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Abstract—Community detection is an important task for
mining the structure and function of complex networks. Many
pervious approaches are difficult to detect communities with
arbitrary size and shape, and are unable to identify hubs and
outliers. A recently proposed network clustering algorithm,
SCAN, is effective and can overcome this difficulty. However,
it depends on a sensitive parameter: minimum similarity
threshold 𝜀, but provides no automated way to find it. In this
paper, we propose a novel density-based network clustering
algorithm, called gSkeletonClu (graph-skeleton based cluster-
ing). By projecting a network to its Core-Connected Maximal
Spanning Tree (CCMST), the network clustering problem is
converted to finding core-connected components in the CCMST.
We discover that all possible values of the parameter 𝜀 lie in
the edge weights of the corresponding CCMST. By means of
tree divisive or agglomerative clustering, our algorithm can
find the optimal parameter 𝜀 and detect communities, hubs
and outliers in large-scale undirected networks automatically
without any user interaction. Extensive experiments on both
real-world and synthetic networks demonstrate the superior
performance of gSkeletonClu over the baseline methods.

Keywords-Density-based Network Clustering; Community
Discovery; Hubs and Outliers; Parameter Selection

I. INTRODUCTION

Nowadays, many real-world networks possess intrinsic
community structure, such as large social networks, Web
graphs, and biological networks. A community (also referred
to as module or cluster) is typically thought of as a group
of nodes with dense connections within groups and sparse
connections between groups as well. Community discovery
within networks is an important problem with many applica-
tions in a number of disciplines ranging from social network
analysis to image segmentation and from analyzing protein
interaction networks to the circuit layout problem.

Finding communities in complex networks is a nontrivial
task, since the number of communities in the network is
typically unknown and the communities often have arbitrary
size and shape. Moreover, besides the cluster nodes densely
connected with communities, there are some nodes in special
roles like hubs and outliers. As we know, hubs play impor-
tant roles in many real-world networks. For example, hubs
in the WWW could be utilized to improve the search engine
rankings for relevant authoritative Web pages [1], and hubs

in viral marketing and epidemiology could be central nodes
for spreading ideas or diseases. On the contrary, outliers are
marginally connected with the community members. Since
the characteristics of outliers deviate significantly from the
communities, they should be isolated as noise. Therefore,
how to detect communities as well as hubs and outliers in
a network becomes an interesting and challenging problem.

Most existing approaches only study the problem of
community detection without considering hubs and outliers.
A density-based network clustering algorithm SCAN [2] can
overcome this difficulty. However, it needs user to specify
a minimum similarity 𝜀 and a minimum cluster size 𝜇 to
define clusters, and is sensitive to the parameter 𝜀 which is
difficult to determine. Actually, how to locate the optimal
parameter 𝜀 automatically for the density-based clustering
methods (e.g., DBSCAN [3] and SCAN) is a long-standing
and challenging task.

The connectivity structure of a large-scale network is
highly complex, which makes the selection of optimal pa-
rameter 𝜀 difficult. However, we have found that a cluster
defined by density-based clustering algorithms is composed
of two types of objects: cores and borders. The cluster can
be determined by the density-connected cores embedded in
it uniquely. Hence, once all the components of connected
cores have been detected, all clusters can be revealed.
Accordingly, we convert the problem of detecting 𝜀-clusters
in a network to finding core-connected components in the
network weighted by a new measurement: core-connectivity-
similarity. It is equal to partitioning the core-connected
network with a minimal threshold 𝜀 (i.e., remove all the
edges whose weights are below 𝜀 from the network).

Actually, the problem above can be easily solved by the
Maximal Spanning Tree (MST), a connectivity skeleton of
the network [4]. To motivate this, we illustrate a schematic
network in Figure 1(a). Given 𝜀 = 3, if all the edges
with weights no more than current 𝜀 are removed from the
network, two unconnected sub-graphs will emerge, as shown
in Figure 1(c). In contrast, if we first construct the MST of
the network, as shown in Figure 1(b), and then partition
the MST with the same threshold, the partitioning result on
the MST is equal to that on the original network. In the
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Figure 1. A schematic network: (a) the original network, (b) the MST of
the network, (c) the partition of the original network with 𝜀 = 3, (d) the
partition of the MST with 𝜀 = 3.

same way, the core-connected components can be detected
on the Core-Connected Maximal Spanning Tree (CCMST)
of the network. Since each edge of the CCMST is a cut edge,
different edge weights will lead to different partition results
and form different clusters. It also means that all possible
𝜀, which we can adopt to cluster the network, can be found
in the edge weights of the CCMST. Furthermore, the best
clustering result can be selected by a quality function.

In this paper, a novel density-based network clustering
algorithm, called gSkeletonClu, is proposed to perform the
clustering on the CCMST. To our best knowledge, our work
is the first that builds the connection between the density-
based clustering principle and the MST-based clustering
method. The main contributions of this paper are summa-
rized in the following:

1) By projecting the network to its CCMST, we convert
the community discovery problem to finding core-
connected components in the CCMST. Consequently,
we only need to deal with the essential edges of
the network which reduces the size of the candidate
solution space significantly. We have proven that the
clustering result on the CCMST is equal to that on the
original network.

2) We discover that all possible values of the parameter 𝜀
lie in the edge weights of the corresponding CCMST.
Using the modularity measure 𝑄𝑠, our algorithm can
select the optimal parameter 𝜀 automatically, without
any user interaction.

3) Our algorithm not only uncovers the communities
within the network, but also identifies the hubs and
outliers. Experimental results show that our algorithm
is scalable and achieves high accuracy.

4) Our algorithm can overcome the chaining effect that
the traditional MST clustering methods suffer from
and the resolution limit possessed by other modularity-
based algorithms.

The rest of the paper is organized as follows. First we
briefly review the related work in Section 2. In section 3,
we introduce the concepts of structural-connected clusters.
In section 4, we formulize the notion of clusters derived
from the CCMST and present the theoretical analysis. In

section 5, we describe the algorithms in detail. In section 6,
we report the experimental results. Finally, we summarize
our conclusions and suggest future work in section 7.

II. RELATED WORK

The problem of detecting communities within networks
has been extensively studied for years. Graph partitioning
is a natural choice for this problem, such as Kernighan-Lin
algorithm [5], Metis [6], and normalized cut [7]. To make the
calculation of cut functions more efficient, spectral clustering
method has been proposed where the eigenvectors of certain
normalized similarity matrices are used for the clustering
purpose [8]. Since the community structure in networks is
highly complex, new clustering methods have recently been
introduced to solve this challenging problem.

