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Abstract—Maximum-likelihood (ML) decoding algorithms
for Gaussian multiple-input multiple-output (MIMO) linear
channels are considered. Linearity over the field of real numbers
facilitates the design of ML decoders using number-theoretic
tools for searching the closest lattice point. These decoders are
collectively referred to as sphere decodersin the literature. In
this paper, a fresh look at this class of decoding algorithms is
taken. In particular, two novel algorithms are developed. The first
algorithm is inspired by the Pohst enumeration strategy and is
shown to offer a significant reduction in complexity compared to
the Viterbo–Boutros sphere decoder. The connection between the
proposed algorithm and the stack sequential decoding algorithm
is then established. This connection is utilized to construct the
second algorithm which can also be viewed as an application of
the Schnorr–Euchner strategy to ML decoding. Aided with a
detailed study of preprocessing algorithms, a variant of the second
algorithm is developed and shown to offer significant reductions
in the computational complexity compared to all previously
proposed sphere decoders with anear-ML detection performance.
This claim is supported by intuitive arguments and simulation
results in many relevant scenarios

Index Terms—Decision feedback equalization (DFE), lattices,
maximum-likelihood (ML) detection, minimum mean-square
error (MMSE), multiple-input multiple-output (MIMO) channels,
Pohst enumeration, sequential decoding, stack algorithms.

I. INTRODUCTION

I N several communication problems, the received signal is
given by a linear combination of the data symbols corrupted

by additive noise, where linearity is defined over the field of real
numbers. The input–output relation describing such channels
can be put in the form of the real multiple-input multiple-output
(MIMO) linear model

(1)

where , denote the channel input, output,
and noise signals, and is a matrix representing
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the channel linear mapping. Typically, the noise components
are independent and identically distributed

(i.i.d.) zero-mean Gaussian random variables with a common
variance, and the information signalis uniformly distributed
over a discrete and finite set , representing the
transmittercodebook. Under such conditions and assuming

perfectly known at the receiver, the optimal detector:
that minimizes the average error probability

is the maximum-likelihood (ML) detector given by

(2)

For the sake of simplicity, we assume that , where
is a pulse amplitude modulation (PAM) signal set [1] of size,
i.e.,

(3)

with . More general signal sets will be
briefly considered in Section V.

Under the assumption (3), by applying a suitable translation
and scaling of the received signal vector, (2) takes on thenor-
malizedform

(4)

where the components of the noisehave a common variance
equal to .

In this paper, we consider a class of algorithms, generally
known as sphere decoders [2]–[6], [8], that compute or approx-
imate (4) with a polynomial expected complexity within a wide
range of system parameters. Throughout the paper, the terms
“decoding” and “detection” are used interchangeably to refer to
the same procedure. Before proceeding further, we review some
applications that provide the main motivation for the rest of the
work.

1) Linear-Dispersion Encoded Quadrature Amplitude Mod-
ulation (QAM) Over a Frequency-Flat MIMO Channel:Con-
sider an -transmit, -receive antennas system with fre-
quency-flat quasi-static fading [9], [10]. The baseband complex
received signal after matched filtering and symbol rate sam-
pling is given by

SNR
(5)
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where is the channel matrix whose th element
is the complex fading gain from transmit antennato re-

ceive antennaand , with denoting the identity
matrix of appropriate dimension, is a sequence of independent
proper Gaussian noise vectors with i.i.d. components. Assuming

and , the factor SNR in (5) denotes
the signal-to-noise ratio (SNR) per receiving antenna defined as
the ratio of the total transmit energy per channel use divided by
the per-component noise variance.

Let denote a squared QAM signal set with signal points
[1]. Assume that the transmitter maps blocks with in-
dependent and uniformly distributed entries (information sym-
bols) onto transmit arrays of the form

(6)

where : are the linear dis-
persion codegenerators[11]–[13]. Then, the array

is transmitted column by column in
channel uses. Due to the linearity of the channel (5) and of
the encoder (6), one can easily see that there exists a matrix

such that the ML detection can be written in the
form (4). In general, matrix depends on the physical channel
matrix and on the code generators (see [11] for
an explicit expression of the matrix in terms of and the
code generators). A particularly simple case corresponds to the
transmission of uncoded QAM symbols. In this case, ,

, , and is given explicitly by

SNR
(7)

2) Block Transmission Over Time-Selective or Frequency-
Selective Fading:In [14], linearly block-coded transmis-
sion for time-selective fading was considered. The complex
baseband channel is given by , where now

, is the sequence of scalar fading
coefficients, and is a suitable rotation matrix. Similarly, for
frequency-selective slow fading we can work in the frequency
domain to obtain linearly precoded orthogonal frequency-di-
vision multiplexing (OFDM) schemes (see, for example, [15]
and references therein) in the same form as above, where

and denotes the fading channel
frequency response at theth OFDM subcarrier.

3) Multiple-Access Gaussian Waveform Channel (CDMA):
The canonical baseband complex model for a-user syn-

chronous code-division multiple access (CDMA) system is
given by [16]

(8)

where the columns of represent the (discrete-time)
users’ signature waveforms, is a diagonal matrix of
amplitudes, and is a vector containing the modulation
symbols transmitted by the users in theth symbol interval. In
most CDMA systems, the user symbols take on values in the

4-QAM signal set. Again, after suitable translation and scaling,
the ML joint detection of the user symbols can be put in the
form (4) [17], [18].

