
QoRank: A Query-Dependent Ranking
Model Using LSE-Based Weighted Multiple
Hyperplanes Aggregation for Information
Retrieval
Heli Sun,1,∗ Jianbin Huang,2,† Boqin Feng1

1Department of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an, People’s Republic of China
2School of Software, Xidian University, Xi’an, People’s Republic of China

Ranking is a core problem for information retrieval since the performance of the search system
is directly impacted by the accuracy of ranking results. Ranking model construction has been the
focus of both the fields of information retrieval and machine learning, and learning to rank in
particular has attracted much interest. Many ranking models have been proposed, for example,
RankSVM is a state-of-the-art method for learning to rank and has been empirically demonstrated
to be effective. However, most of the proposed methods do not consider about the significant
differences between queries, only resort to a single function in ranking. In this paper, we present a
novel ranking model named QoRank, which performs the learning task dependent on queries. We
also propose a LSE (least-squares estimation) -based weighted method to aggregate the ranking
lists produced by base decision functions as the final ranking. Comparison of QoRank with other
ranking techniques is conducted, and several evaluation criteria are employed to evaluate its
performance. Experimental results on the LETOR OHSUMED data set show that QoRank strikes
a good balance of accuracy and complexity, and outperforms the baseline methods. C© 2010 Wiley
Periodicals, Inc.

1. INTRODUCTION

Over the past decade, the Web has grown exponentially in size. The sheer
number of both good and bad pages on the Web has led to an increasing reliance on
information retrieval systems for the discovery of useful information. Users rely on
information retrieval systems not only to return pages related to their query but also
to rank results to suggest the best pages first. Because of its importance, ranking

∗Author to whom all correspondence should be addressed: e-mail: helisun.sunny@
gmail.com.

†e-mail: jbhuang@xidian.edu.cn.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 26, 73–97 (2011)
C© 2010 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com. • DOI 10.1002/int.20455

74 SUN, HUANG, AND FENG

has become the central problem of many information retrieval applications, such
as document retrieval,1 collaborative filtering,2 key term extraction,3 expert find-
ing,4 important email routing,5 sentiment analysis,6 product rating,7 and anti Web
spam.8

Ranking has been the focus of much attention for many years and several
ranking functions emerged including inner product,9 vector space model,10 cosine,11

probability12 and BM25.13 Some ranking methods are based on link analysis, such
as PageRank14 and HITS.15 All these methods use a small number of features (e.g.,
term frequency, inversed document frequency, and document length) to tune ranking
parameters empirically. Although a growing number of features such as structural
features, title text, anchor text, and query independent features (e.g., PageRank
and URL length) have been proved useful in document retrieval; empirical tuning
of ranking functions sometimes leads to overfitting and has become increasingly
difficult.

The approach of employing machine learning techniques to address the ranking
problem naturally emerges as an effective solution. Recently, a method called learn-
ing to rank has gained increasing attention in both the fields of machine learning and
information retrieval. The objective of learning to rank is to automatically learn a
ranking model from training data, and the model can sort objects (e.g., documents)
according to their degrees of relevance, preference, or importance as defined in a
specific application. A typical setting in learning to rank is that feature vectors, and
ranks are given as training data. When applied to document retrieval, learning to
rank becomes a task as follows: In training, a ranking model is constructed with
data consisting of queries, their corresponding retrieved documents, and relevance
levels given by domain experts. In ranking, given a new query, the corresponding
retrieved documents are sorted by the trained ranking model.

Several methods for learning to rank have been developed. Typical methods
include RankSVM,16 RankBoost,17 RankNet,18 and some improved methods such as
MHR,19 AdaRank,20 and ListNet.21 RankSVM and MHR are based on support vector
machine (SVM), RankBoost and AdaRank are based on boosting, and RankNet and
ListNet are based on neural nets. Recently, learning to rank functions have been
a major issue in the machine learning community22–25and have produced many
applications in information retrieval.26–28

However, it should be noted that in most of the previous work, a single ranking
function is used to handle all instances, which belong to many different queries and
ranks. This may not be appropriate, particularly for Web search:

– Queries in Web search have different semantics and intents. For example, queries can be
navigational, informational, or transactional.29

– Queries in Web search differ in forms they appear. Queries can be short or long. Queries
can be personal names, product names, or terminology. Queries can be phrases, combi-
nations of phrases, or natural language sentences.

– The number of relevant documents can vary from query to query in Web search. Queries
may have many relevant documents or only a few.

– The degree of relevance of a document to a query may fall into multiple levels. For
example, we may get five rating levels from irrelevant to definitely relevant by users.

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 75

In this paper, we address learning to rank for document retrieval and propose
an alternative approach to RankSVM. First, we discuss about RankSVM, which has
been widely used in learning to rank because of its simplicity and effectiveness.
However, RankSVM uses a single hyperplane to rank instances belonging to differ-
ent ranks and queries would make compromises among the cases and result in lower
ranking accuracy. In addition, the model training for RankSVM is expensive.

To address these limitations, we propose a new method QoRank, which per-
forms the learning task in a query-dependent manner. It trains multiple query-
dependent hyperplanes as the base decision functions and aggregates the rank lists
from multiple hyperplanes as the final ranking. On the one hand, different from
RankSVM and MHR, QoRank constructs hyperplanes depending on query and thus
is able to provide a better separation of the instances of different queries. On the
other hand, QoRank separates the training instance into small pieces and it gains the
lowest training complexity. We next propose a LSE (least-squares estimation)-based
weighted method for ranking aggregation, and the method assigns different weights
to hyperplanes with weights reflecting the ranking accuracy.

The public data set LETOR OHSUMED is used to evaluate the effectiveness
of our method. Experimental results show that the proposed query-dependent rank-
ing model is very effective for information retrieval. Compared with traditional
ranking model BM25 and other learning to rank methods, QoRank achieves better
performance.

This paper is organized as follows: We start with a brief review on related
research in Section 2. Then, we analyze the limitation of state-of-the-art learning to
rank methods and describe our ranking model in Section 3. Section 4 introduces our
ranking aggregation method for multiple hyperplanes. Section 5 conducts theoretical
analysis. Section 6 describes the data set used in the experiment. Experimental eval-
uations are reported in Section 7, and the conclusion and future work are presented
in the last section.

2. RELATED WORK

2.1. Learning to Rank

The key problem for information retrieval is ranking—specifically, how to
create the ranking model that can sort documents based on their relevance to the given
query. It is a common practice in information retrieval to tune the parameters of a
ranking model using some labeled data and one performance measure.4 For example,
BM2513 and LMIR.30, 31 There are some methods on how to compose a ranking
function. For example, Zobel and Moffat32 explored all possible combinations of
feature weighting components to find such functions, which take into account a small
number of features, including term frequency, inverse document frequency, and
document normalizations. As more useful features and more labeled data become
available, the ranking models become more sophisticated and how to tune or train
ranking models becomes a challenging issue. The approach named learning to
rank that uses all sorts of useful features and automatic parameter tuning naturally
emerges as an effective solution and has become a topic of interest.