Density-based Clustering Methods: Density-based clus-
tering approaches (e.g., DBSCAN [3] and OPTICS [9]) have
been widely used in data mining owing to their ability of
finding clusters of arbitrary shape even in the presence of
noise. Recently, Xu et al. proposed a structural network clus-
tering algorithm SCAN [2] extended from DBSCAN. This
algorithm can find communities as well as hubs and outliers.
However, the main difficulty for the SCAN algorithm is that
it is sensitive to the minimal threshold 𝜀 of the structure-
similarity. A simple “knee hypothesis” has been presented
to locate the parameter 𝜀 manually for the SCAN algorithm.
However, the knee dose not always correspond to the optimal
𝜀 value. More importantly, there are no obvious knees on the
k-nearest ranked similarity plot for most of the real-world
networks. To deal with this problem, Bortner et al. proposed
a new algorithm, called SCOT+HintClus [10], to detect the
hierarchical cluster boundaries of network through extension
of the algorithm OPTICS [9]. However, it does not find
the global optimal 𝜀. Our work tries to solve the sensitive
parameter problem of density-based network clustering from
another angle.

Graph-theoretical Clustering Methods: Clustering al-
gorithms based on graph theory can be used to detect
clusters of different shapes and sizes. One of the best-known
graph-based hierarchical clustering algorithms is based on
the construction of the minimal (or maximal) spanning
tree (MST) of the objects which was initially proposed by
Zahn [11]. The standard MST divisive algorithm removes
edges from the MST in order of decreasing length until the
specified number of clusters results. A clustering algorithm
using an MST takes the advantage that it is able to only
consider the necessary connections between the data patterns
and the cost of clustering can be decreased. However, the
number of the desired clusters should be given in advance.
Moreover, simple linkage-based methods often suffer from
the problem of chaining effect. Some clustering algorithms
have been shown closely related to MST, such as Single-
link [12]. Recently, some researchers utilized the MST-
based clustering method to analyze complex networks [13].
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Our work introduces tree clustering into the framework of
density-based clustering which is rather different from the
traditional MST-based clustering method.

Quality Functions for Network Clustering: Clustering
validity checking is an important issue in cluster analysis
[14]. For community detection, the most popular quality
function is the modularity measure 𝑄 proposed by Newman
and Girvan [15]. Recently, a similarity-based modularity
function 𝑄𝑠 was presented by Feng et al. [16] through
extension from the connection-based modularity 𝑄, which
has a better ability to deal with hubs and outliers. The 𝑄𝑠

function is defined as follows:

𝑄𝑠 =

𝑘∑
𝑖=1

[
𝐼𝑆𝑖

𝑇𝑆
−
(
𝐷𝑆𝑖

𝑇𝑆

)2
]
,

where 𝑘 is the number of clusters, 𝐼𝑆𝑖 =
∑

𝑢,𝑣∈𝐶𝑖
𝜎(𝑢, 𝑣)

is the total similarity of nodes within cluster 𝐶𝑖, 𝐷𝑆𝑖 =∑
𝑢∈𝐶𝑖,𝑣∈𝑉 𝜎(𝑢, 𝑣) is the total similarity between nodes

in cluster 𝐶𝑖 and any node in the network, and 𝑇𝑆 =∑
𝑢,𝑣∈𝑉 𝜎(𝑢, 𝑣) is the total similarity between any two

nodes in the network.
Modularity optimization itself is a popular method for

community detection. Most modularity-based algorithms
find the optimal clustering result via greedily maximizing
the value of 𝑄, such as FastModularity [17] and Simulated
Annealing (SA for short) [18]. However, recent research
shows that modularity is not a scale-invariant measure,
and hence, by relying on its maximization, detection of
communities smaller than a certain size is impossible. This
serious problem is well known as the resolution limit [19].
Compared with the traditional modularity-based methods,
our work uses modularity as a quality function to guide the
selection of optimal clustering results.

III. PRELIMINARIES

Given a minimum similarity 𝜀 and a minimum cluster size
𝜇, the main idea of structure-connected clustering is that for
each node in a cluster, it must have at least 𝜇 neighbors
whose structural similarities are at least 𝜀. In this section, we
formulize the notion of a structure-connected cluster, which
extends that of a density-based cluster [3], [9].

Definition 1. (Structural Similarity) Let 𝐺 = (𝑉,𝐸,𝑤) be
a weighted undirected network and 𝑤(𝑒) be the weight of
the edge 𝑒. For a node 𝑢 ∈ 𝑉 , we define 𝑤({𝑢, 𝑢}) = 1.
The structure neighborhood of a node 𝑢 is the set Γ(𝑢)
containing 𝑢 and its adjacent nodes which are incident a
common edge with 𝑢 : Γ(𝑢) = {𝑣 ∈ 𝑉 ∣{𝑢, 𝑣} ∈ 𝐸} ∪ {𝑢}.
The structural similarity between two adjacent nodes 𝑢 and
𝑣 is then

𝜎(𝑢, 𝑣) =

∑
𝑥∈Γ(𝑢)∩Γ(𝑣)

𝑤(𝑢, 𝑥) ⋅ 𝑤(𝑣, 𝑥)
√ ∑

𝑥∈Γ(𝑢)

𝑤2(𝑢, 𝑥) ⋅
√ ∑

𝑥∈Γ(𝑣)

𝑤2(𝑣, 𝑥)
. (1)
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Figure 2. The structure reachablility and structure connectivity relationship
of the nodes in a density-based cluster.

The above structural similarity is extended from a cosine
similarity used in [2] which denotes the local connectivity
density of any two adjacent nodes in an undirected network.
It can be replaced by other similarity definitions such as
Jaccard similarity, and our experimental results show that
the cosine similarity is better.

Definition 2. (Core) For a node 𝑢, the set of neighbors
having structural similarity greater than 𝜀 forms the 𝜀-
neighborhood of 𝑢:

Γ𝜀(𝑢) = {𝑣 ∈ Γ(𝑢)∣𝜎(𝑢, 𝑣) ≥ 𝜀}. (2)
If ∣Γ𝜀(𝑢)∣ ≥ 𝜇, then 𝑢 is a core node, denoted by K𝜀,𝜇(𝑢).

A core node is the one whose 𝜀-neighborhood is at least
𝜇. As shown in Figure 2, when we set 𝜀 = 0.75 and 𝜇 = 4,
node 𝑝 is a core and node 𝑞 is in the 𝜀-neighborhood of
𝑝. According to the principle of density-based clustering,
the clusters grow from core nodes. If a node is in the 𝜀-
neighborhood of a core, it should be in the same cluster with
the core. This idea is formulized in the following definition
of direct structure reachability.

Definition 3. (Structure-Reachable) Given 𝜀 ∈ ℝ, 𝜇 ∈ ℕ,
a node 𝑣 ∈ 𝑉 is directly structure-reachable from a node
𝑢 ∈ 𝑉 iff K𝜀,𝜇(𝑢)∧𝑣 ∈ Γ𝜀(𝑢), denoted by 𝑢 �→𝜀,𝜇 𝑣. A node
𝑣 ∈ 𝑉 is structure-reachable from 𝑢 ∈ 𝑉 iff ∃{𝑢1, ..., 𝑢𝑛} ⊆
𝑉 s.t. 𝑢 = 𝑢1, 𝑣 = 𝑢𝑛, and ∀𝑖 ∈ {1, 2, ..., 𝑛 − 1} such that
𝑢𝑖 �→𝜀,𝜇 𝑢𝑖+1. This is denoted by 𝑢 →𝜀,𝜇 𝑣.

