to the size of test network which is listed in Table 5.

Table 5
Reconstruction results of the directed networks. Since four regression methods
can completely reconstruct the directed network under the appropriate param-
eter settings, we only list the reconstruction results once which come from any
one of four regression method.
Network N ⟨k⟩ t TPR TNR ACC PPV

Children’s friendship 22 8.05 30 1 1 1 1
Hens 32 15.5 50 1 1 1 1
Amazon books 105 4.2 50 1 1 1 1
ER 10 3.7 15 1 1 1 1

Table 5 shows the reconstruction results of directed networks
by any one of four regression methods above-mentioned, but
there is no separate description of them for the consistent re-
sults. As can be seen from Table 5, the four regression meth-
ods can completely reconstruct the directed network under the
appropriate parameter settings.

6. Conclusions

In this paper, we adopt four typical regression methods to
solve the problem of network reconstruction which takes ob-
servation error and limited observation data into consideration.
We thoroughly analyze and discuss how to choose the most
appropriate optimization method in the case of different network
reconstruction problems, which can help to understand the inter-
nal mechanisms of network reconstruction, and conclusions are
drawn as follows: Under the premise of sufficient observations,
when the variance of observation error is relatively large, we
can select lasso and elastic net methods which are less sensitive
to observation error to reconstruct the network structure com-
pletely. Under the premise of a certain observation error, when
the observations are insufficient, we can choose lasso and elastic
net methods which have the functions of feature selection to
reconstruct the structure of network. When the size of network
is relatively small and there are enough observations, we can
choose the least squares and ridge methods which have lower
computational burden. We should note that when the size of
network is large and the required measurements to completely
reconstruct the network are relatively small enough, the com-
putational burdens of lasso and elastic net methods are even far
lower than the computational burdens of least squares and ridge
for their early stopping.

The proposed method can not only reconstruct the undirected
networks, but also reconstruct the directed and weighted net-
works. Therefore, it is concluded that the reconstruction of differ-
ent types of networks has similar laws with the same regression
method.

Our conclusions may help to select appropriate optimization
methods based on actual situations. And our network reconstruc-
tion algorithm may help to understand the relationship between
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the structure of actual complex system and its dynamics, which
can be used for knowledge discovery and data mining.
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