International Journal of Intelligent Systems DOI 10.1002/int

76 SUN, HUANG, AND FENG

↓

↓

d

d

d

q

Figure 1. The general framework of learning to rank for document retrieval.

The general framework of learning to rank is described in Figure 1. A number
of queries and their corresponding retrieved data are given. The ranks of the data are
also provided. Partition the data set into several subsets, some subsets as a training
set, some as a validation set, and others as a testing set. The training set will be
used to learn the ranking model M, the validation set to tune the parameters, and the
test set to report the ranking performance of M. In the learning phase, the objective
is to construct a ranking model M, which yields the best results in ranking of the
training data. After that, the ranking model M tunes the parameters on the basis of
the performance measure of the results of the validation set. In the ranking phase,
the model M returns a ranking list of retrieved results corresponding to the given
query in descending order of the relevance scores.

Learning to rank is aimed at automatically creating the ranking model using
some training data and machine learning techniques. Some early work tackled
this problem as binary classification,33 in which the assumption is made that a
document is either relevant or irrelevant to the query, and the goal of learning is
to classify relevant documents from irrelevant documents. However, in real-world
applications, the degree of relevance of a document to a query can be discretized
to multiple levels. And so, ranking is a problem different from classification. Many
other methods based on machine learning techniques have been proposed and applied
in information retrieval. According to Cao et al.,1, 21 the current methods fall into
three categories: (i) pointwise, (ii) pairwise and (iii) listwise approaches. In the
pointwise approach,33, 34 each training example is composed of a set of document
features and its corresponding rank relative to a query. The learning process tries to
map features into ranks. In the pairwise approach,1, 16–19, 23, 35 each training example
is composed of pairs of instances and the preference relation among them. In this

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 77

case, the goal is to classify each pair into correctly or incorrectly ranked categories.
Finally, in the listwise approach,20, 21, 36 a list of documents are used as training
instances. A ranking function is learned, and then used to sort documents.

Several pairwise ranking methods have been proposed. For example,
RankSVM16 uses support vector machines to learn a ranking function from prefer-
ence data. RankNet18 applies neural network and gradient descent to obtain a ranking
function. RankBoost17 applies the idea of boosting to construct an efficient ranking
function from a set of weak ranking functions. The studies reported in Ref. 1 pro-
posed a framework called GBRank using gradient descent in function spaces,37, 38

which is able to deal with complicated features in the context of Web search. Our
work in this paper can be viewed as an alternative approach to RankSVM developed
for ranking in information retrieval.

2.2. Ranking Aggregation

Rank aggregation is a process of combining individual preferences to obtain a
reasonable ultimate ranking. There exist various methods for ranking aggregation.
In most cases, the strategies rely on the following information: (i) the ordinal rank
assigned to an item in the rank list and (ii) the score assigned to an item in the rank
list. In score-based methods, items are ranked in order of the assigned scores in
the rank lists, or some transformation of those scores,39–46 whereas in rank-based
merging methods, items are ranked in order of the assigned ranks in the rank lists,
or some transformation of those ranks.39, 43, 47, 56 Another orthogonal distinction of
ranking aggregation methods is whether the methods rely on training data (e.g.,
the Bayes-fuse method,39 the linear combination method,45 and the preference rank
combination method41) or not. Our method LSE-based weighted aggregation pro-
posed in this paper can be viewed as a rank-based and weak training method.

3. QUERY-DEPENDENT RANKING WITH OPTIMIZED MULTIPLE
HYPERPLANES

3.1. Analysis of RankSVM

Assuming that there exists an input space X ∈ Rn, where n denotes the number
of features. An output space of ranks is represented by label set Y = {r1, r2, . . . , rm},
where m denotes the number of ranks. Furthermore, assume that there exists a
total order between the ranks r1 � r2 � · · · � rm, where � denotes the preference
relationship described in Definition 1. In training phase, a set of labeled instances
T = {(x1, y1), (x2, y2), . . . , (xn, yn)} is given, where xi ∈ X is the feature vector of
instance i, and yi ∈ Y is the rank label of instance i. If yi > yj , we say xi is ranked
ahead of xj , denoted as xi � xj . Assume that F is the set of ranking functions, such
that each of them can determine the preference relations between instances

xi � xj ⇔ f (xi) > f (xj) (1)

International Journal of Intelligent Systems DOI 10.1002/int

78 SUN, HUANG, AND FENG

DEFINITION 1. Rank ra is preferable to rank rb if ra is ranked higher than rb, and
the order relation between ra and rb is denoted as ra � rb.

SVM is a general model of machine learning, which has been applied to ranking
model construction and some promising results have been obtained. RankSVM16

formalizes the above-mentioned learning problem as that of learning for classifica-
tion on pairs of instances. Note that the relation xi � xj between instance pairs xi

and xj can be expressed by a new instance xi − xj . Next, take any instance pair and
their relation to create a new instance and a new label.(

xi − xj , z =
{ +1 yi > yj

−1 yj > yi

)
(2)

If xi is ranked ahead of xj , we assign a label +1, otherwise −1 to the new
instance. In this way, RankSVM produces a new training data set. Constructing the
SVM model is equivalent to solving the following problem:

minωξi,j

1
2 ‖ω‖2 + C

∑
ξij

s.t.
〈
ω, xi − xj

〉
> 1 − ξij , ∀xi � xj , ξij ≥ 0

(3)

where ‖ω‖2 denotes �2 norm measuring the margin of the hyperplane and ξij denotes
a slack variable. Suppose that the solution to (3) is ω∗, and then the ranking function
is given by

f (x) = 〈ω∗, x〉 (4)

RankSVM is unique in that it constructs one single hyperplane classifier on all
instance pairs and uses it for ranking. The advantages of RankSVM are simplicity
and effectiveness. However, RankSVM employs a single hyperplane for ranking
and thus it is difficult to separate instances from many different ranks. In addition,
RankSVM does not consider the diversity of queries. In reality, as shown in Figure 2,
a single hyperplane is difficult to handle the ranking of instances from many different
ranks and queries. Another problem is that the model training is generally costly.
The order of the instance pairs it uses to train is quadratic in the training instance
size.

To illustrate the limitation of RankSVM, two examples showing the distribu-
tion of instances for Query 5 and Query 65 of LETOR OHSUMED data set are
presented in Figure 2. Principle component analysis (PCA) is performed on the data
of LETOR OHSUMED data set, and the first and second principle components are
displayed in the figure. In Figure 2, blue denotes “irrelevant” (R1), green denotes
“partially relevant” (R2), and red denotes “definitely relevant” (R3). In Figure 2a,
we can observe that RankSVM exploits a single hyperplane to rank all kinds of the
documents and treats the instance pairs from all rank pairs equally. There are more
instances in the ranks of R1 and R2, the ranking model of RankSVM tends to be
close to that of R1–R2, i.e., the direction that separates R1 and R2. As a result,
RankSVM could not well separate the instances in the ranks of R1 and R2, R2 and

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 79

0 1 2 3 4

0

0.5

1

1.5

2

Irrelevant

Partially relevant

Definitely relevant

R1 R2 R1 R3

R2 R3

RankSVM

R1 R2

0 1 2 3 4

0

0.5

1

1.5

2

Q5 Q65

RankSVM

Figure 2. Instances distribution of Query 5 and Query 65 in LETOR OHSUMED data set.