A node 𝑣 ∈ 𝑉 is directly structure-reachable from a core
node 𝑢 ∈ 𝑉 if 𝑣 ∈ Γ𝜀(𝑢). Obviously, directly structure-
reachable is symmetric for pairs of core nodes. If a non-core
node 𝑣 is directly structure-reachable from a core node 𝑢,
then 𝑣 is a border node attached to 𝑢. In general, directly
structure-reachable is not symmetric if a core node and a
border node are involved.

We depict the notion of structure-reachable in Figure 2.
When we set 𝜀 = 0.75 and 𝜇 = 4, there are four nodes
in the neighborhood of node 𝑝, 𝑞 and 𝑟 respectively, whose
structure similarities with them are greater than current 𝜀,
thus 𝑝, 𝑞 and 𝑟 are all core nodes. Since the structure
similarity between 𝑝 and 𝑞 is greater than 0.75, 𝑝 and 𝑞
are directly structure-reachable from each other. And for the
same reason, 𝑟 and 𝑞 are also directly structure-reachable
from each other. According to Definition 3, core nodes 𝑝, 𝑞
and 𝑟 are structure-reachable from each other. However, the
border node 𝑠 is only structure-reachable from the three core
nodes on one side.

The transitive closure of directly structure-reachable rela-
tion forms clusters, and any pair of nodes in the same cluster
is structure connected.
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Figure 3. An example network with two structure-connected clusters, one
hub and two outliers.

Definition 4. (Structure-Connected Cluster) The set 𝐶[𝑢] ⊆
𝑉 is a cluster represented by K𝜀,𝜇(𝑢) ∈ 𝑉 iff (1)𝑢 ∈ 𝐶[𝑢];
(2)∀𝑣 ∈ 𝑉 , 𝑢 →𝜀,𝜇 𝑣 ⇒ 𝑣 ∈ 𝐶[𝑢]; and (3)∣𝐶[𝑢]∣ ≥ 𝜇.

A cluster 𝐶 contains exactly the nodes which are
structure-reachable from an arbitrary core in 𝐶. If there are
two core nodes 𝑢, 𝑣 ∈ 𝑉 s.t. 𝑢 →𝜀,𝜇 𝑣, then 𝐶[𝑢] = 𝐶[𝑣].
Consequently, a cluster is uniquely determined by the con-
nected core nodes in it. As shown in Figure 3, cluster 1
contains all the nodes which are structure-reachable from
core nodes 𝑝, 𝑞 and 𝑟. Thus, 𝐶[𝑝] = 𝐶[𝑞] = 𝐶[𝑟]. There
also may exist some border nodes (e.g., node 𝑠 in Figure 3).

Given parameters 𝜀 and 𝜇, a clustering of a network 𝐺 is
the set 𝐶𝑅𝜀,𝜇 of distinct structure-connected clusters found
in the network. After the network is clustered, there are still
some nodes that are not suitable to be assigned to any cluster
and they may be hubs or outliers.

Definition 5. (Hub and Outlier) Given parameters 𝜀, 𝜇, and
a clustering 𝐶𝑅𝜀,𝜇 of the network 𝐺, a node ℎ ∈ 𝑉 is a hub
iff (1) ℎ does not belong to any cluster: ∀𝐶[𝑢] ∈ 𝐶𝑅𝜀,𝜇,
ℎ /∈ 𝐶[𝑢]; (2) ℎ bridges multiple clusters: ∃𝐶,𝐷 ∈ 𝐶𝑅𝜀,𝜇,
𝐶 ∕= 𝐷, 𝑢 ∈ 𝐶∧𝑣 ∈ 𝐷, 𝑠.𝑡. ℎ ∈ Γ(𝑢)∧ℎ ∈ Γ(𝑣). Any node
that is not in a cluster and not a hub is called an outlier.

As shown in Figure 3, node ℎ that connects two nodes
of different clusters is regarded as a hub, and nodes 𝑜1 and
𝑜2, which are connected with only one cluster, should be
regarded as outliers.

IV. CLUSTERS DERIVED FROM
CORE-CONNECTED MST

To introduce the notion of core-derived clusters, we make
the following observation: each cluster is determined by the
structure-connected core nodes in it. Given {𝑢, 𝑣} ∈ 𝐸, we
must decide whether 𝑢 and 𝑣 are core nodes w.r.t. current
𝜀 and whether 𝑢 and 𝑣 are structure-reachable from each
other. If so, 𝑢 and 𝑣 will lie in the same cluster. Our new
algorithm gSkeletonClu bases on the principle of finding
the core-connected components at different 𝜀 levels. The
involved concepts are introduced in the following.

A. Core Connectivity Similarity

Definition 6. (Core-Similarity) Given a node 𝑢 ∈ 𝑉 , the
core-similarity of 𝑢 is

𝐶𝑆(𝑢) ≡
⎧⎨
⎩

max{𝜀 ∈ ℝ
+ :

∣{𝑣 ∈ Γ(𝑢) : 𝜎(𝑢, 𝑣) ≥ 𝜀}∣ ≥ 𝜇}
0

∣Γ(𝑢)∣ ≥ 𝜇
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

The core-similarity of a node 𝑢 is the maximum of
structural-similarity 𝜀 such that 𝑢 would be a core node
w.r.t. ∣Γ𝜀(𝑢)∣ ≥ 𝜇. Otherwise, the core-similarity is zero.
As shown in Figure 4(a), the core-similarity of node 𝑝 is
0.75 when 𝜇 = 4, because the size of the 𝜀-Neighborhood
of node 𝑝 is just four when 𝜀 = 0.75 and node 𝑝 will no
longer be a core when 𝜀 > 0.75.

Definition 7. (Reachability-Similarity) Given 𝑢, 𝑣 ∈ 𝑉 , the
reachability-similarity of 𝑣 w.r.t. 𝑢 is

𝑅𝑆(𝑢, 𝑣) ≡ min{𝐶𝑆(𝑢), 𝜎(𝑢, 𝑣)}. (4)

Intuitively, the reachability-similarity of a node 𝑣 w.r.t. a
core node 𝑢 is the maximum of structural similarities such
that 𝑣 is directly structure-reachable from 𝑢. As shown in
Figure 4(a), the reachability-similarity of node 𝑞 w.r.t. core
node 𝑝 is 0.75 which is equal to the core-similarity of node 𝑝,
because the similarity between the two nodes is not less than
the core-similarity of 𝑝. While the reachability-similarity
of node 𝑟 w.r.t. core node 𝑝 is 0.7 which is equal to the
similarity between 𝑝 and 𝑟.

Definition 8. (Core-Connected) Given 𝜀 ∈ ℝ, 𝜇 ∈ ℕ, 𝑢, 𝑣 ∈
𝑉 , 𝑢 and 𝑣 are directly core-connected with each other iff
K𝜀,𝜇(𝑢)∧K𝜀,𝜇(𝑣)∧𝑢 �→𝜀,𝜇 𝑣. This is denoted by 𝑢 ↔𝜀,𝜇 𝑣.

