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Abstract
The aim of this work is to study the existence of entire solutions of nonlinear
cellular neural networks with distributed time delays (DCNN). The entire
solutions are defined in the whole space and for all time t ∈ R. From
Yu et al (2011 J. Diff. Eqns 251 630–50), we know that the DCNN model
admits travelling front solutions. Combining the travelling front solutions with
different wave speeds and a spatially independent solution of the DCNN model,
we establish some new entire solutions to describe the interactions of travelling
fronts. Various qualitative features of the entire solutions are also investigated
in this work.

Mathematics Subject Classification: 34K05, 34K30, 37L60

1. Introduction

The aim of this work is to study the existence of entire solutions of nonlinear cellular
neural networks with distributed time delays (DCNN). The methodology of cellular neural
network (CNN) was first proposed by Chua and Yang [4–6] as an achievable alternative
to fully connected neural networks in electric circuit systems. The infinite system of
ordinary differential equations for CNN distributed in an one-dimensional integer lattice with
a neighbourhood of radius m but without inputs can be described by

x ′
n(t) = z − xn(t) +

m∑
i=1

αif (xn−i (t)) + af (xn(t)) +
m∑

j=1

βjf (xn+j (t)), (1.1)

where n ∈ Z, t ∈ R, m ∈ N, the real coefficients a, αi , βi with
∑

(α2
i + β2

i ) �= 0 of the output
function f constitute the so-called space-invariant template that measure the synaptic weights
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of self-feedback and neighbourhood interactions. The quantity z is called a threshold or bias
term and is related to the independent voltage sources in electric circuits. For more details on
the circuit diagram and connection pattern for practical applications, we refer to [4–6] and the
references cited therein.

In past decades, there have been extensive investigations on neural network systems, which
are applied to a broad scope of fields such as image and video signal processing, robotic and
biological versions and higher brain functions (see [34, 43] for more details). In particular, if
the output function f is a piecewise-linear function defined by

f (x) = 1
2 (|x + 1| − |x − 1|) for x ∈ R, (1.2)

some incisive mathematical analyses have been done in [17–22] and many references cited
therein. However, in view of the finite switching speed and finite velocity of signal
transmission, time delay should be considered in the CNN systems. For example, Hsu et al [17]
considered the following delay CNN (DCNN for short) system

x ′
n(t) = − xn(t) +

m∑
i=1

αi

∫ τ

0
k(s)f (xn−i (t − s)) ds + af (xn(t))

+
m∑

j=1

βj

∫ τ

0
k(s)f (xn+j (t − s)) ds, n ∈ Z, t ∈ R, (1.3)

where τ > 0, k : [0, τ ] → [0, +∞) is a prescribed piecewise continuous function which
satisfies

∫ τ

0 k(s) ds = 1. Such function k(·) is called the density function for delay effect.
In [17], the authors investigated the diversity of travelling wave solutions of (1.3) with the
output function (1.2). More precisely, using the monotone iteration scheme, they proved the
existence of monotone travelling waves provided the templates satisfy the so-called quasi-
monotonicity condition, i.e. αi � 0, βi � 0 for i = 1, . . . , m and

∑
(α2

i + β2
i ) �= 0. Moreover,

they considered two special cases of (1.3) in which each cell interacts only with either the
nearest m left neighbours or the nearest m right neighbours. For the former case, the analytic
solution in an explicit form was directly figured out. For the latter case, the deformation of
travelling wave solutions with respect to the wave speed was clarified.