It is well known that the minimization (4) for arbitrary and
is NP-hard (see [3], [6], [19], [20]). Nevertheless, it has been

shown recently that in many relevant cases, for a certain range
of system parameters such as SNR, and , theaverage
complexity of some algorithms implementing or approximating
ML detection is polynomial in (roughly, ). The reason
of this behavior is that, in (1), the received pointis not arbi-
trary, but it is obtained by perturbing the transmitted point
by the additive noise . Therefore, it can be expected that as
the SNR increases, the average complexity decreases, for fixed

and .
This fact has been shown by theoretical analysis in [21] in the

case of uncoded QAM over an frequency-flat MIMO
channel with , having i.i.d. entries , and
thebasicsphere decoder, known as Pohst enumeration (see de-
tails later). However, the same fact has been observed in more
general cases by computer simulations in several recent works
(e.g., [22]–[24]). While the exact average complexity analysis of
the basic sphere decoder for general linear-dispersion codes and,
a fortiori, for improved sphere decoding algorithms as those
proposed in this work, appear to be intractable, finding improve-
ments on the existing algorithms and illuminating the tradeoffs
and relationships between the different approaches is relevant
on its own.

Developing efficient sphere decoders to solve or approxi-
mate (4) has recently gained renewed attention mainly because
of their applications to multiple-antenna systems [8]. This
interest is due to the significant performance gain achieved
by sphere decoders compared to other suboptimal detection
schemes [24]–[26], and to their average polynomial com-
plexity (experimentally demonstrated) at medium-to-high
SNR. Moreover, the ML detector can be easily augmented to
provide symbol-by-symbol soft output, in the form of approx-
imated posterior marginal probabilities . The resulting
soft-output detector forms the core of some iterative decoders
based on Belief–Propagation (see, for example, [27]–[31]).

The main contribution of this paper is a fresh look at the class
of sphere-decoding algorithms. We start by reviewing the basic
Pohst and Schnorr–Euchner enumeration strategies for infinite
lattices in Section II. In Section III, we propose two variants of
the basic algorithms in order to take into account finite PAM
signal sets. We also show that the proposed algorithms can be
interpreted as a chain of sequential decoding stages, where each
stage is based on a special case of thestack algorithm[32]. This
observation makes precise the intuition given in [27] that sphere
decoding and sequential decoding are “similar algorithms,” and
provides a path for cross fertilization between the rich bodies of
work on sequential and lattice decoding. In Section IV, we dis-
cuss some heuristics for preprocessing aimed at transforming
the problem so that the resulting algorithm has lower average
complexity while still being ML (or near ML). In Section V, we
discuss some extensions of the proposed algorithms to handle
general lattice codes and noninvertible channel matrices. Fi-
nally, the performance of the proposed algorithms and the im-
pact of various preprocessing methods are investigated through
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computer simulations in a number of relevant examples in Sec-
tion VI. This simulation study, along with some intuitive ar-
guments, lead to the conclusion that one of the proposed al-
gorithms uniformly outperforms all known sphere decoders in
terms of receiver complexity, while offering near-ML detection
performance (i.e., the performance is within a very small frac-
tion of 1 dB from ML in all considered scenarios). In the sequel,
unless otherwise stated, we assume thatis an real ma-
trix with and .

II. THE POHST AND SCHNORR–EUCHNER ENUMERATIONS

For and , consider the minimization

(9)

This is analogous to (4) but is replaced by , the (infinite)
ring of integer numbers. The set is an -di-
mensional lattice in [33]. The search in (9) for theclosest
lattice pointto a given point has been widely investigated in
lattice theory. In general, the optimal search algorithm should
exploit the structure of the lattice. For general lattices, that do
not exhibit any particular structure, the problem was shown to be
NP-hard. In [2], however, Pohst proposed an efficient strategy
for enumerating all the lattice points within a sphere with a cer-
tain radius. Although its worst case complexity is exponential in

, this strategy has been widely used ever since inclosest lat-
tice pointsearch problems due to its efficiency in many useful
scenarios (see [6] for a comprehensive review of related works).

The Pohst enumeration strategy was first introduced in dig-
ital communications by Viterbo and Biglieri [4]. In [5], Viterbo
and Boutros applied it to the ML detection of multidimensional
constellations transmitted over single antenna fading channels,
and gave a flowchart of a specific implementation. More re-
cently, Agrell et al. [6] proposed the use of the Schnorr–Eu-
chner refinement [7] of the Pohst enumeration in theclosest lat-
tice pointsearch. They further concluded, based on numerical
results, that the Schnorr-Euchner enumeration is more efficient
than the Viterbo–Boutros (VB) implementation.