R3. In Figure 2b, we can find that the total ranking model tends to be close to that
of Query 65, which has more instances.

3.2. Query-Dependent Ranking with Optimized Multiple Hyperplanes

Let Q = {qi |i = 1, . . . , Nq} denote a collection of Nq queries in the training
data, and each query qi is associated with a list of Ni instances Di = {xi

1, . . . , x
i
Ni

},
International Journal of Intelligent Systems DOI 10.1002/int

80 SUN, HUANG, AND FENG

in which each instance xi
j is manually judged with relevance yi

j ∈ Y , where Y =
{rm|m = 1, . . . , Nr} and Nr denotes the number of ranks. For each query qi ,
we train a hyperplane with the corresponding documents set Di = {xi

1, . . . , x
i
Ni

},
then the learning task is formalized as a quadratic programming problem shown
below:

minωiξi,j,k

1
2‖ω‖2 + C

∑
j,k ξi,j,k

s.t.
〈
ωi, x

i
j − xi

k

〉 ≥ 1 − ξi,j,k,ξi,j,k ≥ 0
(5)

where i denotes ith query and ω denotes the parameter vector of base decision
function, xi

j and xi
k denote jth and kth instance of Di , ξi,j,k is a slack variable.

Different from classification, the training instances of ranking are generally
belong to certain rank, such as “definitely relevant,” “partially relevant,” and “irrele-
vant.” There exist some relations between the ranks. Using the relations to optimize
the multiple hyperplanes, both the number of hyperplanes and the number of training
instances will be greatly reduced. First, we describe the adjacency relation of ranks
in Definition 2.

DEFINITION 2. Rank rm is adjacent to rank rn iff rm is preferable to rn, and there is
no rank between rm and rn, the relation between rm and rn is denoted as rm > rn.

Let ωi,m,n denote the parameter vector of base decision function for the rank
pair rm and rn. When rm > rn, we can build up the base decision function as follows:

minωi,m,nξi,j,k,m,n

1
2‖ω‖2 + C

∑
j,k ξi,j,k,m,n

s.t.
〈
ωi,m,n, x

m
j − xn

k

〉 ≥ 1 − ξi,j,k,m,n,ξi,j,k,m,n ≥ 0
(6)

where xm
j indicates an instance of rank rm and xn

k indicates an instance of rank rn.
We build a hyperplane for each rank pair rm and rn when rm > rn. If there are Nr

ranks, then there will be only Nr − 1 base decision functions for the Nr − 1 rank
pairs:

fi,m,n(x) = 〈ωi,m,n, x〉 (7)

For example, when Nr = 3, the number of base decision functions is Nr − 1 =
2 and can be represented as ω1,2, ω2,3, respectively, corresponding to two rank
pairs (1, 2), (2, 3). Figure 3 shows an example of the QoRank method, in a two-
dimensional s pace described by the two principal coordinates. Considering the
order relations, QoRank trains one hyperplane for every adjacent rank pair: One is
between “definitely relevant” and “partially relevant;” the other is between“partially
relevant” and “irrelevant.”

Constructing one hyperplane for each query reduces the number of training
instances for single hyperplane. Accordingly, the total number of training instance

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 81

0 1 2 3 4

0

0.5

1

1.5

2

Irrelevant

Partially relevant

Definitely relevant

R1 R2

R2 R3

Figure 3. QoRank for query 65 of LETOR OHSUMED data set.

for all of the hyperplanes decreases dramatically, reducing the training time. The
theory analysis is given in Section 5. Furthermore, building hyperplanes for part of
the rank pairs conquers the problem of hyperplanes direction deviation for RankSVM
caused by uneven distribution of training instance. The algorithm procedure for the
method is described in Algorithm 1.

Input: training dataset T = {(xi, yi)|i = 1, 2, ... , Nt} where xi ∈ D and yi ∈Y , D = {x1,..., xNt
},

Y = {rm|m = 1,...Nr}, query set Q = {qi|i = 1,..., Nq}
Output: a set of decision functions

1 Divide the training dataset T into some subsets Ti(i = 1,...Nq) according to the query ;

2 for i = 1, 2,...Nq do
3 for j = 1, 2,..., Nr do
4 for k = 1, 2,..., Nr do
5 if rank r j > rank rk then
6 Choose the instances in Ti belonging to rank r j and rank rk as subset Ti jk;

7 end
8 end
9 end

10 Calculate the vector differences in each subset ;

11 Select the working sets using the SMO method which meets m(αk)− M(αk) ≤ ε ;

12 Carry out iterations until f (αk)− f (α) ≤ ε ;

13 Calculate the parameters and select the support vectors;

14 Output the decision functions ;

15 end

Algorithm 1. QoRank.

International Journal of Intelligent Systems DOI 10.1002/int

82 SUN, HUANG, AND FENG

4. LSE-BASED WEIGHTED RANKING AGGREGATION

After obtaining the base decision functions, the rank label for any new instance
x is determined by LSE-based weighted aggregation, which assigns different weights
to the base decision functions, and the weights are in proportion to their ranking
accuracy. We propose to learn the weights as follows:

Let X = {xi |i = 1, 2, . . . , Nt} be the set of training instances, where Nt is the
number of instances in X. Let r = {r1, r2, . . . , rNt

}′ be the rank label vector of X,
i.e., the ground truth. Let fk(k = 1, 2, . . . , K) be decision function set, where K is
the number of decision functions.

Let the rank value vector given by the decision functions fk(k = 1, 2, . . . , K)
for X be y = {y1, y2, . . . , yNt

}′, β = {β1, β2, . . . , βK}′ be the weight vector of the
decision functions, and ς = {ς1, ς2, . . . , ςK}′ be the vector of additive errors. We
can obtain as follows:

y = Xβ + ς (8)

Then we use least squares to fit a regression line to the data {xi, ri}Nt

i=1, i.e., to

find the regression coefficient estimates
�

β to minimize the criterion,

Q(β) = (y − Xβ)′(r − Xβ) (9)

Taking derivatives with respect to β, and setting these to 0, we can obtain the
normal equations as follows:

(X′X)β = X′y (10)

Apply the inverse of X′X to both sides of Equation 10, then we get

�

β = (X′X)−1X′y (11)

In testing, the rank label for any new instance xi is determined by the following
process: Let D denote the set of instances to be ranked and n the number of instances
in D. fk(xi) denotes the rank value of instance xi given by decision function k. We
can obtain the final rank value of instance xi as

r value(xi) = 1

K

K∑
k=1

βkfk(xi) (12)