Recently, Liu et al [29] considered the existence of monotone travelling waves for the
following DCNN model with a nonlinear output function:

x ′
n(t) = −xn(t) + α

∫ τ

0
k1(s)f (xn(t − s)) ds + β

∫ τ

0
k2(s)f (xn+1(t − s)) ds, (1.4)

where ki : [0, τ ] → [0, +∞) is a prescribed piecewise continuous function satisfying∫ τ

0 ki(s) ds = 1, i = 1, 2 and f is nonlinear, non-decreasing and odd on [−1, 1]. For example,
the output function f (x) can be given by

f (x) =


1, if x � 1,

sin
π

2
x, if |x| � 1,

−1, if x � −1

(1.5)

and

f (x) =


1, if x � 1,

2x − x2, if 0 � x � 1,

2x + x2, if − 1 � x � 0,

−1, if x � −1,

(1.6)

respectively.
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More recently, Yu et al [48] extended the existence results of monotone travelling waves
in [17, 18, 20, 29, 42] to a more general DCNN model of the form

x ′
n(t) = − xn(t) +

m∑
i=1

αi

∫ τ

0
Ji(s)f (xn−i (t − s)) ds + a

∫ τ

0
Jm+1(s)f (xn(t − s)) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f (xn+j (t − s)) ds, n ∈ Z, t ∈ R, (1.7)

where m, � ∈ N, τ > 0, a � 0, αi � 0, i = 1, · · · , m and βj � 0, j = 1, · · · , � are given
constants with

∑m
i=1 αi +

∑�
j=1 βj > 0; the output function f and the density function Ji ,

i = 1, · · · , m + � + 1 satisfy the following assumptions:

(A1) f ∈ C([0, ∞), [0, ∞)), f (0) = 0, f ′′(0) exists,

(a + α + β)f (K) = K and (a + α + β)f (u) > u for u ∈ (0, K),

where K > 0 is a constant, α =
m∑

i=1
αi and β =

�∑
j=1

βj ;

(A2) f (u) is non-decreasing for u ∈ [0, K] such that

af ′(0) � 1 and |f (u) − f (v)| � f ′(0)|u − v| for all u, v ∈ [0, K];
(A3) Ji ∈ L1([0, τ ]) is a non-negative function satisfying∫ τ

0
Ji(s) ds = 1, for i = 1, . . . , m + � + 1.

It is obvious that the output functions defined by (1.2), (1.5) and (1.6) satisfy the assumptions
(A1) and (A2). It is well known that a travelling wave solution of (1.7) refers to a special
translation invariant solution with the form xn(t) = ϕ(n− ct), n ∈ Z, t ∈ R for a wave profile
ϕ(·) : R → R with an unknown wave speed c ∈ R. Letting ξ = n − ct , it is easy to see that
such a profile must satisfy the following equation:

− cϕ′(ξ) = − ϕ(ξ) +
m∑

i=1

αi

∫ τ

0
Ji(s)f (ϕ(ξ − i + cs)) ds + a

∫ τ

0
Jm+1(s)f (ϕ(ξ + cs)) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f (ϕ(ξ + j + cs)) ds. (1.8)

If ϕ(·) is strictly monotone, then we say ϕ is a travelling wave front. Note that the study of
travelling wave solutions for partial differential equations and lattice dynamical systems has
drawn considerable attention in past decades (see, e.g., [3, 9, 18, 19, 23, 25, 30, 42, 46, 49]).

In order to state our results later, we first recall the main results of theorems 1.1–1.4 of [48]
as follows.

Proposition 1.1. Assume (A1)–(A3), then the following results hold.

(1) There exists a c∗
1 � 0 such that for each c1 � c∗

1 , system (1.7) has a non-decreasing
leftward travelling wave solution φc1(n − c1t) which satisfies

φc1(−∞) = 0 and φc1(+∞) = K.

Moreover, for any c1 < c∗
1 , φc1(ξ) > 0 for all ξ ∈ R,

lim
ξ→−∞

φc1(ξ)e−λ1(c1)ξ = 1 and lim
ξ→−∞

φ′
c1
(ξ)e−λ1(c1)ξ = λ1(c1),

where λ1(c) is the smallest positive root of characteristic function (see (2.2)) of (1.8) at 0
and for c < 0.
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(2) There exists a c∗
2 � 0 such that for each c2 � c∗

2 , system (1.7) has a non-increasing
rightward travelling wave solution ψc2(n − c2t) which satisfies

ψc2(−∞) = K and ψc2(+∞) = 0.