Pohst enumeration is briefly outlined as follows. Let
be the squared radius of an-dimensional sphere
centered at . We wish to produce a list of all points of

. By performing the Gram–Schmidt orthonor-
malization of the columns of (equivalently, by applying QR
decomposition on ), one writes

(10)

where is an upper triangular matrix with positive
diagonal elements, is an zero matrix, and
(resp., ) is an (resp., ) unitary matrix. The
condition can be written as

(11)

where and . Due to the upper
triangular form of , the last inequality implies the set of con-
ditions

(12)

By considering the above conditions in the order fromto
(akin to back-substitution in the solution of a linear upper

triangular system), we obtain the set of admissible values of
each symbol for given values of symbols .
More explicitly, let denote the last

components of the vector. For a fixed , the com-
ponent can take on values in the range of integers

where

(13)

If

or if , then (the empty set).
In this case, there is no value of satisfying the inequalities
(12) and the points corresponding to this choice of do not
belong to the sphere .

Pohst enumeration consists of spanning at each levelthe
admissibleinterval , starting from level and
climbing “up” to level . At each
level, the interval is determined by the current values
of the variables at lower levels (corresponding to higher in-
dexes). If is nonempty, the vectors ,
for all , yield lattice points .
The squared Euclidean distances between such points andare
given by

The algorithm outputs the pointfor which this distance is min-
imum. If, after spanning the interval corresponding to
(ground level), no point in the sphere is found, the sphere is de-
clared empty and the search fails. In this case, the search squared
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radius must be increased and the search is restarted with the
new squared radius.

Pohst enumeration is based on the so-callednatural spanning
of the intervals at each level, i.e., takes on values in
the order . Schnorr–Eu-
chner enumeration is a variation of the Pohst strategy where the
intervals are spanned in a zig-zag order, starting from the mid-
point

(14)

(where denotes rounding to the closest integer). Hence, the
Schnorr–Euchner enumeration will produce at each levelthe
(ordered) sequence of values

if

or the (ordered) sequence of values

if

Similar to the Pohst enumeration, when a given value ofre-
sults in a point segment outside the sphere, the next value of

(at level ) is produced.
Note that with the Schnorr–Euchner enumeration one can set

. Obviously, in this way, the event of declaring an
empty sphere never occurs. It is also easy to see that the first
point found with corresponds to the Babai point [6].
In the communication theory parlance this point is referred to
as thenulling and canceling[25] or zero-forcing decision-feed-
back equalization(ZF-DFE) point. Explicitly, this is given by
the back-substitution with integer quantization (slicing)

(15)

for . As we shall see in Section VI,
the drawback of setting is that the distance

might be quite large, therefore, the algorithm
will eventually span a large number of points before finding
the ML solution.

III. ML D ETECTION OFFINITE-ALPHABET CONSTELLATIONS

Probably the most immediate application of the Pohst enu-
meration to solve (4) consists of the following steps.

1) Fix according to some criterion (see the discussion in
Section VI).

2) Apply the Pohst enumeration with the interval boundaries
modified as

(16)

and obtain the list of all vectors such that
.

3) If the list is nonempty, output the point achieving min-
imum distance (i.e., the ML decision). Otherwise, increase
and search again.

The average complexity of this simple algorithm has been
given in closed form in [21] for the special case whereis a
random matrix with i.i.d. entries .

The above sphere decoder can be improved in several ways.
The VB implementation is essentially the same algorithm given
above, but is changed adaptively along the search: as soon
as a vector is found such that , then

is updated as

and the search is restarted in the new sphere with the smaller
radius. The drawback of this approach is that the VB algorithm
may respan values of for some levels, , that have
already been spanned in the previous sphere.

Next, we give the details of two new sphere-decoding algo-
rithms. The first, namely Algorithm I, is similar to the VB algo-
rithm, but avoids respanning of already spanned point segments.
The second, namely Algorithm II, can be seen as a modifica-
tion of the Schnorr–Euchner enumeration in order to take into
account the finite signal set boundary. Interestingly, both algo-
rithms arefunctionally equivalentto a chain ofstack sequential
decoders[32], where the stack content and path metric of each
decoder depend on the outcome of the previous decoder.

Algorithm I (Input , , . Output ):
Step 1. (Initialization) Set , ,

(current sphere squared radius).
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Step 2. (Bounds on ) If go to Step 4. Else

and set .
Step 3. (Natural spanning of the interval ) .

If go to Step 5, else go to Step 4.
Step 4. (Increase: move one level down) If terminate,

else set and go to Step 3.
Step 5. (Decrease: move one level up) If , then

let

let and go to Step 2

Step 6. (A valid point is found) Compute

If let , save , and update the upper
boundaries

for all . Go to Step 3.

As in the VB implementation, if no valid point is found, is
increased and the algorithm is restarted. Note that the variable

is the decision feedback of a ZF-DFE when
the decisions on the symbols from to are the current
values of .

As it will become clear in the following, it is useful to visu-
alize sphere decoders for finite PAM signals as abounded search
in a tree. In fact, thanks to the upper triangular form of, the
symbol vectors can be represented as paths in a tree
of depth , where the possible values of symbolat level
correspond to branches at depth . For example, Fig. 1
shows the tree for and , corresponding to the
case of uncoded 4-QAM transmission over a multiple-antenna
channel with and . Each branch at depth
is labeled by the branch metric defined by

(17)

where are the symbols labeling the
path connecting the branch with the root. The path metric for
path is defined as

(18)

and coincides with the term in Algorithm I.