After the above-mentioned process, we sort the instances according to r value.
The larger the r value is, the higher xi in the final ranking list. An intuitive under-
standing of this process is, first, calculate the weight for each hyperplane according
to its ranking accuracy. Then the base decision function gives a rank value to each
instance. Finally, calculate the weighted average of the rank values received from

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 83

Input: training dataset X = {xi|i = 1,2, . . . ,Nt}, label vector r = {r1,r2 . . . ,rNt
} of instances in X , test dataset D,

the base decision functions fk(k = 1,2, . . .K)
Output: the final rank list

1 for i = 1,2, ...Nt do
2 yi = 0 ;

3 for k = 1,2, . . .K do
4 yi = yi + fk(xi) ;

5 end
6 end

7 β = (X X)− 1X y;

8 for i = 1,2, ..., |D| do
9 r value(xi) = 0 ;

10 for k = 1,2,...,K do

11 r value(xi) = r value(xi)+β fk(xi);
12 end
13 end
14 r value(xi) = 1

K r value(xi);
15 Rank all of the instances according to their r value(xi);

Algorithm 2. LSE-based weighted aggregation.

all of the base decision functions for each instance and produce the final list. The
LSE-base weighted aggregation is described in Algorithm 2.

5. THEORETICAL ANALYSIS

We can also construct the ranking hyperplanes by other means, such as (1)
One against all: Construct a hyperplane to separate one specific rank with the
remaining ranks. (2) One against one: Construct a hyperplane to separate pairs
of ranks, such as MHR.19 (3) Ensemble SVM: Construct hyperplanes via different
training data sets that selected by a certain scheme, e.g., bagging and boosting. We
next analyze the principle and training complexity of RankSVM, One-against-all,
One-against-one, Ensemble SVM-Bagging, Ensemble SVM-Boosting, and QoRank
method, respectively.

Suppose that Y = {rm|m = 1, . . . , Nr} is the set of rank labels, where Nr

denotes the number of ranks. Q = {qn|n = 1, . . . , Nq} is the set of queries, where
Nq is the number of queries. Furthermore, suppose that Ri denotes the set of instances
whose rank label is ri . R

j

i denotes the set of instances of query j and whose rank
label is ri , and the number of items in R

j

i is denoted as |Rj

i |. In training, parameter
C is set to 1, and training complexity of SVM can be obtained from,2

ς = O
(
N3

S + NSM + NSdMM
)

(13)

where NS is the number of support vectors, M the number of training instances, and
dM the dimension of the input data.

In learning to rank, the training instances of SVM are document pairs, and the
number of support vectors almost equals the number of training instances, that is,

International Journal of Intelligent Systems DOI 10.1002/int

84 SUN, HUANG, AND FENG

Table I. The principle and complexity of hyperplane construction methods.

Principle Complexity

RankSVM Construct single hyperplane to
deal with the instance of all
ranks

O([
∑Nr−1

i=1

∑Nr
j=i+1 (|Ri | × |Rj |)]3

+ a[
∑Nr−1

i=1

∑Nr
j=i+1 (|Ri | × |Rj |)]2))

One-against-all Construct one hyperplane for
each rank to separate it from
others

O(
∑Nr−1

i=1

∑Nr
j=i+1[(|Ri | × |Rj |)3 +

a(|Ri | × |Rj |)2])

One-against-one Construct one hyperplane for
each rank pair

O(
∑Nr−1

i=1

∑Nr
j=i+1[(|Ri | × |Rj |)3 +

a(|Ri | × |Rj |)2])
Ensemble

SVM-Bagging
Construct K hyperplanes

independently with different
training data sets selected via a
bootstrap method

O(K{[∑Nr−1
i=1

∑Nr
j=i+1 (|Ri | × |Rj |)]3

+ a[
∑Nr−1

i=1

∑Nr
j=i+1 (|Ri | × |Rj |)]2})

Ensemble
SVM-Boosting

Construct K hyperplanes with the
training sample subsets that
selected via boosting method

O(K{[∑Nr−1
i′=1

∑Nr

j ′=i′+1 (|Ri′ | × |Rj ′ |)]3 +
a[

∑Nr−1
i′=1

∑Nr

j ′=i′+1 (|Ri′ | × |Rj ′ |)]2})

QoRank Construct one hyperplane for
each adjacent rank pairs
according to query

O(
∑Ny−1

i=1
j�i

∑Nq

q=1((|Rq

i | × |Rq

j |)3

+ a(|Rq

i | × |Rq

j |)2))

NS ≈ M . The training complexity of ranking SVM can be written as follows, where
a is a constant:

ς = O(M3 + aM2) (14)

Table I summarizes the principle and training complexity for all of the ranking
hyperplane construction methods. Because of space limitation, only calculation
of complexity for RankSVM, MHR, and QoRank are described below, and the
comparison of training complexity is presented in the Appendix.

The number of instances used in RankSVM training is

MRankSVM =
Nr−1∑
i=1

Nr∑
j=i+1

(|Ri | × |Rj |)

The training complexity of RankSVM is ςRankSVM = O(M3
RankSVM + aM2

RankSVM).
The number of instances used in hyperplane ωi,j training of MHR is M

i,j

MHR =
|Ri | × |Rj |. From Equation 15, the training complexity of hyperplane ωi,j is ςi,j =
O((Mi,j

MHR)3 + a(Mi,j

MHR)2) and that of MHR is

ςMHR = O

⎛
⎝Nr−1∑

i=1

Nr∑
j=i+1

[(Mi,j

MHR)3 + a(Mi,j

MHR)2]

⎞
⎠

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 85

The number of instances used in hyperplane ω′
i,j training of the QoRank method

is M
i,j

QoRank = |Ri | × |Rj |, where j�i. From Equation 15, the training complexity

of hyperplane ω′
i,j is ςi,j = O((Mi,j

QoRank)3 + a(Mi,j

QoRank)2), where j�i; then the
training complexity of QoRank is

ςQoRank = O

⎛
⎜⎜⎝

Nr−1∑
i=1
j�i

Nq∑
q=1

[(|Rq

i | × |Rq

j |)3 + a(|Rq

i | × |Rq

j |)2]

⎞
⎟⎟⎠

6. DATA SET

In our experiment, we use one data set of the LETOR50 package called the
OHSUMED collection,51 which was created for information retrieval research. It is
a subset of MEDLINE, a database on medical publications. The LETOR OHSUMED
collection consists of 348,566 records from 270 medical journals during the period
of 1987–1991. The fields of a record include title, abstract, MeSH indexing terms,
author, source, and publication type. There are 106 queries. For each query, there
are a number of associated documents. Each query is about a medical search need
and thus is also associated with patient information and topic information. The
documents’ degrees of relevance with respect to the queries are judged, by humans,
on three levels: definitely relevant, possibly relevant and irrelevant. There are a total
of 16,140 query-document pairs with relevance judgments.

