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Linear minimum mean square Error (LMMSE) estimation is a classic estimate algorithm. Here, 

the matrix inverse lemma is applied to proof two associated conclusions. The first is that the joint 

LMMSE estimation is information theoretically optimal in linear Gaussian channels. The second 

is that the LMMSE estimation is equivalent to the estimation consisting of noise whitening and 

match filter (NW-MF) in linear Gaussian channels. 

 

I. LMMSE for Linear Gaussian Channels 

Consider the linear Gaussian channel presented by 

y=Hx+w                                  (1) 

Here, x is an N-dimensional state vector, y is a M-dimensional (M≥N) observation vector, H is 

observation matrix, and w is a M-dimensional additive Gaussian white noise (AWGN) vector with 

( )0, MNw 0 I .  

  Given the first two moments of x and y, the LMMSE estimation of x can be expressed by, from 

[1], 

( )1ˆ
x xy y y

−= + −x μ K K y μ                            (2) 

Here,  Ex =μ x and  Ey =μ y  are the expectation values of x and y, respectively,  
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( )( )E
H

xy x y
 = − −
  

K x μ y μ  is the cross-correlation matrix of x and y, and 

( )( )E
H

y y y
 = − −
  

K y μ y μ  is the autocorrelation matrix of y.  

 

II. Matrix Inverse Lemma 

Lemma 1 (matrix inverse lemma [2]) For matrices A, B, C and D with proper sizes, it has 

             ( ) ( )
11 1 1 1 1 1
−− − − − − −+ = − +A BCD A A B C DA B DA                    (3) 

if A is invertible.  A simplified version of this matrix inverse lemma is  
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where b is a vector, c is a scalar, and b  is the Euclidean norm of b. 

 

III. The Optimality of Joint LMMSE 

   The information theoretic optimality of LMMSE with successive decoding in the linear 

Gaussian channel has been discussed in several scenarios [3]-[6]. However, the direct proof of the 

optimality of joint LMMSE detection has not been reported, to the best of our knowledge. Here, a 

proof is given by utilizing the relation of differential entropy and the determinant of 

autocorrelation matrix and the matrix inverse lemma. In this proof, the linear Gaussian 

multiple-input multiple-output (MIMO) is taken as the practical example to facilitate the 

presentation.  

Theorem 1: The Joint LMMSE estimation is information theoretically optimal for linear Gaussian 

channels.  

Proof: 

 Take the linear Gaussian MIMO channel as example. The x, y and H in (1) can be interpreted 

as the transmit signal, receive signal, and MIMO channel matrix, respectively. The mutual 

information of x and y conditioned on H is, from [7], 

( )
0

1
; log H

M xI
N

= +x y H I HK H                        (5) 

with |·| denoting the determinant of the matrix argument.  

 On the other hand, as shown in Fig. 1, consider the concatenated system by the linear 



Gaussian channel and LMMSE estimator. The input and the output variables are x and x̂ , 

respectively. Therefore, the proof of Theorem 1 can be replaced by the proof of 

( ) ( )ˆ; ;I I=x y H x x H , i.e., the LMMSE estimator is information-looseness.   
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Fig. 1 LMMSE estimator in fixed Gaussian MIMO channel. 

Define the estimation error as  

ˆ= −x x x                                  (6) 

Then, ( )ˆ;I x x H  can be computed by 
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Here h(·) denotes the differential entropy of the argument, 
xK  and 

xK are the autocorrelation 

matrices of x and x , respectively. The fourth line follows from that the differential entropy per 

complexity dimension is  
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x
K                 (8) 

   In the LMMSE estimation, from (1), it has 

1

x x xy y yx

−= −K K K K K                                (9) 

with 

H H

xy x yx= =K K H K                                 (10) 

0

H

y x MN= +K HK H I                               (11) 

Then, (7) can be further computed by 
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Here, (i) and (iv) follow from + = +I AB I BA , (ii) is from the matrix inverse lemma (3) with 

N=A I , 1 1 2

0

H

xN −=B K H , 
M=C I  and 1 2

x=D HK , and (iii) is from 
11 −− =A A .           □ 

 

IV. The Equivalence of LMMSE and NW-MF 

Define xk as the k-th entry of the N-dimensional state vector x, i.e., x=(x1, x2, …, xN)T.  

Consider the LMMSE estimation of xk. It is more convenient to rewrite (1) as 

k k j j

j k

k k

x x

x



= + +

= +

y h h w

h z

                          (13) 

with j j

j k

x


= +z h w . Without loss of generality, x is assumed to be zero-mean, i.e., x =μ 0 . 

Define the autocorrelation matrix of z by  

( )( )( ) 0E E
H H H

z z z j j j M

j k

P N


 = − − = = +  K z μ z μ zz h h I                (14) 

with 
2

=Ej jP x 
  

. 

   In [7], the LMMSE estimate of xk is realized by the NW-MF described as follows. First, the 

NW is performed as 

1 2 1 2 1 2

z z k k zx− − − = = +y K y K h K z                           (15) 



Then, a MF is used as 

( ) ( ) ( )1 2 1 2 1 2 1 2 1 2
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From (15) and (16), the NW-MF estimate vector is 1

NW-MF

H H

k z

−=v h K  since 1H H

k z

−=y v h K . The 

declaration that NW-MF is equivalent to LMMSE is based on the relation between 

signal-to-noise-ratio (SNR) and mean square error (MSE) (Exercise 8.18, [7]).  Here, this 

conclusion is presented as Theorem 2 and an alternative proof is given.  

Theorem 2: The NW-MF estimation is equivalent to the LMMSE estimation in the linear 

Gaussian channel.  

Proof: 

    With the zero-mean assumption, the standard LMMSE estimate vector is 1

LMMSE k

H

x y y

−=v K K  

from (2). Therefore, the proof of Theorem 2 is equivalent to the proof that LMMSE NW-MF

H H=v v  with 

a scalar . 

    Note that  

( )( ) ( )E E
k k

H H H

x y k x y k k k k kx x x P   = − − = + =
    

K y μ h z h             (17) 
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K y μ y μ yy

h z h z h h K

                (18) 

It has 

( )
1

1

LMMSE k

H H H
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−

−= = +v K K h h h K                   (19) 

Using the matrix inverse lemma (4), it has 
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Then, 
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with  
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   □ 

VI. Conclusions 

 Applying the matrix inverse lemma, two conclusions associated with LMMSE were proved. 

Specifically, first, the information theoretical optimality of LMMSE in the linear Gaussian channel 

was proved based on the relation of the differential entropy with the determinant of the 

autocorrelation matrix. Second, an alternative proof of the equivalence of NW-MF and LMMSE 

was given based on the linear relation of the two estimation vectors.  
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