Fig. 1. Tree representation of the paths searched by the sphere decoder in the
casem = 4 andQ = 2. A particular path is evidenced as an example.

Generally speaking, a sphere-decoding algorithm explores
the tree of all possible symbol sequences and uses the path
metric in order to discard paths corresponding to points outside
the search sphere.

The main advantage of Algorithm I over the VB algorithm
is that once we find a lattice point, we just update all the upper
bounds of the intervals without restarting. In other words, partial
paths in the tree that have already been examined will not be
reconsidered after reducing the sphere radius. We can prove the
following.

Proposition 1: For a given and , the number of tree
nodes visited by Algorithm I is upper-bounded by the number
of tree nodes visited by the original Pohst enumeration and by
the VB algorithm.

Proof: We give the proof for the VB implementation; the
proof is clear for the original Pohst algorithm. To this end, it
suffices to show that the lower bounds when updating

by and restarting from Step 1 are smaller than the current
values of the components of(Step 6 in Algorithm I). But this
is clear since the current point is inside the sphere of squared
radius .

Sequential decoders comprise a set of efficient and powerful
decoding techniques able to perform close to ML decoding,
without suffering the complexity of exact ML decoding, for
coding rates not too close to the channel capacity [32], [34].
Next, we interpret Algorithm I as a chain of sequential decoders.
To facilitate this interpretation, we make use of thestack sequen-
tial decoding algorithm, briefly summarized as follows. Con-
sider a tree of depth , where each branch at level
is labeled by and is associated with a weight
which depends, in general, on bothand the path connecting
the branch with the root. The path metric associated
with the path is given by (18). The stack algorithm is de-
fined by a sorting rule used in conjunction with the above path
metric. At the beginning, the stack contains only the root of
the tree with an associated metric equal to zero. At each step,
the algorithm sorts the stack according to the sorting rule and
expands the path at the top of the stack, say, by gener-
ating the extensions : . Then, for each ex-
tension, the algorithm computes the associated path metric as
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, and substitutes the orig-
inal path with all its extensions. The algorithm stops when one
path in the stack is fully extended (i.e., it reaches depth).

Now, consider the branch metric (17) and the following stack
sorting rule (denoted by the ordering relation):

Sorting Rule I: If , the path cannot be ex-
tended and should be eliminated from the stack. Consider two
paths and such that both and are
nonempty. Then, if either or and .

In words, Rule I says that path has priority higher than
path if it can be extended without violating the sphere (con-
dition ) and either it has depth larger than or,
if both paths have the same depth, it has a lexicographic priority
(the condition for ). Lexicographic ordering cor-
responds to the natural spanning of the Pohst enumeration.

Suppose that, by applying the stack algorithm for the first
time with the above metric and sorting rule, we obtain one point
in the sphere, say . Then, we can apply the stack algorithm
again, by letting and keeping in the stack all
the paths generated in the first round. This will eventually pro-
duce a second point or declare an empty stack. If a second
point is found, we repeat the stack algorithm a third time, by
letting and keeping in the stack all the partial
paths after the second round. We continue in this way until the
stack is empty, i.e., no more paths in the stack can be extended. It
is immediate to see that this sequence of concatenated stack se-
quential decoding steps isfunctionally equivalentto Algorithm
I, in the sense that both algorithms produce the same set of can-
didate ML vectors in the same order.

However, we hasten to say that Algorithm I, as given above, is
much more efficient (complexity-wise) than the equivalent se-
quential decoding formulation, since thanks to the lattice struc-
ture of the signal set and the choice of this particular sorting
rule, the path at the top of the stack can be predicted at each
step without explicitly maintaining and sorting a stack.

Our second sphere decoding algorithm can now be obtained
as a sequence of concatenated stack sequential decoding steps,
with the followingenhancedsorting rule.

Sorting Rule II: If , the path cannot be
extended and should be eliminated from the stack. Consider
two paths and such that both and
are nonempty. Then, if either or and

.

Rule II is identical to Rule I, except for the fact that
equal-length paths are sorted according to their accumulated
path metric instead of lexicographic ordering. If the stack
algorithm based on Rule II is applied with , the
resulting coincides with the ZF-DFE point given by (14),
with the additional constraint that slicing is forced to give a
value in for each component (notice the analogy with the
Schnorr–Euchner enumeration). Algorithm II can be concisely
formulated as follows.

Algorithm II (Input , , . Output ):
Step 1. (Initialization) Put the root of the tree in the stack, with

the associated metric equal to zero, let and .

Step 2. ( th-stack sequential decoding stage) If the stack is
empty, terminate, else expand the path at the top of the stack
and order the stack with Rule II. If the top path has depth
go to Step 3, else repeat Step 2.

Step 3. (A valid point is found) Let denote the depth- path
found. Then, remove it from the stack, let , save

, let and go to Step 2.

As for Algorithm I, if no valid point is found, is increased
and the algorithm is restarted.

Again, thanks to the particular structure of the problem and
the appropriate choice of the sorting rule, Algorithm II can be
implemented in a much more efficient way that does not require
maintaining and sorting a stack explicitly. This is given as fol-
lows.