In the LETOR OHSUMED collection, each document is defined as below:

• I Sequential identifier
• U MEDLINE identifier
• M Human-assigned MeSH terms
• T Title
• P Publication type
• W Abstract
• A Author
• S Source

For each query in the LETOR OHSUMED collection, the patient and topic
information are defined in the following way:

• I Sequential identifier
• B Patient information
• W Information request

Each query-document pair in LETOR OHSUMED data set consists of a vector
of features which includes both “low-level” and “high-level” features used in doc-
ument retrieval.4, 52, 53 The features are summarized in Tables II and III. Low-level
features include term frequency, inverse document frequency, document length, and

International Journal of Intelligent Systems DOI 10.1002/int

86 SUN, HUANG, AND FENG

Table II. Low-level features for LETOR
OHSUMED data set.

Feature Description

L1
∑

qi∈q∩d c(qi , d)
L2

∑
qi∈q∩d log (c(qi , d) + 1)

L3
∑

qi∈q∩d
c(qi ,d)

|d|
L4

∑
qi∈q∩d log

(
c(qi ,d)

|d| + 1
)

L5
∑

qi∈q∩d log
(|C|

df (qi)

)
L6

∑
qi∈q∩d c(qi , C) log

(|C|
df (qi)

)
L7

∑
qi∈q∩d log

(
log

(|C|
df (qi)

))
L8

∑
qi∈q∩d log

(|C|
c(qi ,C) + 1

)
L9

∑
qi∈q∩d log

(
c(qi ,d)

|d|
|C|

c(qi ,C) + 1
)

L10
∑

qi∈q∩d log
(

c(qi ,d)
|d| log

(|C|
df (qi)

)
+ 1

)

Table III. High-level features for
LETOR OHSUMED data set.

Feature Description

H1 BM25
H2 log(BM25)
H3 LMIR with DIR smoothing
H4 LMIR with JM smoothing
H5 LMIR with ABS smoothing

their combinations. High-level features include the outputs of BM25 and LMIR
algorithms. In total, there were 25 features: 10 from title, 10 from abstract, and 5
from “title and abstract.” We can see that some classic information retrieval models
such as BM25 and LMIR are within the feature set of learning to rank method. By
including the output of the model as a feature, learning to rank method can easily
incorporate any new retrieval model, which is highly desired for real search engines.

7. EXPERIMENTAL EVALUATIONS

7.1. Evaluation Criteria

In information retrieval, ranking results are usually evaluated in terms of per-
formance measures such as Mean Average Precision (MAP)4 and Normalized Dis-
counted Cumulative Gain (NDCG).54 MAP is widely used in IR when there are two
ranks: positive (relevant) and negative (irrelevant), and it measures the precision of
ranking results.

P @n = Number of relevant instances in top n
n

(15)

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 87

Precision at n measures accuracy of top-n results for a query. Given a query qi ,
average precision is defined as the average of precision after each relevant instance
is retrieved, and its average precision AvgPi is defined as

AvgPi =
N∑

n=1

P @n × pos(n)

Number of relevant instances
(16)

where n is position, N is number of instances retrieved, and pos(n) is a binary
function indicating whether the instance at position n is positive. MAP is defined as
the mean of average precisions over a set of queries.

NDCG is also a measure commonly used in IR, when there are more than two
categories in relevance ranking. While evaluating a ranking list, NDCG follows two
rules: (1) Highly relevant documents are more valuable than marginally relevant
documents; (2) the lower the ranking position of a document, the less the value of
the document for the user. Given a query qi , the NDCG score at position n in the
ranking of documents is defined as

NDCG@n = Zn

n∑
j=1

(2R(j) − 1)
/

log(1 + j) (17)

where R(j) is the rating of the jth document and Zn is a normalization constant. Zn

is chosen to guarantee that a perfect ranking’s NDCG score at position n is 1.

7.2. Experimental Results

In the experiments, we use LibSVM55 as SVM tools. The experiments are
conducted on a PC with 3.0 GHz CPU and 1G memory. To conduct fivefold cross-
validation, we partition the LETOR OHSUMED collection into five parts, denoted
as D1, D2, D3, D4, and D5. For each fold, we use three parts for training, one part
for validation, and the remaining part for testing. All results reported in this section
are obtained by averaging five trials.

To show the advantage of learning to rank over traditional model, we present
the experimental result of BM25 and some SVM-based learning to rank methods,
such as RankSVM and MHR. Table IV shows the P @n (n = 1, 2, . . . , 10) value of
BM25, RankSVM, MHR, and QoRank on the LETOR OHSUMED data set.

Table IV. The P @n value of BM25, RankSVM, MHR, and QoRank on the LETOR
OHSUMED data set.

P @1 P @2 P @3 P @4 P @5 P @6 P @7 P @8 P @9 P @10

BM25 0.453 0.442 0.438 0.411 0.391 0.372 0.367 0.352 0.331 0.310
RankSVM 0.634 0.610 0.590 0.592 0.570 0.543 0.533 0.525 0.520 0.507
MHR 0.644 0.600 0.574 0.560 0.539 0.533 0.530 0.522 0.501 0.482
QoRank-WV 0.667 0.653 0.645 0.615 0.600 0.585 0.571 0.564 0.543 0.512

International Journal of Intelligent Systems DOI 10.1002/int

88 SUN, HUANG, AND FENG

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BM25

RankSVM

MHR

QoRank

Figure 4. The MAP value of BM25, RankSVM, MHR, and QoRank on the LETOR OHSUMED
data set.

Figure 4 describes the comparison of BM25, RankSVM, MHR, and QoRank
on the LETOR OHSUMED data set in terms of MAP, which reflects the average
ranking precision of all of the query results. In MAP calculation, we define the
“definitely relevant” ratings as positive and the other two categories as negative. For
MAP value, by combining BM25 with other features, the learning to rank algorithms
significantly outperforms the single feature of BM25. It validates the capability of
combining large number of features and automatic parameter tuning of leaning to
the rank method. QoRank obtains the best performance compared with the other two
SVM-based ranking methods, outperforms MHR with almost 2%, and outperforms
RankSVM with more than 3%.

Figure 5 shows the NDCG value of BM25, RankSVM, MHR, and QoRank on
the LETOR OHSUMED data set. According to the rules of NDCG measure, highly

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7
BM25

RankSVM

MHR

QoRank

Figure 5. The NDCG value of BM25, RankSVM, MHR, and QoRank on the LETOR
OHSUMED data set.

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 89

Table V. The relevance of top 12 results by RankSVM, MHR, and QoRank for the Query 43 of
LETOR OHSUMED data set.

1 2 3 4 5 6 7 8 9 10 11 12

RankSVM N P P P N P P N P N D N
MHR D N P N D D D N P P P N
QoRank D N D D D N D P D P N N

relevant documents are more valuable than marginally relevant document; the lower
the ranking position of a document, the less the value of the document for the user,
we present the NDCG value of top 10 positions. From Figure 5, we can see that the
QoRank significantly outperforms other methods on NDCG@1. In most position,
QoRank outperforms BM25 with more than 6%, outperforms RankSVM with 2%,
and outperforms MHR with more than 1%. These results indicate that not only the
relation but also the LSE-based weighted aggregation method help to improve the
ranking performance.