Since directly structure-reachable is symmetric for any
pair of core nodes, if two core nodes are directly structure-
reachable from each other, then they are directly core-
connected. The transitive closure of the directly core-
connected relation forms core-connected components, and
any pair of nodes in the same component are core-connected.

Definition 9. (Core-Connectivity-Similarity) Given {𝑢, 𝑣} ∈
𝐸, the core-connectivity-similarity of 𝑢 and 𝑣 is

𝐶𝐶𝑆(𝑢, 𝑣) ≡ min{𝑅𝑆(𝑢, 𝑣), 𝑅𝑆(𝑣, 𝑢)}
≡ min{𝐶𝑆(𝑢), 𝐶𝑆(𝑣), 𝜎(𝑢, 𝑣)} . (5)

The core-connectivity-similarity of two nodes is the min-
imum of their core-similarities and the structure-similarity
between them. As shown in Figure 4(a), nodes 𝑝 and 𝑞 are
core-connected when 𝜀 = 0.75 and 𝜇 = 4, because 𝑝 and 𝑞
are both core nodes and their structure-similarity is not less
than the current 𝜀. But if we set current 𝜀 > 0.75, nodes 𝑝
and 𝑞 are not core-connected any more, because 𝑝 will not be
a core under this configuration. Thus, the core-connectivity-
similarity of 𝑝 and 𝑞 is 0.75 when 𝜇 = 4. The following
Theorem 1 shows that the core-connectivity-similarity of two
nodes is the maximal structural similarity such that they are
both core nodes and directly core-connected from each other.

Theorem 1. Given a network 𝐺 = (𝑉,𝐸,𝑤), {𝑢, 𝑣} ∈ 𝐸,
𝜇 ∈ ℕ, if 𝐶𝐶𝑆(𝑢, 𝑣) = 𝜀, then 𝜀 is the maximum of 𝜀 s.t.
𝑢 ↔𝜀,𝜇 𝑣.

For each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 in a weighted net-
work 𝐺 = (𝑉,𝐸,𝑤), we calculate the core-connectivity-
similarity for each pair of adjacent nodes 𝑢 and 𝑣. Set
𝜛(𝑒) = 𝐶𝐶𝑆(𝑢, 𝑣). Then we get a core-connected network

484



0.7

0.68

0.8

0.82p0.75
q

0.8

0.8

r

(a)

0.6
8

0.
65

0.
8

0.82

p
0.75

q
attractor

(b)
Figure 4. (a)an example for calculating core-similarity and reachability-
similarity; (b)an example for calculating attachability-similarity and finding
attractor.

𝐺 = (𝑉,𝐸,𝜛). Note that the core-connectivity-similarity of
any two adjacent nodes is equal to their structure similarity
when 𝜇 = 2, because here the core-similarity of two adjacent
nodes is equal to the highest similarity of their incident edges
which is not less than their structure-similarity. Hence, the
CCMST of a core-connected network is equal to the MST
of the original network when 𝜇 = 2.

B. Partition Networks on Its CCMST

According to the Cut Property of MST, we can prove that
partitioning core-connected network 𝐺 with 𝜀 (remove edge
𝑒 s.t. 𝜛(𝑒) ≤ 𝜀 from 𝐺) is equal to the partition of its
CCMST with 𝜀.

Definition 10. (Connectivity Level) Let 𝐺 = (𝑉,𝐸,𝜛) be a
core-connected undirected network and each edge 𝑒 ∈ 𝐸 has
a value of core-connectivity-similarity 𝜛(𝑒) ∈ [0, 1]. Given
nodes 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ∕= 𝑣 and 𝜀 ∈ ℝ, 𝑢 and 𝑣 are connected
if each edge 𝑒 ∈ 𝐸 𝑠.𝑡. 𝜛(𝑒) < 𝜀 is removed from 𝐺, but
they are not connected if each edge 𝑒 ∈ 𝐸 𝑠.𝑡. 𝜛(𝑒) ≤ 𝜀 is
removed from 𝐺. Then the connectivity level of 𝑢 and 𝑣 in
𝐺 is 𝜀. This is denoted by 𝛾𝐺(𝑢, 𝑣) = 𝜀.

Theorem 2. Let 𝐺 = (𝑉,𝐸,𝜛) be a core-connected
undirected network and 𝑇 be an MST of 𝐺. ∀𝑢, 𝑣 ∈ 𝑉, 𝑢 ∕=
𝑣, 𝛾𝐺(𝑢, 𝑣) = 𝛾𝑇 (𝑢, 𝑣).

Proof: ∀𝑢, 𝑣 ∈ 𝑉 , 𝑢 ∕= 𝑣, let 𝛾𝑇 (𝑢, 𝑣) = 𝜀, and 𝑃 be
the path between 𝑢 and 𝑣 in 𝑇 . Obviously, ∃𝑒 = {𝑝, 𝑞} ∈
𝑃 𝑠.𝑡. 𝜛(𝑒) = 𝜀 and 𝜀 is the minimal edge weight in 𝑃 .
When each edge 𝑑 s.t. 𝜛(𝑑) < 𝜀 is removed from 𝐺, path 𝑃
still remains in 𝐺. Thus, nodes 𝑢 and 𝑣 will stay connected
in 𝐺.

Assume that each edge 𝑑 ∈ 𝐸 s.t. 𝜛(𝑑) ≤ 𝜀 is removed
from 𝐺, 𝑢 and 𝑣 are still connected. There must be a path
𝑃 ′ between 𝑢 and 𝑣 in 𝐺 s.t. ∀𝑑 ∈ 𝑃 ′, 𝜛(𝑑) > 𝜀. So
∃𝑒′ = {𝑝′, 𝑞′} ∈ 𝑃 ′ ∧ 𝑒′ /∈ 𝑇 , otherwise 𝑃 and 𝑃 ′ will form
a cycle in 𝑇 . 𝑇 ′ = (𝑇 − {𝑒}) ∪ {𝑒′} is also a Spanning
Tree of 𝐺 s.t. 𝜛(𝑇 ′) > 𝜛(𝑇 ). It is inconsistent with that
𝑇 is a maximal spanning tree of 𝐺. So 𝑢 and 𝑣 will not be
connected when each edge 𝑑 ∈ 𝐸 s.t. 𝜛(𝑑) ≤ 𝜀 is removed
from 𝐺. Thus 𝛾𝐺(𝑢, 𝑣) = 𝛾𝑇 (𝑢, 𝑣) = 𝜀.

Since each edge of 𝑇 is a cut edge, different edge
weights of 𝑇 will produce different partition results and
form different clusters. Without considering the slight effect
of border nodes, all possible 𝜀 values lie in the edge weights
of the CCMST.
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Figure 5. Procedure of the network clustering on the CCMST.

C. Bulid the Attractor Indices

The partition on the CCMST of a network can detect the
core nodes for each cluster. In addition, there may exist some
border nodes in a cluster. In order to attach the border nodes
of each cluster efficiently, we build the indices in advance.
The involved concepts are given as follows.