Moreover, for any c2 > c∗
2 , ψc2(ξ) > 0 for all ξ ∈ R,

lim
ξ→+∞

ψc2(ξ)e−λ3(c2)ξ = 1 and lim
ξ→+∞

ψ ′
c2
(ξ)e−λ3(c2)ξ = λ3(c2),

where λ3(c) is the largest negative root of characteristic function (see (2.2)) of (1.8) at 0
and for c > 0.

The problems of travelling wave solutions are important in the study of various evolution
equations, which provide significant applications in biology, chemistry, epidemiology and
physics, see [11, 19, 21, 22, 36, 37, 44]. On the other hand, another important topic in those
equations is the interactions of travelling wave solutions, which is crucially related to the pattern
formation problem, see [7, 8, 24, 31] for more details. Mathematically, this phenomenon can
be described by the so-called entire solutions that are defined in the whole space and for all
time t ∈ R (see definition 1.2). Moreover, the entire solution can help us with the mathematical
understanding of transient dynamics and the structures of the global attractor [32]. Recently,
there have been quite a few works devoted to the interactions of travelling fronts and the entire
solutions, see e.g., [1, 2, 10, 12, 13, 15, 16, 28, 32, 38, 47] for reaction–diffusion equations with
and without delays, [39, 40] for delayed lattice differential equations with global interaction,
and [14, 33, 41, 45] for some reaction–diffusion model systems. For other related results on
entire solutions, we refer the reader to [26, 27, 35] and the references cited therein.

Based on the existence of travelling wave front solutions of (1.7), the purpose of this paper
is to consider the interactions of travelling fronts for system (1.7) and establish some entire
solutions to describe the phenomenon. Combining the leftward and rightward travelling fronts
with different speeds and a spatially independent solution �(·) (solution of (2.1)), some new
types of entire solutions are established. More precisely, inspired by the work of Hamel and
Nadirashvili [15], we can construct appropriate subsolutions and derive some upper estimates.
Then we show the existence of entire solutions by using the comparison principle. Before
stating our main result, we first give the following definition.

Definition 1.2.

(1) A sequence of functions �(t) := {φn(t)}n∈Z, t ∈ R, is called an entire solution of (1.7) if
for any n ∈ Z, φn(t) is differential for all t ∈ R and �(t) satisfies (1.7) for all n ∈ Z and
t ∈ R.

(2) Let m ∈ N and p, p0 ∈ R
m. We say that a sequence of functions �p(t) := {�n,p(t)}n∈Z

converges to a function �p0(t) := {�n,p0(t)}n∈Z in the sense of topology T if, for any
compact set S ⊂ Z × R, the functions �n,p(t) and �′

n,p(t) converge uniformly in S to
�n,p0(t) and �′

n,p0
(t), respectively, as p tends to p0.

(3) Let φc1(n− c1t) and ψc2(n− c2t) be the leftward and rightward travelling wave solutions
of (1.7) (as decided in proposition 1.1) which have wave speeds c1 < c∗

1 and c2 > c∗
2 ,

respectively. Then we denote

Ac1 := inf{A > 0| φc1(z)e
−λ1(c1)z � A for all z ∈ R},

Bc2 := inf{B > 0| φc2(z)e
−λ3(c2)z � B for all z ∈ R}.

According to definition 1.2, we know that travelling wave solutions of (1.7) are special examples
of the entire solutions. Throughout this paper, we always assume that conditions (A1)–(A3)
hold. For convenience, let �(·) be the spatially independent solution of (1.7) connecting 0
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and K , i.e. let the solution of (2.1) (see lemma 2.2) and λ∗ > 0 be the unique root of the
characteristic equation of (2.1) at the trivial equilibrium (see lemma 2.1). The main existence
result is stated as follows.