We have developed a prototype research system with OHSUMED data set on
the platform of Visual C++ 2008 and SQL Server 2005, including three ranking
methods: RankSVM, MHR, and QoRank. Figures 6–8 show the ranking results of
RankSVM, MHR, and QoRank for Query 43 “back pain, information on diagnosis
and treatment” separately. Table V shows the relevance level of top 12 documents.

Figure 6. Query results ranking by RankSVM for Query 43 of LETOR OHSUMED data set.

International Journal of Intelligent Systems DOI 10.1002/int

90 SUN, HUANG, AND FENG

Figure 7. Query results ranking by MHR for Query 43 of LETOR OHSUMED data set.

Figure 8. Query results ranking by QoRank for Query 43 of LETOR OHSUMED data set.

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 91

Figure 9. The P @n Value of RankSVM, MHR, and QoRank methods for Query 43 of LETOR
OHSUMED data set.

The character “D” in red represents “definitely relevant,” character “P” in blue
represents “partially relevant,” and character “N” in black represents “not relevant.”

It is easy to find that both QoRank and MHR get eight “definitely relevant” or
“partially relevant” documents in the top 12 items, and the corresponding number of
RankSVM is 7. In the ranking results of QoRank, there are six “definitely relevant"
documents and all ranked in the first ten positions. MHR gets four “definitely
relevant” documents and RankSVM gets only one. According to the rule that the
document in the higher ranking position is much easier to be checked by user,
QoRank will be more competitive in real-world applications. The results indicate
that constructing ranking models depending on the query is helpful to improve the
ranking accuracy. Figure 9 shows the P @n value of RankSVM, MHR, and QoRank
for Query 43.

As aforementioned, QoRank utilizes the order relations between ranks to gen-
erate the query-dependent base decision functions. In this way, fewer instance pairs
are used and the computation time in training is greatly reduced. We also compare
the training time between QoRank, MHR, and RankSVM. Table VI shows the re-
sults. In each trial, the total training time of QoRank is only 1/30 of RankSVM and
1/10 of MHR, which corresponds with the analysis in Section 5. In summary, the
experimental results in this section demonstrate the effectiveness of QoRank: It has
good ranking performance with low training complexity.

Table VI. The training time for the LETOR OHSUMED data set.

MHR

Minutes RankSVM ω1,2 ω2,3 ω1,3 sum QoRank

Trial 1 1728.64 306.16 51.64 228.43 586.23 67.721
Trial 2 2013.57 456.41 38.72 283.57 778.7 79.182
Trial 3 1845.36 329.31 35.44 260.85 625.60 58.726
Trial 4 906.53 157.74 17.23 139.27 314.24 39.270
Trial 5 1113.72 202.01 14.63 163.51 380.15 43.375
Average 1521.56 290.33 31.53 215.13 536.98 57.6548

International Journal of Intelligent Systems DOI 10.1002/int

92 SUN, HUANG, AND FENG

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a two-stage learning to rank method QoRank
for information retrieval. In the first stage, it performs the training depending on
query and using the relation between ranks to optimize the training process. In the
second stage, we propose a LSE-based weighted method to aggregate the rank lists
of base decision functions for the final ranking. Experimental results on LETOR
OHSUMED data set show the great importance of building ranking models depend-
ing on query. It not only makes the model construction more adaptable but also
reduces the training time.

There are several avenues for future research. One possible direction is the base
decision function construction. In this paper, we have only investigated one type of
method. A comprehensive investigation of base decision function construction is a
natural next step. The optimization of the loss function needs further investigation.
Developing a more effective ranking aggregation method is also to be included.

Appendix

Proof of ςQoRank < ςMHR < ςRankSVM

ςRankSVM = O
(
M3

RankSVM + aM2
RankSVM

)

= O

⎛
⎝[

Nr−1∑
i=1

Nr∑
j=i+1

(|Ri | × |Rj |)
]3

+ a

[
Nr−1∑
i=1

Nr∑
j=i+1

(|Ri | × |Rj |)
]2

⎞
⎠

ςMHR =
Nr−1∑
i=1

Nr∑
j=i+1

O
((

M
i,j

MHR

)3 + a
(
M

i,j

MHR

)2)

≈ O

⎛
⎝Nr−1∑

i=1

Nr∑
j=i+1

[(
M

i,j

MHR

)3 + a
(
M

i,j

MHR

)2]⎞⎠

= O

⎛
⎝Nr−1∑

i=1

Nr∑
j=i+1

[(|Ri | × |Rj |)3 + a(|Ri | × |Rj |)2]

⎞
⎠

ςQoRank =
Nr−1∑
i=1
j�i

Nq∑
q=1

O
((

M
i,j

QoRank

)3 + a
(
M

i,j

QoRank

)2)

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 93

≈ O

⎛
⎜⎜⎝

Nr−1∑
i=1
j�i

Nq∑
q=1

[(
M

i,j

QoRank

)3 + a
(
M

i,j

QoRank

)2]
⎞
⎟⎟⎠

= O

⎛
⎜⎜⎝

Nr−1∑
i=1
j�i

Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

j

∣∣)3 + a
(∣∣Rq

i

∣∣ × ∣∣Rq

j

∣∣)2]
⎞
⎟⎟⎠

First, we can prove that ςQoRank < ςMHR.

∵ (a1 × a2 × · · · × ai × · · · × ap)m + (b1 × b2 × · · · × bj × · · · × bq)m

< [(a1 + a2 + · · · + ai + · · · + ap) × (b1 + b2 + · · · + bj + · · · + bq)]m, m > 1

∴
Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

i+k

∣∣)3 + a
(∣∣Rq

i

∣∣ × |Rq

i+k

∣∣)2]
<

[(
Nq∑
q=1

∣∣Rq

i

∣∣)

×
(

Nq∑
q=1

∣∣Rq

i+k

∣∣)]3

+ a

[(
Nq∑
q=1

∣∣Rq

i

∣∣) ×
(

Nq∑
q=1

∣∣Rq

i+k

∣∣)]2

∵
Nq∑
q=1

∣∣Rq

i

∣∣ = |Ri |

∴
Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

i+k

∣∣)3 + a
(∣∣Rq

i

∣∣ × ∣∣Rq

i+k

∣∣)2]
<

(∣∣Ri

∣∣ × ∣∣Ri+k

∣∣)3

+ a(|Ri | × |Ri+k|)2

∴
Nr−1∑
i=1

Nr−i∑
k=1

Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

i+k

∣∣)3 + a
(∣∣Rq

i

∣∣ × ∣∣Rq

i+k

∣∣)2]

