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Lowering Error Floors of Irregular LDPC Codes by Combining

Construction and Decoding

Xiaopeng JIAO', Jianjun MU'®, Fan FANG', Nonmembers, and Rong SUN'', Member

SUMMARY  Irregular low-density parity-check (LDPC) codes gener-
ally have good decoding performance in the waterfall region, but they ex-
hibit higher error floors than regular ones. In this letter, we present a hybrid
method, which combines code construction and the iterative decoding al-
gorithm, to tackle this problem. Simulation results show that the proposed
scheme decreases the error floor significantly for irregular LDPC codes
over binary-input additive white Gaussian noise (BIAWGN) channel.
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1. Introduction

Carefully designed irregular low-density parity-check
(LDPC) codes can achieve better capacity-approaching per-
formance than regular LDPC codes under iterative belief
propagation (BP) decoding. With finite block lengths, ir-
regular LDPC codes generally have good decoding perfor-
mance in the waterfall region, but they exhibit higher error
floors than regular ones. This is mainly caused by the fol-
lowing two reasons: small trapping set induced errors [1]
and undetected errors induced by weak minimum distance
property of the irregular codes.

The techniques that can lower the error floors of LDPC
codes mainly fall into three categories: (1) Construct LDPC
codes that are free of small error events, such as cycles, stop-
ping sets and trapping sets [2]-[4]. For example, in [4] the
authors proposed an efficient method to eliminate trapping
sets by using Tanner graph covers. (2) Modify the mes-
sage passing decoders. According to the requirement that
whether the small trapping sets are identified or not, we
can divide this method into two kinds: (I) Trapping set de-
pendent modification, such as look-up table method [5], bi-
mode and bit-pinning decoder [6], on-off attenuated method
[7], and trapping set neutralization method [8]. (II) Trap-
ping set independent modification, such as average decoding
[9], two-stage decoding [10], and selective biasing method
[11]. (3) Add an outer algebraic code such as RS code or
BCH code [6], [7]. Since trapping sets generally have com-
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plicated combinatorial property, it is difficult to enumerate
them by mathematical methods or computer programmes.
Therefore, coping with trapping sets directly during the code
construction or decoding to lower the error floors is difficult.
Thus, the trapping set independent scheme is more appeal-
ing and more applicable.

In this letter, we focus on lowering the error floors
of irregular LDPC codes. A hybrid method, which com-
bines code construction and iterative decoding to combat the
error-floor problem, is presented. Firstly, in order to reduce
the undetected errors, we propose a method to improve the
minimum distance of the LDPC code. Secondly, a postpro-
cessing scheme is proposed to modify the iterative decoder
to alleviate decoding errors induced by trapping sets with
size smaller than the minimum distance. Thus, we can ob-
tain an irregular LDPC code with performance approaching
its asymptotic error performance bound calculated by the
weight distribution of the code. The remainder of this let-
ter is organized as follows. In Sect. 2, distance set, trapping
set and asymptotic error performance bound are reviewed.
Section 3 explains the detailed scheme to lower the error
floors of irregular LDPC codes. Simulation results for the
proposed method are given in Sect.4. Finally, Sect.5 con-
cludes the letter.

2. Distance Set, Trapping Set and Asymptotic Error
Performance Bound

Definition 1 [12]: A distance set D is a subset of variable
node set V, such that all neighbors of the variable nodes in
D are connected to D an even number of times”.

Note that there exists a one-to-one correspondence be-
tween the distance sets and the codewords. A distance set
with cardinality s represents a codeword with Hamming
weight s. Moreover, a distance set is also a stopping set.

Definition 2 [1]: An (a, b) trapping set T is a set of
a variable nodes, for which the induced subgraph of the a
variable nodes and their neighborhood check nodes contains
exactly b odd-degree check nodes.