Theorem 1.3. For any h1, h2, h3 ∈ R, c1 < c∗
1 , c2 > c∗

2 and χ1, χ2, χ3 ∈ {0, 1} with
χ1 + χ2 + χ3 � 2, there exists an entire solution �p(t) = {�n,p(t)}n∈Z of (1.7) such that

max
{
χ1φc1(n − c1t + h1), χ2ψc2(n − c2t + h2), χ3�(t + h3)

}
� �n,p(t) � min

{
K, �1(n, t), �2(n, t), �3(n, t)

}
(1.9)

for (n, t) ∈ Z × R, where p := pχ1,χ2,χ3 = (
χ1c1, χ2c2, χ1h1, χ2h2, χ3h3

)
, and

�1(n, t) := χ1φc1(n − c1t + h1) + χ2Bc2 eλ3(c2)(n−c2t+h2) + χ3eλ∗(t+h3), (1.10)

�2(n, t) := χ1Ac1 eλ1(c1)(n−c1t+h1) + χ2ψc2(n − c2t + h2) + χ3eλ∗(t+h3), (1.11)

�3(n, t) := χ1Ac1 eλ1(c1)(n−c1t+h1) + χ2Bc2 eλ3(c2)(n−c2t+h2) + χ3�(t + h3). (1.12)

Moreover, various qualitative features of the entire solutions are also investigated in section 4.
The rest of the paper is organized as follows. In section 2, we first investigate the existence

and asymptotic behaviour of spatially independent solutions � of (1.7). Some existence
and comparison theorems for solutions, supersolutions and subsolutions of (1.7) are also
established. According to the preliminaries derived in section 2, we prove the existence result
of theorem 1.3 in section 3. Some qualitative properties of the entire solutions are further
investigated in section 4.

2. Preliminaries

In this section, we first investigate the existence and asymptotic behaviour of spatially
independent solutions of (1.7). Then we prove the well-posedness of initial value problem
of (1.7), and establish some comparison theorems for supersolutions and subsolutions of (1.7).

First, we consider the spatially independent solutions of (1.7), that is, solutions of the
following delay differential equation:

x ′(t) = −x(t) +
∫ τ

0
J (s)f (x(t − s)) ds, (2.1)

where J (s) is defined by

J (s) :=
m∑

i=1

αiJi(s) + aJm+1(s) +
�∑

j=1

βjJm+1+j (s), s ∈ [0, τ ].

Obviously, the characteristic functions for (2.1) and (1.8) with respect to the trivial equilibrium
can be represented by

�1(λ) := f ′(0)

∫ τ

0
J (s)e−λs ds − λ − 1,

�2(λ, c) := −f ′(0)

∫ τ

0

[ m∑
i=1

αiJi(s)e
−λi + aJm+1(s) +

�∑
j=1

βjJm+1+j (s)e
λj

]
eλcs ds − cλ + 1

(2.2)

respectively, for λ ∈ R and c ∈ R. Then we have the following relation for the roots of �1(λ)

and �2(λ, c).
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Lemma 2.1. The equation �1(λ) = 0 has a unique root λ∗ > 0. Furthermore, if m = �,
αi = βi and Ji(·) = Jm+1+i (·), i = 1, . . . , m, then

−c1λ1(c1) > λ∗ and − c2λ3(c2) > λ∗ for any c1 < c∗
1 and c2 > c∗

2 .

Proof. Since �1(0) = f ′(0)(a + α + β) − 1 > 0,

d

dλ
�1(λ) = −f ′(0)

∫ τ

0
sJ (s)e−λs ds − 1 < 0

and lim
λ→+∞

�1(λ) = −∞, it is easy to see that the equation �1(λ) = 0 has a unique root λ∗ > 0.