Definition 11. (Attachability-Similarity) Given 𝑣 ∈ 𝑉 , the
attachability-similarity of 𝑣 w.r.t. its neighbor nodes is

𝐴𝑆(𝑣) = max{𝑅𝑆(𝑢, 𝑣)∣𝑢 ∈ Γ(𝑣)− {𝑣}}. (6)

The attachability-similarity of a node 𝑣 is the maximum of
reachability-similaries w.r.t. its neighbor nodes. The neigh-
bor node that possesses the maximal reachability-similarity
to 𝑣 is regarded as the attractor of 𝑣.

If 𝐶𝑆(𝑣) < 𝐴𝑆(𝑣) (i.e., the core-similarity of 𝑣 is less
than its attachability-similarity), then 𝑣 is not a core node,
but its attractor 𝑢 is a core node when 𝜀 = 𝐴𝑆(𝑣). That
is to say, 𝑣 should be attached as a border node to the
cluster containing core node 𝑢. In this case, an index of the
attachability-similarity for node 𝑣 and its attractor 𝑢 will be
built in advance. As shown in Figure 4(b), the reachability-
similarities of node 𝑝 w.r.t. its neighbor nodes are labeled
on the arrowhead lines. Since the value of reachability-
similarity from 𝑞 to 𝑝 is the highest, node 𝑞 should be the
attractor of 𝑝 and the attachability-similarity of node 𝑝 is
0.82 which is equal to the reachability-similarity of 𝑝 w.r.t
𝑞. Note that the attractor can be selected arbitrarily with
ties and the indices can be built during the calculation of
core-connectivity-similarity.
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V. THE ALGORITHM

Our network clustering algorithm on the CCMST includes
two phases, and the procedure is illustrated in Figure 5. In
the first phase, we calculate the core-connectivity-similarity
for each edge in the network, build the attractor indices and
construct the CCMST accordingly. After that, we record all
the different edge weights of the CCMST as the 𝜀 candidates
and sort them ascending or descending. In the second phase,
we perform the tree clustering on the CCMST. Actually, the
clustering results are not sensitive to the parameter 𝜇 which
can be set as a constant.

There are two different ways to implement the tree cluster-
ing. The first is tree agglomerative clustering and the pseudo-
code is given in Algorithm 1. We consider an initial forest
consisting of 𝑛 isolated nodes. Then we add the edges having
the same weights in the CCMST to the forest, from the
highest value to the lowest. For each 𝜀, it will agglomerate
the nodes into multiple core-connected components after all
the edges whose weights are equal to 𝜀 have been added to
the forest. After attaching the border nodes, we can get the
clusters. Then we calculate the 𝑄𝑠 value of current clustering
result. The output of the algorithm is the clusters with the
highest 𝑄𝑠 value and the corresponding 𝜀.

The second method is tree divisive clustering. We remove
the edges in the CCMST w.r.t. different weights or 𝜀,
from the lowest value to the highest. For each 𝜀, it will
partition the tree into multiple core-connected components.
The remaining process is the same as the agglomerative one.

The two tree clustering algorithms above are equivalent
in clustering results, but the agglomerative one is convenient
for detecting the connected components in the forest. Thus, it
is faster than the divisive one. Because the core-connectivity-
similarity of any two nodes is equal to their structure-
similarity when 𝜇 = 2, the procedure of attaching borders
can be passed over in this case. Hence, our algorithm
contains the traditional MST-based clustering as a special
case. We also compared our algorithm with the SCAN al-
gorithm. Though the clustering procedures of gSkeletonClu
and SCAN are quite different, the results of these two
algorithms are almost the same w.r.t. the same values of
parameters 𝜀 and 𝜇. In addition, our algorithm can detect
overlapping communities by permitting hubs and border
nodes to be shared by multiple clusters.

The running time of gSkeletonClu is mainly consumed
by the construction of CCMST and tree clustering. The
core-connectivity-similarity and attractor indices can be cal-
culated within a complexity of 𝑂(𝑚). We construct the
CCMST of the core-connected network using the Prim’s al-
gorithm with a Fibonacci Heap. Its running time complexity
is 𝑂(𝑚 log 𝑛). In the procedure of agglomerative clustering,
we only need to add the edges to the forest in order of
weights with a complexity of 𝑂(𝑛 log 𝑛). However, the
calculation of 𝑄𝑠 is a little time consuming. We implement

Algorithm 1 gSkeletonClu Agglomerative
Input: Network 𝐺 = (𝑉,𝐸,𝑤); and 𝜇 ∈ ℕ

Output: Clusters 𝐶𝑅 = {𝐶1, 𝐶2, ⋅ ⋅ ⋅ , 𝐶𝑚}; hubs and outliers N; and
optimal 𝜀

1: //Phase 1: Construct CCMST 𝑇 = (𝑉,𝐸′)
2: Initialize a empty dynamical priority queue 𝐴𝐼𝑄;
3: for each 𝑒 = {𝑢, 𝑣} ∈ 𝐸 do
4: CalculateCCS(𝑢, 𝑣, 𝜇);
5: BuildAttractorIndices(𝐴𝐼𝑄, 𝑢, 𝑣);
6: end for
7: 𝑇 = 𝑀𝑆𝑇 (𝐺);
8: 𝑊 = {𝐶𝐶𝑆(𝑒)∣𝑒 ∈ 𝐸′};
9: 𝑆𝑜𝑟𝑡 𝐷𝑒𝑐𝑒𝑛𝑑(𝑊 );

10: //Phase 2: Tree Clustering
11: 𝐸(0) = ∅;
12: 𝐹 (0) = (𝑉,𝐸(0));
13: for 𝑖 = 1 𝑡𝑜 ∣𝑊 ∣ do
14: //Phase 2.1: Detect connected components
15: 𝜀(𝑖) = 𝑊 [𝑖];
16: 𝑆 = {{𝑣𝑖, 𝑣𝑗}∣{𝑣𝑖, 𝑣𝑗} ∈ 𝐸′ ∧ 𝐶𝐶𝑆(𝑣𝑖, 𝑣𝑗) = 𝜀(𝑖)};
17: 𝐸(𝑖) = 𝐸(𝑖−1) ∪ 𝑆;
18: 𝐹 (𝑖) = (𝑉,𝐸(𝑖));
19: 𝐶𝑅(𝑖) = {𝐶[𝑐]∣𝑐 ∈ 𝑉 , 𝐶[𝑐] is a connected component in 𝐹 (𝑖) };
20: //Phase 2.2: Attach borders
21: while 𝐴𝐼𝑄.getHead().KeyValue ≥ 𝜀(𝑖) do
22: (𝑝, 𝑞,𝐾𝑒𝑦𝑉 𝑎𝑙𝑢𝑒) = 𝐴𝐼𝑄.popHead();
23: if {{𝑝}} ∈ 𝐶𝑅 then
24: 𝐶[𝑞] = 𝐶[𝑞] ∪ {𝑝};
25: 𝐶𝑅 = 𝐶𝑅− {{𝑝}};
26: end if
27: end while
28: //Phase 2.3: Detect clusters, hubs and outliers
29: 𝑁(𝑖) = ∅;
30: for each C ∈ 𝐶𝑅(𝑖) do
31: if ∣𝐶∣ < 𝜇 then
32: 𝐶𝑅(𝑖) = 𝐶𝑅(𝑖) − {𝐶};
33: 𝑁(𝑖) = 𝑁(𝑖) ∪ 𝐶;
34: end if
35: end for
36: 𝑄(𝑖) = 𝑄𝑠(𝐶𝑅(𝑖));
37: end for
38: 𝑘 = argmax𝑡{𝑄(𝑡)};
39: return 𝐶𝑅(𝑘), 𝑁(𝑘) and 𝜀(𝑘);