Definition 3 [10]: For an (a, b) trapping set, if the code
bits associated with the a variable nodes are all the wrong
bits, then the check-sums corresponding to the b odd-degree
check nodes will not be satisfied. These b check nodes are
called unsatisfied check nodes.

*Note that the indices of a distance set are indeed the support
set of a codeword. However, in terms of Tanner graph, we use
distance set instead of support set.
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The dominant trapping sets, which largely contribute
to the BP decoding performance in the error floor region,
both have small values of a and b. Given the weight dis-
tribution of a code, the asymptotic frame error rate (FER)
over additive white Gaussian noise (AWGN) channel with
maximum-likelihood decoding can be estimated by

dyyin+v
min E
Pr(Es/No) ~ 5 ) wf~e:fc[ i"R- Fb) M
0

i=dyiy

where w; denotes the number of codewords with Hamming
weight i, d,.;, is the minimum distance, R is the code rate, v
is a non-negative small integer value and erfc(x) is the com-
plementary error function: erfc(x) = 2/ vn fx “ e ar.

3. Error Floor Performance Improvement

The dominant error events in the error floor region is the
existence of the small trapping sets in the LDPC codes.
However, if the trapping set induced errors are attacked by
some methods, the low weight codewords in the irregular
LDPC codes will dominate the error events. Thus, to mit-
igate the error floor to a relatively lower level, these two
factors should be considered simultaneously.

3.1 Minimum Distance Improvement

In this subsection, we consider the minimum distance im-
provement of a given code. Since there is a one-to-one cor-
respondence between the distance sets and codewords, the
minimum distance of a code can be improved by remov-
ing small distance sets in the code’s Tanner graphs. In [13]
the authors presented a simple algorithm to eliminate small
stopping sets in irregular Tanner graphs. The similar method
can also be used to eliminate small distance sets.

By adding new check nodes and having their edges
connected to the distance sets that need to be removed, no
new distance set is introduced in the code’s Tanner graph
and the original distance sets are eliminated. To illustrate
this, one can consider the distance set 9 in Fig. 1(a). ¢, is a
new check node added to the code graph, and it has an edge
connected to a variable node in . It can be easily seen that,
the original codeword corresponding to 9 is not a codeword
after adding c, since the check equation of ¢, is not satis-
fied. Indeed, the original distance set D is transformed to a
(1D, 1) trapping set. Moreover, newly added check nodes

Fig.1 Eliminating distance sets by adding a new check node c,.
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and edges do not affect the code’s Tanner graph except the
distance sets, so it introduces no new distance set. With sim-
ulations, we found that many distance sets have common
variable nodes. Thus, several distance sets can be removed
by adding only one edge. Figure 1(b) shows that four dis-
tance sets with a common variable node v can be removed
simultaneously by adding only one edge between ¢, and v.
This observation can be used to design near-optimal algo-
rithm to add new check nodes and edges.

Keep this idea in mind, we can design a greedy algo-
rithm like [13] to eliminate as many distance sets as possi-
ble. The algorithms presented in [12] and [14] are used to
enumerate the small distance sets in a code’s Tanner graph.
For short length LDPC codes, we use the algorithm in [14]
which can list all small distance sets. For medium length
LDPC codes, the algorithm in [14] is quite complex, so we
use the algorithm in [12] to list most of the small distance
sets with manageable complexity.

Remarks: (1) The minimum distance improvement by
adding new check nodes is also presented in [3] (adding in-
dependent rows in the code’s parity check matrix), but the
edge selection method presented in this letter is different.
(2) To improve the minimum distance, we need to find the
small distance sets in the Tanner graphs (equivalent to find
a subset of small stopping sets). Fortunately for us, finding
small stopping sets is much easier than finding small trap-
ping sets.

3.2 Trapping Set Induced Errors Improvement

Trapping sets with size smaller than the minimum distance
of a code will dominate the error floor performance. Thus,
a method must be introduced to attack these trapping set in-
duced errors. To address this problem, a modification of the
two-stage BP (TS-BP) decoding method [10] is proposed.