Algorithm II, Smart Implementation (Input , , .
Output ):
Step 1. (Initialization) Set , , , and

(current sphere squared radius).
Step 2. (DFE on ) Set and

.
Step 3. (Main step) If , then go to

Step 4 (i.e., we are outside the sphere).
Else if go to Step 6 (i.e., we are inside the
sphere but outside the signal set boundaries).
Else (i.e., we are inside the sphere and signal set boundaries)
if , then let ,

, , and go to 2.
Else ( ) go to Step 5.

Step 4. If , terminate, else set and go to Step 6.
Step 5. (A valid point is found) Let

, save . Then, let and go to Step 6.
Step 6. (Schnorr–Euchner enumeration of level) Let

, , and go to Step 3.

The main difference with Algorithm I is that given the values
of , taking the ZF-DFE on avoids retesting
other nodes at level in case we fall outside the sphere. No-
tice also that in the implementation of the algorithm above, the
branch metric needs to be computed only once
in Steps 3 and 5 (even if it appears twice in Step 3 and once in
Step 5).

By setting , one ensures that the first point found
by the algorithm is the ZF-DFE (or the Babai) point (15). This
choice, however, may result in some inefficiency if the distance
between the ZF-DFE point and the received signal (referred to
as theBabai distance) is very large. This inefficiency becomes
especially significant at very large dimensions, as the algorithm
zig-zags its way in the tree from the ZF-DFE point to the ML
point. By setting to a finite value , oneinformsthe algo-
rithm that the ML solution lies in a sphere of a squared radius

, which allows it to retrace its path in the tree if the squared
Babai distance is larger than .

IV. PREPROCESSING ANDORDERING

The complexity of sphere decoders depends critically on the
preprocessing stage, the ordering in which the components of
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are considered, and the initial choice of. The standard pre-
processing and ordering (implicitly assumed in the formulation
of Algorithms I and II) consists of the QR decomposition of
the channel matrix and the naturalback-substitutioncompo-
nent ordering, given by . However, different
preprocessing/ordering approaches may yield a lower expected
complexity.

1) Columns Ordering According to the Euclidean Norm:In
[3], Fincke and Pohst proposed two modifications of the pre-
processing stage to further reduce the complexity of the Pohst
enumeration for infinite lattices.

a) Apply the Lenstra–Lenstra–Lovász (LLL) reduction algo-
rithm [35] on the upper triangular matrix. The LLL algorithm
finds a unimodular1 matrix such that and has re-
duced lattice vectors and almost orthogonal columns.

b) Order the columns of according to their Euclidean
norms in a nondecreasing order. Clearly, where is the
column ordering permutation matrix, is also a generator matrix
for the lattice generated by .

This approach is useful for the infinite lattice problem. In fact,
(9) can be replaced by

(19)

where is the column ordering permutation matrix. The Pohst,
or Schnorr–Euchner enumeration strategies can be applied to
solve (19). The point of closets to is given by .

The utility of this approach for ML detection of finite signal
sets is questionable. The reason is that, while has
integer components, the image of the hypercubeunder
is not necessarily a hypercube any longer. Therefore, control-
ling the range of is, in general, a very complicated problem.
Without the PAM boundary control, there is no guarantee that
the output of the algorithm will belong to the transmitted signal
set. Therefore, to ensure ML detection, the search may be re-
peated several times, after excluding the undesired lattice points,
which increases the complexity. Overall, our experiments indi-
cate that this modification does not offer complexity reduction
in the ML detection problem.

Nevertheless, a useful heuristic consists of ordering the
columns of according to their Euclidean norms, in a non-
decreasing order. This can be explained as follows. Consider
the ordering of the components of given by the permu-
tation , i.e., we process the components ofin the order

. The recursive upper and lower
bounds in the Pohst enumeration (or, equivalently, in Algo-
rithm I) imply that the span of depends on the spans
of in the same way as the decision on

depends on the decisions on all the previous components
in standard decision-feedback equalization. By choosing the
permutation such that has columns with increasing
Euclidean norms (here denotes the column permutation
matrix corresponding to ), the span of is reduced with
a high probability, so that the expected complexity is reduced.

1A square matrixUUU is said to be unimodular if it has integer components
and its inverse has also integer components or, equivalently, if it has integer
components and a determinant equal to�1.

We note that this column ordering has not been reported in
previous papers on the subject [5], [8], [36], [22], [6]. We have
found that this column ordering also decreases the average
complexity of Algorithm II.

2) V-BLAST ZF-DFE Preprocessing and Ordering:As a
second preprocessing and ordering approach, we propose the
vertical Bell Labs layered space–time (V-BLAST)optimal
detection ordering given in [25]. The goal of this ordering is to
find the permutation matrix such that the QR decomposition
of has the property that is maximized
over all column permutations. The column ordering algorithm
is recursive and yields the optimal permutationin steps.
Let denote the set of columns indexes for the not yet chosen
columns. Then, for the algorithm
chooses such that

where is the matrix formed by the columns
with . The column ordering (equivalently, the or-
dering of the components of) is given by

. There are two heuristic arguments supporting this
preprocessing and ordering approach: 1) in the expressions of
the boundaries (16), we see that a large corresponds to a
small interval , therefore, by maximizing the minimum

, we attempt to reduce the range of each component in the
Pohst enumeration (Algorithm I); 2) the Schnorr–Euchner enu-
meration with infinite squared radius yields the ZF-DFE so-
lution as the first point, and hence, the complexity of Algorithm
II depends on how close the ZF-DFE point is to the ML point.
It has been shown that the V-BLAST detection ordering im-
proves the error probability with ZF-DFE [25]. Therefore, one
can argue that the V-BLAST ordering provides a better quality
ZF-DFE point, i.e., closer on the average to the ML point.