it in an incremental way and the complexity is 𝑂(𝑚) when
we try all possible 𝜀. In total, the time complexity of our
algorithm is 𝑂((𝑚+𝑛) log 𝑛). For the scale-free networks, it
is 𝑂(𝑚 log 𝑛). The algorithm can also be implemented in a
more efficient way, which starts the clustering process from
the 1/2 of ordered edges and stops when the current 𝑄𝑠 value
decreases by 0.05 from the previous one. The optimized
algorithm reduces almost 1/2 running time with the same
clustering results.

VI. EXPERIMENTS

In this section, we evaluate the proposed algorithm using
some real-world networks and synthetic datasets. The perfor-
mance of gSkeletonClu is compared with two state-of-the-art
methods: SCAN and FastModularity. SCAN is an efficient
density-based network clustering algorithm, and FastMod-
ularity is a representative modularity-based algorithm for
community detection. Our algorithm is implemented using
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Table I
THE PARAMETERS OF THE COMPUTER-GENERATED DATASETS FOR

PERFORMANCE EVALUATION.

Dataset 𝑛 𝑚 𝑘 𝑚𝑎𝑥𝑘 𝑚𝑖𝑛𝑐 𝑚𝑎𝑥𝑐

10000S 10,000 99,238 20 50 10 50
10000B 10,000 99,036 20 50 20 100
100000S 100,000 1,987,850 40 100 50 100
100000B 100,000 1,990,271 40 100 100 200

ANSI C++. All the experiments were conducted on a PC
with a 2.4 GHz Pentium IV processor and 4GB of RAM.

A. Datasets

We evaluate the performance of our algorithm on two
types of datasets. One is the real-world networks and the
other is the computer-generated benchmark networks with
known community structure.

1) Real-world Networks: To assess the performance of
the proposed method in terms of accuracy, we conduct
experiments on two popular real-world networks: NCAA
College-football network and US Political Books network
[20]. The NCAA College-football is a social network with
communities (or conferences) of American college football
teams. The network, representing the schedule of Division
I-A games for the 2000 season, contains 115 nodes and 613
edges. All college football teams are divided into eleven
conferences and five independent teams (Utah State, Navy,
Notre Dame, Connecticut and Central Florida) that do not
belong to any conference. There is a link between two teams
if they played a game together. Now the question is to
find out the communities from the graph that represents
the schedule of games played by all teams. The network of
US Political Books contains 105 nodes and 441 edges. The
nodes of the network represent the US political books sold
by the online bookseller Amazon.com and have been given
labels “liberal”, “neutral”, or “conservative”, respectively, by
Newman. There is a link between two books if they are co-
purchased frequently enough by the same buyers.

2) Synthetic Benchmark Networks: We also use the
Lancichinetti-Fortunato-Radicchi (LFR) benchmark graphs
[21] to evaluate the performance of our algorithm. By
varying the parameters of the networks, we analyze the
behavior of the algorithms in detail. Some important
parameters of the benchmark networks are:
∙ 𝑛: number of nodes
∙ 𝑚: average number of edges
∙ 𝑘: average degree of the nodes
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Figure 6. Sorted 3-nearest structural similarity.

Table II
THE OPTIMAL 𝜀 AND THE CORRESPONDING 𝑄𝑠 .

Manually selected parameter 𝜀 Global optimal parameter 𝜀
Dataset 𝜀 𝑄𝑠 𝜀 𝑄𝑠

football 0.5466 0.7231 0.5222 0.7622
polbooks 0.4376 0.5532 0.3746 0.5645
10000S 0.2678 0.7964 0.2101 0.8554
10000B 0.1866 0.7426 0.1909 0.7715
100000S 0.2451 0.8077 0.1636 0.8408
100000B 0.1593 0.8699 0.1319 0.8828

∙ 𝑚𝑎𝑥𝑘: maximum degree
∙ 𝑚𝑢: mixing parameter, i.e., each node shares a fraction

𝑚𝑢 of its edges with nodes in other communities
∙ 𝑚𝑖𝑛𝑐: minimum for the community sizes
∙ 𝑚𝑎𝑥𝑐: maximum for the community sizes

We generate several weighted undirected benchmark net-
works with the number of nodes 𝑛 = 10,000 and 100,000. In
Table I, we list the values of the parameters for the generated
datasets. For each 𝑛, two types of networks are generated
with different ranges of the community sizes, where S means
that the sizes of the communities in the dataset are relatively
small and B means that the sizes of the communities are
relatively big. For each type of datasets, we generate fifteen
networks with different mixing parameter 𝑚𝑢 ranging from
0.1 to 0.8 with a span of 0.05. Generally, the higher the
mixture parameter of a network is, the more difficult it is to
reveal the community structure.

B. Selection of the Parameter 𝜀

In [2], the authors presented a “knee hypothesis” to
find the proper 𝜀 value. We sort 3-nearest similarity of all
nodes in the networks to locate the knee. Two plots for the
US Political Books and the benchmark 10000B are given
respectively in Figure 6, and it can be observed that there
are no obvious knee in the curves. Furthermore, there is no
rigorous way to ensure that the identified “knees” are the
appropriate values of the parameter 𝜀.

In the experiment, we try our best to select a “knee” as
the parameter 𝜀 for the SCAN algorithm from the 3-nearest
similarity plot of each network. In contrast, our algorithm
locate the optimal 𝜀 automatically which achieves the highest
𝑄𝑠 value. In Table II, we show the manually selected values
of 𝜀 and the corresponding 𝑄𝑠 for some adopted datasets, as
well as the optimal 𝜀 and the corresponding 𝑄𝑠 values found
by gSkeletonClu, where 𝑚𝑢 = 0.4 for all of the benchmark
networks. As shown in Table II, the manually selected 𝜀 is
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Figure 7. The distribution of 𝑄𝑠 w.r.t. 𝜀.
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Figure 8. NCAA College-football network.

always not the optimal one because it depends greatly on
the intuition of user.