<

Nr∑
i=1

Nr−i∑
k=1

[(|Ri | × |Ri+k|)3 + a(|Ri | × |Ri+k|)2]

and
Nr−1∑
i=1

Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

i+1

∣∣)3 + a
(∣∣Rq

i

∣∣ × ∣∣Rq

i+1

∣∣)2]
International Journal of Intelligent Systems DOI 10.1002/int

94 SUN, HUANG, AND FENG

�
Nr−1∑
i=1

Nr−i∑
k=1

Nq∑
q=1

[(∣∣Rq

i

∣∣ × |Rq

i+k|
)3 + a(|Rq

i | × |Rq

i+k|)2
]

∴
Nr−1∑
i=1

Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

i+1

∣∣)3 + a
(∣∣Rq

i

∣∣ × ∣∣Rq

i+1

∣∣)2]

�
Nr∑
i=1

Nr−i∑
k=1

[(∣∣Ri

∣∣ × ∣∣Ri+k

∣∣)3 + a
(∣∣Ri

∣∣ × ∣∣Ri+k

∣∣)2]

∴ O

⎛
⎝Nr−1∑

i=1

Nq∑
q=1

[(∣∣Rq

i

∣∣ × ∣∣Rq

i+1

∣∣)3 + a
(∣∣Rq

i

∣∣ × ∣∣Rq

i+1

∣∣)2]⎞⎠

� O

(
Nr∑
i=1

Nr−i∑
k=1

[(|Ri | × |Ri+k|)3 + a(|Ri | × |Ri+k|)2]

)

∴ ςQoRank < ςMHR.

Second, ςMHR < ςRankSVM.

∵ am
1 + am

2 + · · · + am
i + · · · am

n < (a1 + a2 + · · · + ai + · · · an)m, m > 1

∴
Nr−1∑
i=1

Nr∑
k=i+1

[(|Ri | × |Rk|)3 + a(|Ri | × |Rk|)2] <

[
Nr−1∑
i=1

Nr∑
k=i+1

(|Ri | × |Rk|)
]3

+ a[
Nr−1∑
i=1

Nr∑
k=i+1

(|Ri | × |Rk|)]2

∴ O

(
Nr−1∑
i=1

Nr∑
k=i+1

[(|Ri | × |Rk|)3 + a(|Ri | × |Rk|)2]

)

< O

⎛
⎝[

Nr−1∑
i=1

Nr∑
k=i+1

(|Ri | × |Rk|)
]3

+ a

[
Nr−1∑
i=1

Nr∑
k=i+1

(|Ri | × |Rk|)
]2

⎞
⎠

∴ ςMHR < ςRankSVM.

Then we can get ςQoRank < ςMHR < ςRankSVM. �

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 95

Acknowledgments

We would like to thank Prof. Jiawei Han for his comments on our paper. This work was
supported by the Nation 863 High Technology Program of China (2008AA01Z131) and Natural
Science Basic Research Plan in Shaanxi Province of China (No. SJ08-ZT14).

References

1. Cao Y, Xu J, Liu TY, Li H, Huang Y, Hon HW. Adapting ranking SVM to document retrieval.
In: Proc 29th Annual Int ACM SIGIR Conf on Research and Development in Information
Retrieval. New York: ACM; 2006. pp 186–193.

2. Harrington EF. Online ranking/collaborative filtering using the perceptron algorithm. In:
Machine Learning-International Workshop Then Conference-; 2003. Vol 20, pp 250–257.

3. Collins M. Ranking algorithms for named-entity extraction: boosting and the voted per-
ceptron. In: Proc 40th Annual Meeting on Association for Computational Linguistics. July,
2002. pp 7–12.

4. Baeza-Yates R and Ribeiro-Neto B. Modern information retrieval. ACM Press, New York
1999.

5. Chirita PA, Diederich J, W Nejdl. MailRank: using ranking for spam detection. In: Proc
14th ACM Int Conf on Information and Knowledge Management. New York: ACM; 2005.
pp 373–380.

6. B Pang. Seeing stars: exploiting class relationships for sentiment categorization with respect
to rating scales. In: ACL 2005. The Association for Computer Linguistics. 2005.

7. Dave K, Lawrence S, Pennock DM. Mining the peanut gallery: opinion extraction and
semantic classification of product reviews. In: Proc 12th Int Conf on World Wide Web. New
York: ACM; 2003. pp 519–528.

8. Gyongyi Z, Garcia-Molina H, Pedersen J. Combating Web spam with trustrank. In: Proc
13th Int Conf on Very Large Data Bases. VLDB Endowment: Toronto, Canada; 2004.
pp 576–587.

9. Witten IH, Moffat A, Bell TC. Managing gigabytes: Compressing and indexing documents
and images. San Francisco, CA: Morgan Kaufmann; 1999.

10. Salton G, Wong A, Yang CS. A vector space model for automatic indexing. Commun ACM
1975;18(11):613–620.

11. Harman D. Ranking algorithms. Information Retrieval: Data Structures & Algorithms.
Pearson Education, India 1992. pp 363–392.

12. Robertson SE, Jones KS. Relevance weighting of search terms. J Am Soc for Inform Sci
Technol 1976;27(3):129–146.

13. Robertson SE, Walker S, Jones S, Hancock-Beaulieu MM, Gatford M. Okapi at TREC-4.
In: Proc 4th Text Retrieval Conf. Diane Pub Co., Pennsylvania 1996. pp 73–97.

14. Page L, Brin S, Motwani R, Winograd T. The pagerank citation ranking: bringing order to
the Web. Stanford InfoLab, California 1998.

15. Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM 1999;46(5):604–
632.

16. Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression.
In: KDD’02: Proc 8th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining.
New York: ACM; 2002. pp 133–142.

17. Freund Y, Iyer R, Schapire RE, Singer Y. An efficient boosting algorithm for combining
preferences. J Machine Learning Res 2003;4(11):933–969.

18. Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G. Learning
to rank using gradient descent. In: Proc 22nd Int Conf on Machine Learning. New York:
ACM; 2005. pp 89–96.

19. Qin T, Zhang XD, Wang DS, Liu TY, Lai W, Li H. Ranking with multiple hyperplanes.
In: Proc 30th Annual Int ACM SIGIR Conf on Research and Development in Information
Retrieval. New York: ACM; 2007. pp 279–286.

International Journal of Intelligent Systems DOI 10.1002/int

96 SUN, HUANG, AND FENG

20. Xu J, Li H. Adarank: a boosting algorithm for information retrieval. In: Proc 30th Annual Int
ACM SIGIR Conf Research and Development in Information Retrieval. New York: ACM;
2007. pp 391–398.

21. Cao Z, Qin T, Liu TY, Tsai MF, Li H. Learning to rank: from pairwise approach to listwise
approach. In: Proc 24th Int Conf on Machine Learning. New York: ACM; 2007. pp 129–136.

22. Burges C, Ragno R, Le QV. Learning to rank with nonsmooth cost functions. MIT Prsss,
Massachusetts; 2007. pp 193–200.