In the first stage, the conventional iterative decoding is
performed. If the decoding fails and the smallest number
of the unsatisfied check nodes in the iterative process is less
than the minimum distance d,;, then the second stage is
done. The main idea is to find a few error bits based on the
unsatisfied check nodes. Then flip these error bits by setting
their initial log-likelihood-ratios to the maximum possible
value with opposite signs, and perform iterative decoding
again. The TS-BP decoder improves the error performance
significantly, especially in high SNR regions. In [10], the
authors showed that flip only two error bits can get good
performance gains. Definitely, we do not know which bits
are in error in advance, so we should try all bits connected
with the unsatisfied check nodes.

With simulations, we find that when the number of the
unsatisfied check nodes is exactly one, the TS-BP decoder
may fail to converge to right codewords. This is mainly be-
cause that only flipping one error bit may not be sufficient to
correct all the error bits in the trapping set. To address this
problem, we find another error bit to be flipped by the fol-
lowing method. For the error bit v connected with the unsat-
isfied check node ¢ (see Fig. 2), all the neighborhood check
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Fig.2  Subgraph of finding another error bit when the number of the
unsatisfied check nodes is exactly one.

nodes connected with v are falsely satisfied except c¢. Pick
a check node ¢; randomly from these falsely satisfied check
nodes. There is at least one neighborhood variable node v,
(not v) connected with ¢, is in error. Finally, flip error bits v,
vy and perform iterative decoding again. For the degree dis-
tribution optimized by density evolution, there is no variable
node with degree one. Thus, we can always find the second
error bit when the the number of the unsatisfied check nodes
is exactly one. Simulations show that this method can cor-
rect many error patterns which can not be corrected by the
TS-BP decoder, especially in high SNR regions.

The complexity of the modified and the original TS-BP
algorithm is the same when the number of the unsatisfied
check nodes is greater than one. Therefore, we only com-
pare the complexity of the two algorithms when the number
of the unsatisfied check nodes is exactly one. Let [,,,, be
the maximum number of iterations, and d. and d, be the
degree of ¢ and c; respectively. For the original TS-BP al-
gorithm, the number of iteration is upper bounded by d /4.
While for the modified TS-BP algorithm, the number is up-
per bounded by d.d;, Ln.. For the whole decoding process,
the increase of the complexity by the modified TS-BP algo-
rithm is negligible.

4. Simulation Results

In this section, we do some simulations to illustrate the
efficiency of the minimum distance improvement and the
performance gains of the proposed hybrid method. As we
know, PEG algorithm [2] is one of the most effective con-
struction method to generate irregular LDPC codes. Thus,
we use the PEG codes as the base codes to start our im-
provement. For all of our simulations, binary phase shift
keying (BPSK) transmission over an AWGN channel is as-
sumed. The maximum number of iterations for the BP de-
coder is set to 50. All the asymptotic curves in the follow-
ing figures are plotted according to equation (1). The vari-
able node degree distribution [15] used in this section is:
A(x) = 0.25105x + 0.30938x% + 0.00104x> + 0.43853x°.
Firstly, consider an LDPC code C; constructed by PEG
algorithm with a block length of 200 and rate of 0.5. The ex-
act weight distribution of C; calculated by [14] is: wi(x) =
1+ 2%+ 3xM + 10x12 + 20x" + 41x™ + .-+, Gy is ob-
tained by adding one check node (with a degree of 11) to
C; using the method proposed in Sect. 3.1. The minimum
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Fig.3 FER performance of C; and C, under BP decoder and TS-BP
decoder over AWGN channel.
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Fig.4 FER performance of C3 and C4 under BP decoder and TS-BP
decoder over AWGN channel.