Now we prove the second assertion of this lemma. By our assumptions, we know that

J (s) = 2
m∑

i=1

αiJi(s) + aJm+1(s).

Suppose our assertion is false, then there exists a c1 < c∗
1 such that −c1λ1(c1) � λ∗ or a

c2 > c∗
2 such that −c2λ3(c2) � λ∗. We consider the first case. Since �2(λ1(c1), c1) = 0, we

have

0 � − c1λ1(c1) − λ∗

= f ′(0)

∫ τ

0

[ m∑
i=1

αiJi(s)
(
eλ1(c1)i + e−λ1(c1)i

)
+ aJm+1(s)

]
eλ1(c1)c1s ds − 1 − λ∗

> f ′(0)

∫ τ

0

[
2

m∑
i=1

αiJi(s) + aJm+1(s)
]
e−λ∗s ds − 1 − λ∗

= f ′(0)

∫ τ

0
J (s)e−λ∗s ds − 1 − λ∗ = 0.

This contradiction shows that −c1λ1(c1) > λ∗ for any c1 < c∗
1. Similarly, we can show that

−c2λ3(c2) > λ∗ for any c2 > c∗
2. This completes the proof. �

Next, we consider the existence and asymptotic behaviour for solutions of (2.1).

Lemma 2.2. There exists a solution �(t) : R → R of equation (2.1) such that

�′(t) � 0, �(t) > 0, �(t) � eλ∗t for all t ∈ R

and satisfying

�(+∞) = K and lim
t→−∞ �(t)e−λ∗t = 1.

Moreover, if f ∈ C1([0, ∞), [0, ∞)), then �′(t) > 0 for all t ∈ R.

Proof. The proof is similar to that of theorem 2.1 of [42] which uses the technique of monotone
iteration scheme. Here we only sketch the outline.

Let C(R, R) be the space of continuous real functions on R. We also define an operator
T : C(R, [0, K]) → C(R, R) by

T (φ)(t) =
∫ t

−∞
e−(t−s)

(∫ τ

0
J (r)f (φ(s − r)) dr

)
ds.

Then the rest of the proof is divided into the following three steps.

Step 1. It is easy to see that the following results hold:

(i) T : C(R, [0, K]) → C(R, [0, K]);
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(ii) T (φ)(t) � T (ψ)(t) for φ, ψ ∈ C(R, [0, K]) with φ(t) � ψ(t);
(iii) T (φ)(t) is increasing in R for φ ∈ C(R, [0, K]) with φ(t) is increasing in R.

Step 2. For any fixed ε ∈ (
0, 1

)
and sufficiently large q > 1, we define

φ(t) = min
{
K, eλ∗t} and φ(t) = max

{
0,

(
1 − qeελ∗t) eλ∗t} for all t ∈ R.

Then, by direct computations, we obtain

0 � φ(t) � φ(t) � K, T (φ)(t) � φ(t) and T (φ)(t) � φ(t) for all t ∈ R.

Step 3. Using the monotone iteration technique, we can show that equation (2.1) admits a
solution �(t) which satisfies

�′(t) � 0 and φ(t) � �(t) � φ(t) for all t ∈ R.

Thus,

lim
t→−∞ �(t)e−λ∗t = 1, �(+∞) ∈ (0, K] and 0 < �(t) � eλ∗t for all t ∈ R.

Moreover, one can easily verify that �(+∞) = K .
If f ∈ C1([0, ∞), [0, ∞)), then �(t) ∈ C2(R) and for all t ∈ R,

�′′(t) = −�′(t) +
∫ τ

0
J (s)f ′(�(t − s))�′(t − s) ds � −�′(t).

Suppose that there exists a t1 ∈ R such that �′(t1) = 0. Then, �′(t1) � �′(t)et−t1 for all
t < t1 which implies that �′(t) = 0 for all t � t1. Hence �(t1) = limt→−∞ �(t) = 0 which
contradicts to �(t1) > 0. Therefore, �′(t) > 0 for all t ∈ R. The proof is complete. �

Now we consider the existence problem for the initial value problem of (1.7) with the
initial condition:

xn(s) = ϕn(s), n ∈ Z, s ∈ [r − τ, r], (2.3)

where r ∈ R is an any given constant. We also establish some comparison theorems for
supersolution and subsolutions of (1.7). The definitions of supersolution and subsolution are
given as follows.