3) V-BLAST MMSE-DFE Preprocessing and Ordering:In
order to further enhance thequality of the first point found
by Algorithm II, we consider minimum mean-square error
(MMSE) instead of ZF filtering. In this MMSE decision feed-
back equalization (MMSE-DFE) preprocessing stage, we first
translate the observationby subtracting the mean signal vector

, where , and consider the variables
taking values in the zero-mean signal set .

Assume that the components are known,
then the unbiased MMSE estimate of the component is
given by

where

is the unbiased MMSE filter, and is the vari-
ance of the random variables, uniformly distributed over .
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The signal to interference plus noise ratio (SINR) for the detec-
tion of from the observation is given by

(20)

A very efficient greedy algorithm for computing the permu-
tation that maximizes and, at the same time,
providing the corresponding MMSE-DFE filter vectors is
given in [37].2 Letting

denote the MMSE-DFE filter bank for the optimal permutation
and

the proposed preprocessing and ordering approach now consists
of the following elements.

a) Computing , , and by using the method of [37].
b) Computing the new observation .
c) Applying either Algorithm I or Algorithm II, to the new

upper triangular (nonequivalent) channel model given by

(21)

where is the upper triangular part of the matrix
and is the column ordering permutation matrix corresponding
to the permutation . In (21), the noise is non-Gaussian and
correlated. However, following the standard approach in equal-
ization, we shall treat it as Gaussian with i.i.d. components

. Hence, Algorithms I and II can be modified to find

(22)

by simply replacing by and by .
It is important to notice that, unlike V-BLAST ZF-DFE pre-

processing, this approach will not yield ML detection, even if
the sphere decoder is initialized by . However, as shown
in the numerical results, the loss in performance, compared to
ML detection, is very marginal and the reduction in complexity,
compared to other sphere decoders, is often significant. It is also
interesting to notice that Algorithm II with the MMSE-DFE pre-
processing stage is akin to the standard approach of reduced
state sequence estimation by delayed decision feedback (see
[38]–[40] and references therein).

A Remark on the Complexity:The impact of the prepro-
cessing approaches on the average complexity depends very
much on how often preprocessing is performed. In fact, prepro-
cessing depends only on the channel matrix. If the channel
is used repeatedly and remains fixed for a long time (a large
number of channel uses), the complexity of preprocessing is
negligible with respect to the complexity of the sphere decoder
search. On the contrary, if changes arbitrarily at each channel
use, then the preprocessing stage may have a considerable
impact on the average complexity.

2While the greedy algorithm is proved to be globally optimal for ZF-DFE
[25], it is not proved to be globally optimal for MMSE-DFE (i.e., over all per-
mutations). However, in practice, the greedy ordering with MMSE-DFE gives
excellent performances.

V. GENERALIZATIONS AND EXTENSIONS

A. ML Decoding of More General Codebooks

Although we described Algorithms I and II for symmetric
PAM signal sets, they can be easily applied to any hyper-rect-
angular codebook

by making the boundaries control dependent on the index
. In order to ensure finding the ML solution in Algo-

rithms I and II, one should incorporate the signal set boundary
control in the search algorithm. Alternatively, one can ignore the
boundaries and run the algorithm to search for theclosest lat-
tice point, which is then projected (or quantized) by imposing
the constellation boundaries only at the end of the algorithm.
Such strategy is known in the literature as lattice decoding (as
opposed to ML detection or minimum-distance decoding [6],
[33]). Interestingly, beyond being suboptimal, lattice decoding
also results in an increased average complexity when using the
original Pohst enumeration [2], [3], the VB implementation [5],
or Algorithm I. This is because controlling the boundaries of the
intervals inside the search can reduce the range of each variable

in the enumeration by excluding many unnecessary points
outside the constellation boundaries. On the other hand, this is
not always the case for Algorithm II.

Algorithms I and II can be also extended to handle general
lattice codes (not necessarily hyper-rectangles carved from
the integer cubic lattice). Consider a lattice with gen-
erator matrix , i.e., . A lattice code (or
constellation) is the set of lattice points , where
is some shaping region [41], [42]. Typically, the shaping region

is chosen to be the -dimensional sphere of given squared
radius . In order to handle this case, we first restrictto be-
long to the hyper-rectangular region

The difference with respect to the previous case is that now there
exist points such that , i.e., , there-
fore, theclosest lattice pointfound by the sphere decoder may
not be a valid codeword. To overcome this difficulty, we modify
Algorithms I (or, equivalently, Algorithm II) as follows. The al-
gorithm now takes and as additional inputs. When a lat-
tice point is found, one tests whether it is a valid point by testing

: if yes, then the algorithm saves , updates the
boundaries, and goes on to examine the next point. Otherwise,
it moves on to the next point without updating the boundaries
and without saving the point found. At the end of the search, if
the algorithm has found a valid point(i.e., such that ),
then this is the ML point, otherwise, one increases the initial
squared sphere radius and restarts the search.