distance of C; is exactly 14 and its weight distribution is
wp(x) = 1+ 21x" + 66x" + ---. The minimum distance
is improved from 8 to 14 by the proposed method, while
the rate loss is only 0.005. Figure 3 shows the FER perfor-
mance of C; and C, under the BP decoder and the TS-BP
decoder. From Fig.3 we can see that: (1) There are only
0.1 dB performance gains at FER 10~ for the minimum dis-
tance improvement of Cy. Thus, the dominant error events
in high SNR regions are small trapping sets. (2) By mod-
ifying the decoder while not improving the code itself, the
decoding performance can not achieve low regions below
the asymptotic performance bound of C;. (3) The modified
TS-BP decoder is slightly better than the TS-BP decoder
in high SNR regions. (4) By utilizing the hybrid method,
which combines code construction and the decoder modifi-
cation, the performance of C, outperforms the asymptotic
performance bound of C;. At FER 1077, there are 0.8 dB
performance gains for the modified TS-BP decoder of C,
when compared to the BP decoder of Cj.




Table 1  The number of E occurs and the number they are corrected by
TS-BP and modified TS-BP decoder for C; and Cy4.

Code C; 3.5dB 4.0dB 4.5dB 4.7dB
#E 47 105 253 333
#corrected by TS-BP 33 78 194 255

#corrected by modified TS-BP| 42 96 246 331

Code Cy4 24dB 2.6dB 2.8dB 2.9dB
#E 16 58 89 52
#corrected by TS-BP 12 38 62 40

#corrected by modified TS-BP| 13 50 84 51

Secondly, an LDPC code Cj is constructed by PEG al-
gorithm with a block length of 1000 and rate of 0.5. The
approximate weight distribution of Cs calculated by [12] is:
wi(x) = 1T+ x™ + 219 + 3220 + 421 + 5x22 + 1142 + -+,
By adding two check nodes (with degrees of 7 and 8) to C3,
C4 has an estimated minimum distance of 25 and its weight
distribution is wa(x) = 1 + 2x% + 17x% + 20x* + - - -. Note
that the exact minimum distance of C4 may be less than 25
Figure 4 shows the FER performance of C3 and C, under
BP, TS-BP and the modified TS-BP decoder. It can be seen
that the performance improvement of our proposed hybrid
method is significant when compared to the BP decoder. We
can also note that the performance improvement of Cy4 un-
der modified TS-BP decoder is not evident when compared
to TS-BP decoder. It is because that we can not proceed to
the high SNR regions due to the long time needed for the
Monte Carlo simulation. However, it is expected that the
performance gap will become large between our proposed
decoder and the TS-BP decoder when SNR increases.

Let E denote the event that the number of the unsatis-
fied check nodes is exactly one when the BP decoder fails.
Table 1 lists the number of E occurs and the number they
are corrected by the TS-BP and modified TS-BP decoder
for codes C, and Cy, respectively™. It can be seen that a
large percentage of errors induced by E for the TS-BP de-
coder can be corrected by the modified TS-BP decoder. It
should be noted that the performance improvement on the
modified TS-BP decoder over the TS-BP decoder is invisi-
ble in low SNR regions and becomes more obvious in high
SNR regions. It is because that the error event E is more
dominate in high SNR regions for the TS-BP decoder.

5. Conclusion

In this letter, a hybrid method to lower the error floors of
irregular LDPC codes has been proposed. By eliminating
small distance sets in the original code, the influence of the
low-weight codewords to the decoding performance is miti-
gated. Then the modified TS-BP decoder is used to improve
the decoding performance in the presence of small trapping

TNote that a more recently proposed probabilistic method [16]
can be used to compute the weight distribution of the relative long
LDPC codes, though we do not investigate it.

tBor C,, we collect 100, 100, 50, 50 error frames at 3.5 dB,
4.0dB, 4.5dB and 4.7 dB, respectively. For Cy4, we collect 100,
100, 50, 20 error frames at 2.4dB, 2.6dB, 2.8 dB and 2.9 dB, re-
spectively.
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sets. Simulations show that the proposed method reduce the
error floor significantly for the irregular LDPC codes.
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