We also present the relationship between 𝜀 and 𝑄𝑠 in
Figure 7. It can be observed that the maximum of 𝑄𝑠

in the curve is always near the middle of all possible 𝜀
values. Thus we can locate the optimal 𝜀 by testing only a
portion of all possible values. We introduce two parameters
for our algorithm: 𝑏 and 𝑒. The parameter 𝑏 indicates the
start position of all the sorted edges in the CCMST and the
parameter 𝑒 indicates the stop criteria. For example, if we set
𝑏 = 0.5 and 𝑒 = 0.05, it means that the clustering process
will start from a half of all edges with higher weights which
have been appended in the forest and stop when the current
𝑄𝑠 value decreases by 5% from the previous one.

C. Criteria for Accuracy Evaluation

In our experiments, we adopt Normalized Mutual Infor-
mation (NMI) [22], an information-theoretic based measure-
ment, to evaluate the quality of clusters generated by differ-
ent methods. This is currently widely used in measuring the
performance of network clustering algorithms. Formally, the
measurement metric NMI can be defined as

𝑁𝑀𝐼 =
−2

∑
𝑖,𝑗 𝑁𝑖𝑗 𝑙𝑜𝑔(

𝑁𝑖𝑗𝑁
𝑁𝑖.𝑁.𝑗

)∑
𝑖 𝑁𝑖.𝑙𝑜𝑔(

𝑁𝑖.

𝑁 ) +
∑

𝑗 𝑁.𝑗 𝑙𝑜𝑔(
𝑁.𝑗

𝑁 )
, (7)

where 𝑁 is the confusion matrix, 𝑁𝑖𝑗 is the number of nodes
in both 𝑋𝑖 and 𝑌𝑗 , 𝑁𝑖. is the sum over row 𝑖 of 𝑁 and 𝑁.𝑗 is
the sum over column 𝑗 of 𝑁 . Note that the NMI value ranges
between 0.0 (total disagreement) and 1.0 (total agreement).

D. Accuracy Comparison on Real-world Networks

NCAA College-football network: Figure 8 illustrates the
original NCAA College-football network and the clustering
result of our algorithm with each node representing a school
team. For the original network, the conferences and the
group of five independent teams are indicated by cliques.
Our algorithm obtains eleven clusters in this network which
demonstrates a perfect match with the original conference
system. The teams belonging to a conference and the
independent teams are denoted by circles and diamonds
respectively, and the teams in the same conferences are
represented by the same color. Four independent teams are
correctly identified as hubs. Although another four teams
(i.e., Louisiana Monroe, Louisiana Lafayette, Louisiana
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Figure 9. US Political Books network.
Tech, and Middle Tennessee State) are identified as hubs,
and three other teams are misclassified, our algorithm still
performs much better than other methods including SCAN
and FastModularity, which will be described as follows.

The SCAN algorithm detects thirteen communities as its
best result in this dataset with parameters (𝜀 = 0.5466,
𝜇 = 3). The teams of two conferences are divided into two
clusters respectively. Meanwhile, it finds ten hub nodes with
only four are correctly identified, and one independent team
UtahState is misclassified into a conference. It follows that
the parameter value selected manually lowers the accuracy
of SCAN. The modularity-based algorithm FastModularity
discovers seven communities, but only four communities
matching with the conferences. For the five independent
teams, they are assigned to three different communities.

US Political Books network: The original network and
the clustering result of our algorithm are presented in Fig-
ure 9. For the original network, the “liberal”, “neutral” and
“conservative” books are represented by circle, triangle and
box, respectively. Our algorithm successfully identifies three
clusters and four hubs with 𝜇 = 4. The clusters detected by
our algorithm are illustrated by three different colors: blue
for “liberal” books, thistle for “neutral” books and red for
“conservative” books. In addition, the hubs which do not
belong to any cluster are denoted by pink diamonds.

The SCAN algorithm detects three clusters and nine hubs
in the network with parameters (𝜀 = 0.4376, 𝜇 = 4). The
FastModularity algorithm finds four clusters in this network,
and even worse it mixes some nodes from all the three
communities together as a new cluster.

In summary, gSkeletonClu generates promising clustering
results along with hubs and outliers in community detec-
tion, consistently outperforming baseline methods including
SCAN and FastModularity.

E. Accuracy Comparison on Synthetic Networks

For a more standardized comparison, we turn to the re-
cently proposed LFR benchmark graphs, which are claimed
to possess properties found in real-world networks and
incorporate more realistic scale-free distributions of node-
degree and cluster-size [21]. We compare the three clustering
algorithms on the networks with size of 10,000 and 100,000.

The NMI scores of the three methods are plotted in
Figure 10. On most of the datasets, our algorithm gets

488



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Mixing paremeter

N
M

I

10000S

gSkeletonClu
SCAN
FastModularity

mu

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1
10000B

Mixing parameter

N
M

I

gSkeletonClu
SCAN
FastModeularity

mu

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1
100000S

Mixing parameter

N
M

I

gSkeletonClu
SCAN
FastModularity

mu

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1
100000B

Mixing paremeter

N
M

I

gSkeletonClu
SCAN
FastModularity

mu

(d)
Figure 10. NMI values of the three algorithms on the computer-generated
benchmark networks.

𝑁𝑀𝐼 = 1 as 𝑚𝑢 < 0.4, which means a perfect match with
the original network structure. However, the performance of
our algorithm decreases when 𝑚𝑢 > 0.4, especially in the
small-scale network with big communities (e.g., 10000B).
This is because that more and more hubs and outliers are
isolated with the increasing of parameter 𝑚𝑢. As shown in
Figure 10, the performance of gSkeletonClu is better than
that of FastModularity on all generated networks, because
the FastModularity algorithm tends to produce a small
number of big communities on the large-scale networks, due
to the well known resolution limit of modularity [19].

For SCAN, its NMI values are lower than that of our
algorithm but higher than FastModularity in most cases.
This verifies the advantage of the density-based methods in
community detection within complex network. However, we
observe that the clustering results of SCAN are sometimes
unreasonable. For example, the NMI value of SCAN on the
network with 𝑚𝑢 = 0.6 is higher than that with 𝑚𝑢 = 0.5
in Figure 10(b), and the NMI value of SCAN on the network
with 𝑚𝑢 = 0.1 is much lower than that with 𝑚𝑢 = 0.2 in
Figure 10(d). This is in conflict with the characteristic of the
LFR benchmark networks, which demonstrates that SCAN
is sensitive to the parameter 𝜀 and the manually selected
parameter can not provide the optimal clustering results.

The NMI values clearly demonstrate that gSkeletonClu
can always locate the optimal 𝜀 and produce clusters that
resemble the true classes of the datasets in our study.
When we use the optimal 𝜀 found by our algorithm as the
input parameter for SCAN, it can get the same clustering
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represent the weights).
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Figure 12. Two schematic networks (the numbers on the edge represent
the structural similarity): (a) the Ring network made out of identical cliques
connected by single links, and (b) the Pairwise network with four cliques.

results in most cases. But there will still be some minor
differences because our algorithm assigns the border node
to its neighbor core node with the maximum of reachability-
similarity, while SCAN assigns the border node to the core
node which associates with it first.