B. More Sources Than Sensors

The proposed algorithms can be generalized to handle the
case by following the approach of [36]. The main idea
is to partition into two vectors with elements and
with elements. This partitioning induces a similar
partition on the matrix , i.e., . Assuming that
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rank , the QR decomposition applied to (with
possibly ordered columns) yields the equivalent model

...
...

. . .
...

...

...
. . .

. . .
...

...
(23)

where the diagonal elements are positive, has the
same statistics of , and . Note that (23) is an
underdetermined system (more unknowns than equations) but
it may still admit a unique solution since is constrained to
belong to a finite and discrete set.

In order to apply Algorithms I and II (in general, any sphere
decoder) to the case of (23), we fix the components ofand
use our algorithms to solve

(24)

where is an appropriate -dimensional hyper-rectangular re-
gion (e.g., in the case of PAM signals we have ). This
can be repeated for every choice of, and the ML point is even-
tually found.

We observe that this approach has an exponential complexity
in independent of the SNR, which seems to be inherent
to the problem itself. Nonetheless, the idea of generalizing the
sphere decoder to has an additional subtle advantage:
once a valid point is found with distance, all values of
such that can be discarded from the begin-
ning. Their exclusion from the search costs only the computa-
tion of the squared distance instead of computing
the distance of the whole point.

VI. SIMULATION RESULTS

In this section, we compare the proposed algorithms with
the basic Pohst enumeration [2], [3] (see also the beginning of
Section III) and the VB sphere decoder [5]. Our experimental
setup corresponds to the transmission of multidimensional
square QAM constellations over a multiple-antenna flat
Rayleigh-fading channel. We consider transmit and
receive antennas and assume that the channel ma-
trix remains fixed during symbols and then
changes randomly. Unless stated otherwise, we perform ZF or
MMSE-DFE V-BLAST optimal ordering of the columns of
matrix . Following in the footsteps of [3], [22], we use the
number of flops as a measure for complexity and we plot the
averagecomplexity exponentdefined as [21], [22]

average number of flops

We only count the flops of the search algorithm without ac-
counting for the cost of the preprocessing stage. In all the sim-

ulations, at least 10 000 channel realizations are generated. We
implemented all the algorithms in floating-point C (for previ-
ously reported algorithms, we followed closely the published
flowcharts), and the programs are invoked inside MATLAB 6
by using mex files.

We follow an ad hocmethod to initialize the decoders by
starting with a small , generally determined by trial and error
depending on the system parameters [4], [8], [6], and increasing
it gradually by steps of until a point is found. In general, the
proper initial choice of is critical in order to minimize the
complexity of the decoders; a too small may result in an
empty sphere, whereas a too large may result in too many
points to be enumerated. We expect the natural spanning algo-
rithms (i.e., original Pohst, VB implementation, and Algorithm
I) to be more sensitive to a large radius initialization than Algo-
rithm II. This is because the first point found by Algorithm II
is the ZF-DFE (or MMSE-DFE) solution, and the algorithm is
not sensitive to increasing beyond the corresponding squared
Babai distance.

Fig. 2 shows the average complexity of Algorithm I as a func-
tion of when decoding a MIMO system with 64-QAM
symbols (corresponding to a spectral efficiency of 24 bits/s/Hz)
at different SNRs. It is seen that the “optimal” value of (i.e.,
the value achieving minimum complexity) decreases as a func-
tion of SNR. For medium to large SNRs (i.e., 12 to 22 dB in
this scenario) the “optimal” values of are small, and the av-
erage complexity of Algorithm I increases considerably by in-
creasing .

Algorithm II is sensitive to the initial squared radius at
larger dimensions, as demonstrated in Fig. 3, where we com-
pare the average complexity of Algorithm II with ZF-DFE and
MMSE-DFE preprocessing over a MIMO system with
a 16-QAM constellation at an SNR of 20 dB. We observe that
MMSE-DFE preprocessing makes Algorithm II more robust to
the initial than ZF-DFE preprocessing. This matches the
intuition that with MMSE-DFE the Babai distance is better,
with high probability, than with ZF-DFE. The optimal choice
of for both algorithms is typically larger than that of Al-
gorithm I. As the dimension increases, even Algorithm II with
MMSE-DFE preprocessing becomes quite sensitive to the ini-
tial radius choice, as shown in Fig. 4 for a MIMO system
with a 16-QAM constellation at different SNRs.

In the rest of this section, we report the average complexity
of all the algorithms when initialized by the corresponding “op-
timal” ad hocvalues for .