23. Tsai MF, Liu TY, Qin T, Chen HH, Ma WY. Frank: a ranking method with fidelity loss.
In: Proc 30th Annual Int ACM SIGIR Conf on Research and Development in Information
Retrieval. New York: ACM; 2007. pp 383–390.

24. Xia F, Liu TY, Wang J, Zhang W, Li H. Listwise approach to learning to rank: theory
and algorithm. In: Proc 25th Int Conf on Machine Learning New York: ACM; 2008. pp
1192–1199.

25. Zheng Z, Zha H, Zhang T, Chapelle O, Chen K, Sun G. A general boosting method and
its application to learning ranking functions for Web search. In: Proc 21st Annual Conf on
Neural Information Processing Systems. Cambridge, MA: MIT Press; 2008. pp 1697–1704.

26. Geng X, Liu TY, Qin T, Arnold A, Li H, Shum HY. Query dependent ranking using k-
nearest neighbor. In: Proc 31st Annual Int ACM SIGIR Conf on Research and Development
in Information Retrieval. New York: ACM; 2008. pp 115–122.

27. Qin T, Liu TY, Zhang XD, Wang DS, Xiong WY, Li H. Learning to rank relational objects
and its application to web search. In: Proc 17th Int Conf on World Wide Web. New York:
ACM; 2008. pp 407–416.

28. Veloso AA, Almeida HM, Gonçalves MA, Meira Jr W. Learning to rank at query-time using
association rules. In: Proc 31st Annual Int ACM SIGIR Conf on Research and Development
in Information Retrieval, New York: ACM; 2008. pp 267–274.

29. Rose DE, Levinson D. Understanding user goals in web search. In: Proc 13th Int Conf on
World Wide Web. New York: ACM; 2004. pp 13–19.

30. Lafferty J, Zhai CX. Document language models, query models, and risk minimization
for information retrieval. In: Proc 24th Annual Int ACM SIGIR Conf on Research and
Development in Information Retrieval. New York: ACM; 2001. pp 111–119.

31. Ponte JM, Croft WB. A language modeling approach to information retrieval. In: Proc 21st
Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New
York: ACM; 1998. pp 275–281.

32. Zobel J, Moffat A. Exploring the similarity space. In: ACM SIGIR Forum. New York: ACM;
1998. Vol 32, p 34.

33. Nallapati R. Discriminative models for information retrieval. In: Proc 27th Annual Int ACM
SIGIR Conf on Research and Development in Information Retrieval. New York: ACM;
2004. pp 64–71.

34. Crammer K, Singer Y. A new family of online algorithms for category ranking. In: Proc
25th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval,
New York: ACM; 2002. pp 151–158.

35. Joachims T. Optimizing search engines using clickthrough data. In: Proc 8th ACM SIGKDD
Int Conf on Knowledge Discovery and Data Mining. New York: ACM; 2002. pp 133–142.

36. Yue Y, Finley T, Radlinski F, Joachims T. A support vector method for optimizing average
precision. In: Proc 30th Annual Int ACM SIGIR Conf on Research and Development in
Information Retrieval. New York: ACM; 2007. p 278.

37. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals Stat.
Institute of Mathematical Statistics, Maryland 2001; 29:1189–1232.

38. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002;38(4):367–378.
39. Aslam JA, Montague M. Models for metasearch. In: Proc 24th Annual Int ACM SIGIR

Conf on Research and Development in Information Retrieval. New York: ACM; 2001.
pp 276–284.

International Journal of Intelligent Systems DOI 10.1002/int

QORANK: A QUERY-DEPENDENT RANKING MODEL 97

40. Callan JP, Lu Z, Croft WB. Searching distributed collections with inference networks. In:
Proc 18th Annual Int ACM SIGIR Conf on Research and Development in Information
Retrieval, New York: ACM; 1995. pp 21–28.

41. Fagin R, Wimmers EL. Incorporating user preferences in multimedia queries. In: Proc 6th
Int Conf on Database Theory. London: Springer-Verlag, 1997. pp 247–261.

42. Fox JA, Shaw E. Combination of multiple sources: The trec-2 interactive track matrix
experiment. In: ACM SIGIR-94. 1994.

43. Lee JH. Analyses of multiple evidence combination. In: ACM SIGIR Forum. New York:
ACM; 1997. Vol 31, pp 267–276.

44. Manmatha R, Rath T, Feng F. Modeling score distributions for combining the outputs of
search engines. In: Proc 24th Annual Int ACM SIGIR Conf on Research and Development
in Information Retrieval. New York: ACM; 2001. pp 267–275.

45. Vogt CC, Cottrell GW. Fusion via a linear combination of scores. Inform Retrieval
1999;1(3):151–173.

46. Voorhees E, Gupta NK, Johnson-Laird B, Princeton NJ. The collection fusion problem. In:
Overview of the Third Text REtrieval Conference (TREC-3). Diane Pub Co; Pennsylvania;
1995. pp 95–104.

47. Dwork C, Kumar R, Naor M, Sivakumar D. Rank aggregation methods for the web. In: Proc
10th Int Conf on World Wide Web, New York: ACM; 2001. pp 613–622.

48. Yager RR, Rybalov A. On the fusion of documents from multiple collection information
retrieval systems. J Am Soc Inform Sci Technol 1998;49(13):1177–1184.

49. Burges C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl
Discovery 1998;2(2):121–167.

50. Liu TY, Xu J, Qin T, Xiong W, Li H. Letor: benchmark dataset for research on learning
to rank for information retrieval. In: Proc SIGIR 2007 Workshop on Learning to Rank for
Information Retrieval. ACM Press, New York; 2007. pp 3–10.

51. Hersh W, Buckley C, Leone TJ, Hickam D. OHSUMED: an interactive retrieval evaluation
and new large test collection for research. In: Proc 17th Annual Int ACM SIGIR Conf
Research and Development in Information Retrieval. New York: Springer-Verlag; 1994. pp
192–201.

52. Robertson S, Hull DA. The TREC-9 filtering track final report. NIST Special Publication
SP, TREC, Maryland; 2001. pp 25–40.

53. Zhai CX and Lafferty J. A study of smoothing methods for language models applied to
Ad Hoc information retrieval. In: Proc 24th Annual Int ACM SIGIR Conf Research and
Development in Information Retrieval New York: ACM; 2001. pp 334–342.

54. Jarvelin K, Kekalainen J. IR evaluation methods for retrieving highly relevant documents.
In: Proc 23rd Annual Int ACM SIGIR Conf on Research and Development in Information
Retrieval. New York: ACM; 2000. pp 41–48.

55. Chang CC, Lin CJ. LIBSVM: a library for support vector machines; 2001. Software available
at http://www. csie. ntu. edu. tw/cjlin/libsvm.

56. Yager RR, Rybalov A. On the fusion of documents from multiple collection information
retrieval systems. J Am Soc Inform Sci Technol 1998;49(13):1177–1184.

International Journal of Intelligent Systems DOI 10.1002/int