F. Tackling the Problem of Chaining Effect

The traditional MST clustering method may suffer from
the problem of chaining effect (also called as single-link
effect), which is caused by some linearly connected nodes
that run through a sparse area. In Figure 11, we present
a network, called Dumbbell, which consists of two cliques
with five nodes connected by another five nodes in single
links. If we use the MST clustering approach to cluster the
original weighted Dumbbell network, we can get only one
cluster containing all the nodes in the network. The reason is
that the weights of the edges in the MST are all equal to five.
But if we use the MST clustering algorithm smoothed by
local similarity (i.e., gSkeletonClu with 𝜇 = 2), we get three
clusters: {1,2,3,4,5}, {6,7,8,9,10}, and {11,12,13,14,15}.
Interestingly, our algorithm gSkeletonClu obtains the most
reasonable clustering results with 𝜇 = 4 or 5, in which the
two density cliques are discovered as two clusters and the
middle five nodes connected by single links are identified as
outliers.

Obviously, our algorithm can overcome the chaining effect
because it uses structure similarity as edge weight, which is
smoothed by local link-density. Moreover, the parameter 𝜇
can be used to determine the minimal size of clusters freely.

G. Analyzing the Problem of Resolution Limit

Despite the good performance of the modularity measure
on many practical networks, it may lead to apparently
unreasonable partitions in some cases. It has been shown
that modularity contains an intrinsic scale that depends on
the total number of links in the network. Communities that
are smaller than this intrinsic scale may not be resolved, even
in the extreme case that they are complete graphs connected
by some single bridges. The resolution limit of modularity
actually depends on the degree of interconnectedness be-
tween pairs of communities and can reach values of the
order of the size for the whole network [19].
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Table III
THE NUMBER OF COMMUNITIES ON RING AND PAIRWISE NETWORKS

FOUND BY SA, FASTMODULARITY AND GSKELETONCLU.

Dataset
Name 𝑁 𝑀 𝐶 SA FastModularity gSkeletonClu

Ring 150 330 30 15 16 30
Pairwise 50 404 4 3 3 4

In Figure 12(a), we show a network consisting of a ring of
several cliques, connected through single links. Each clique
is a complete graph with 𝑛 nodes and 𝑛(𝑛 − 1)/2 links.
Suppose there are 𝑐 cliques (with 𝑐 even), the network has
a total of 𝑁 = 𝑛𝑐 nodes and 𝑀 = 𝑐𝑛(𝑛− 1)/2 + 𝑐 edges.
According to [19], modularity optimization would lead to
a partition where the cliques are combined into groups of
two or more (represented by dotted lines). Here, we use
a synthetic dataset with 𝑛 = 5 and 𝑐 = 30, called Ring.
Another synthetic network is shown in Figure 12(b). In this
network, the larger circles represent cliques with 𝑛 nodes,
denoted as 𝐾𝑛, and there are two small cliques with 𝑝 nodes.
According to [19], we set 𝑛 = 20, 𝑝 = 5 and obtain the
network called Pairwise. Modularity optimization merges the
two small communities into one (shown with a dotted line).

We present the clustering results on the above two datasets
in Table III, where 𝑁 is the number of nodes, 𝑀 is the num-
ber of edges, and 𝐶 is the correct number of communities.
Our algorithm gSkeletonClu discovers the exact communi-
ties. For the Ring and Pairwise networks, the modularity-
based algorithms SA and FastModularity both possess the
resolution limit problem which results in merging two small
cliques into one cluster.

The reason that our algorithm can overcome the resolu-
tion limit is that it combines the density-based clustering
principle and the modularity measure. The connected nodes
with higher similarity will be considered preferentially as in
the same community than the lower ones. Moreover, all of
the adjacent nodes with equal similarities will be merged in
one community together or be staying alone.

VII. CONCLUSIONS

In this paper, a novel network clustering algorithm, called
gSkeletonClu, is presented to overcome the sensitive pa-
rameter problem of density-based network clustering and
detect clusters, hubs and outliers in large-scale undirected
networks. By projecting the original weighted network to its
CCMST, we convert the problem of community discovery
to finding core-connected components in the CCMST. A
theoretical analysis shows that the structural clustering result
on the CCMST is equal to that on the original network.
Our algorithm also overcomes the problem of chaining effect
possessed by the traditional MST-based clustering methods
and the resolution limit possessed by other modularity-based
algorithms. In the future, it is interesting to use our method
to analyze the database data and more complex graphs from
various applications.

ACKNOWLEDGMENTS

The work was supported in part by the Natural Science
Basic Research Plan in Shaanxi Province of China (No.
SJ08-ZT14), the National High-Tech Research and Devel-
opment Plan of China under Grant No.2008AA01Z131,
the U.S. National Science Foundation grants IIS-08-42769,
CCF-0905014, and BDI-07-Movebank, and the Air Force
Office of Scientific Research MURI award FA9550-08-1-
0265. Any opinions, findings, and conclusions expressed
here are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” in Proc.
of SODA’98, 1998, pp. 668–677.

[2] X. Xu, N. Yuruk, Z. Feng, and T. Schweiger, “SCAN: a structural clustering
algorithm for networks,” in KDD’07. ACM, 2007, pp. 824–833.

[3] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in KDD’96, vol. 96,
1996, pp. 226–231.

[4] D.-H. Kim, J. D. Noh, and H. Jeong, “Scale-free trees: The skeletons of
complex networks,” Phys. Rev. E, vol. 70, no. 4, p. 046126, Oct 2004.

[5] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
graphs,” The Bell System Technical Journal, vol. 49, no. 1, pp. 291–307, 1970.

[6] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–
392, 1998.

[7] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE TPAMI,
vol. 22, no. 8, pp. 888–905, 2000.

[8] S. White and P. Smyth, “A spectral clustering approach to finding communities
in graph,” in SDM’05, 2005.

[9] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering
points to identify the clustering structure,” in SIGMOD’99, 1999, pp. 49–60.

[10] D. Bortner and J. Han, “Progressive clustering of networks using structure-
connected order of traversal,” in ICDE’10, 2010.

[11] C. Zahn, “Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters,” IEEE Transactions on Computers, vol. 100, no. 20, pp. 68–86, 1971.

[12] J. C. Gower and G. J. S. Ross, “Minimum spanning trees and single linkage
cluster analysis,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 18, no. 1, pp. 54–64, 1969.

[13] Y. Xu, V. Olman, and D. Xu, “Minimum spanning trees for gene expression
data clustering,” Genome Informatics, vol. 12, p. 2001, 2001.

[14] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Clustering validity checking
methods: part I,” SIGMOD Rec., vol. 31, no. 2, pp. 40–45, 2002.

[15] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, 2004.

[16] Z. Feng, X. Xu, N. Yuruk, and T. A. J. Schweiger, “A novel similarity-based
modularity function for graph partitioning,” in DaWaK’07, 2007, pp. 385–396.

[17] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure
in very large networks,” Phys. Rev. E, vol. 70, no. 6, p. 066111, Dec 2004.

[18] R. Guimera and L. N. Amaral, “Functional cartography of complex metabolic
networks,” Nature, vol. 433, no. 7028, pp. 895–900, 2005.
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