Fig. 5 compares the average complexity of the four algorithms
for and a 64-QAM constellation at different SNRs,
where both ZF-DEF and MMSE-DFE preprocessing stages are
used with Algorithm II. Notice that, under the same initializa-
tion conditions, Algorithm I is the most efficient among the nat-
ural spanning algorithms as predicted by Proposition 1, and the
VB implementation is the least efficient. Interestingly, the basic
Pohst enumeration is more efficient than the VB implementa-
tion in certain scenarios, since one does not repeat previously
spanned point segments when counting all the points inside the
sphere. This observation is only true for small dimensions and
with small ; for large dimensions and/or large , the VB
implementation is more efficient than the basic Pohst enumera-
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Fig. 2. Initialization. The average complexity of Algorithm I as a function of the initial squared radius in an uncoded4�4 system with a 64-QAM constellation.

Fig. 3. Initialization. The average complexity of Algorithm II (ZF and MMSE-DFE) as a function of the initial squared radius in an uncoded16 � 16 system
with a 16-QAM constellation.

tion. Algorithm II, with ZF-DFE or MMSE-DFE, is more effi-
cient than the natural spanning algorithms, all under optimized
initializations. Algorithm II with MMSE-DFE is the most ef-
ficient algorithm. It is about 70 times faster than Algorithm I
at small SNRs, and about two times faster at large SNRs. Re-

markably, this significant complexity reduction costs only a very
marginal loss in performance as shown in Fig. 6. For the sake of
comparison, in this figure we also show the performance of the
MMSE linear detector, i.e., a linear MMSE filter followed by
symbol-by-symbol hard decisions [16]. The advantage of ML
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Fig. 4. Initialization. The average complexity of Algorithm II (MMSE-DFE) as a function of the initial squared radius in an uncoded20 � 20 system with a
16-QAM constellation.

Fig. 5. The average complexity of different sphere decoders in an uncoded4� 4 system with a 64-QAM constellation.

(or near ML) with respect to linear detection methods is evi-
dent.

The gain in complexity reduction offered by Algorithm II,
with MMSE-DFE, further increases as the lattice dimension in-
creases as reported in Fig. 7, where Algorithms I and II are

compared over an MIMO system with a 4-QAM con-
stellation at SNRs of 10 and 20 dB. For example, Algorithm II
with MMSE-DFE is about 40 times faster than Algorithm I for

at an SNR of 20 dB. Again, this complexity reduction
comes at almost no cost in performance.
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Fig. 6. The performance of Algorithm II (MMSE-DFE), the MMSE filtering, and ML detection (Algorithm I or II with ZF) in an uncoded4� 4 system with a
64-QAM constellation.

Fig. 7. The complexity of Algorithm II (MMSE-DFE) and Algorithm I in anM �M uncoded system (m = 2M ) with a 4-QAM constellation.

In all the previous figures, ZF-DFE or MMSE-DFE
V-BLAST optimal ordering of the generator matrix columns
was adopted. In Fig. 8, we show the effectiveness of V-BLAST
ordering by comparing it with the natural ordering (the columns
of are processed in the natural order) and the ordering of

the columns according to increasing Euclidean norm for an
MIMO system with a 4-QAM constellation at an

SNR of 20 dB. In this figure, we plot the average number of
flops instead of the average complexity exponents in order to
better visualize the complexity reduction factor. We observe
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Fig. 8. The effect of column ordering on Algorithm II in anM �M uncoded system(m = 2M) with a 4-QAM constellation.

that, as increases, the advantage of the V-BLAST column
ordering becomes more significant. For example, at ,
the V-BLAST ordering gives a complexity reduction factor
of about 13 times over the column ordering based on the
Euclidean norm. This complexity reduction can be attributed to
the improvedqualityof the first point found by Algorithm II.

In summary, driven by extensive numerical evidence3 we con-
clude that Algorithm II, with V-BLAST MMSE-DFE prepro-
cessing and ordering, offers a very attractive implementation of
the sphere decoder with finite-alphabet constellations. This al-
gorithm yields almost ML performance at a polynomial (often
between and ) average complexity in the problem
dimension over a wide range of system parameters, and consis-
tently outperforms all previously known sphere decoders.

VII. CONCLUDING REMARKS

In this paper, we have investigated reduced complexity
methods for ML detection of multidimensional constellations
and lattice codes, based on the Pohst enumeration strategy [2].
Two efficient algorithms were proposed. Algorithm I is directly
inspired by the Pohst enumeration strategy and was shown to
be more efficient than the VB sphere decoder. Algorithm II is
inspired by the Schnorr–Euchner enumeration strategy and is
more robust than the Pohst-based algorithms with respect to the
initial choice of the sphere radius. Both algorithms have been
shown to be functionally equivalent to a concatenated sequence
of the stack sequential decoding algorithm with appropriate
path metrics and stack sorting rules.

3The results reported here are, for the sake of space limitation, a small subset
of our simulations.

By combining Algorithm II with an efficient preprocessing
stage, we obtained a near-ML decoding algorithm that uni-
formly outperforms all known sphere decoders in terms of
receiver complexity. Furthermore, we have discussed some
generalizations of the proposed algorithms to the underdeter-
mined case and to more general codebooks, such as
lattice codes.

We would like to conclude by pointing out that the connection
between sphere decoding and sequential decoding established
in this paper may have wider implications than those exploited
in our work. One would expect the cross fertilization between
the two areas to yield more efficient decoding algorithms, and
to allow for a better understanding of their fundamental limits.
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