Definition 2.3. A sequence of continuous differential functions {xn(t)}n∈Z, t ∈ [r, b), b > r ,
is called a supersolution (or a subsolution) of (1.7) on [r, b) if for all n ∈ Z and t ∈ [r, b),

x ′
n(t) � (or �)

m∑
i=1

αi

∫ τ

0
Ji(s)f (xn−i (t − s)) ds + a

∫ τ

0
Jm+1(s)f (xn(t − s)) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f (xn+j (t − s)) ds − xn(t). (2.4)

By definition 2.3, we have the following results.

Lemma 2.4. We consider the problem of (1.7) and (2.3).

(1) For any ϕ = {ϕn}n∈Z with ϕn ∈ C
(
[r − τ, r], [0, K]

)
, (1.7) admits a unique solution

x(t; ϕ) = {
xn(t; ϕ)

}
n∈Z

on [r, +∞) such that xn(s) = ϕn(s) and 0 � xn(t) � K for
n ∈ Z, s ∈ [r − τ, r] and t ∈ [r − τ, +∞).

(2) Suppose
{
x+

n (t)
}

n∈Z
and

{
x−

n (t)
}

n∈Z
are a supersolution and subsolution of (1.7) on

[r, +∞), respectively, such that 0 � x−
n (t), x+

n (t) � K and x+
n (s) � x−

n (s) for n ∈ Z,
s ∈ [r − τ, r] and t ∈ [r − τ, +∞), then x+

n (t) � x−
n (t) for n ∈ Z, t � r .
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Proof.
(1) We denote

Hn[x](t) :=
m∑

i=1

αi

∫ τ

0
Ji(s)f (xn−i (t − s)) ds + a

∫ τ

0
Jm+1(s)f (xn(t − s)) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f (xn+j (t − s)) ds, (2.5)

S :=
{
x(t) = {xn(t)}n∈Z

∣∣∣xn(·) ∈ C
(
[r − τ, +∞), [0, K]

)
and satisfies (2.3)

}
,

and define an operator F = {
Fn

}
n∈Z

: S → S by

Fn[x](t) :=
ϕn(r)e−(t−r) +

∫ t

r

Hn[x](s)e−(t−s) ds, for n ∈ Z, t > r,

ϕn(t), for n ∈ Z, t ∈ [r − τ, r].
For any λ > 0, we set

Xλ :=
{
x(t) = {xn(t)}n∈Z

∣∣∣xn(·) ∈ C
(
[r − τ, +∞), R), sup

n∈Z,t�r−τ

|xn(t)|e−λt < +∞
}
,

and

‖x‖λ := sup
n∈Z,t�r−τ

|xn(t)|e−λt .

It is easy to see that
(
Xλ, ‖ · ‖λ

)
is a Banach space and S ⊂ Xλ is a closed subset of Xλ.

Moreover, we can choose a sufficiently large λ > 0 such that F : S → S is a contracting map.
Hence, there exists a unique fixed point x(·) ∈ S of F which is a solution of (1.7) and (2.3) on
[r, +∞).
(2) Put wn(t) := x−

n (t) − x+
n (t), n ∈ Z, t � r − τ , then wn(t) and Z(t) := supn∈Z

{wn(t)}
are continuous and bounded on [r − τ, +∞). Let δ > 0 be such that δ > f ′(0)

∫ τ

0 J (s) ds.

Suppose the assertion of (2) is false, then there exists a t0 > r such that Z(t0) > 0 and

Z(t0)e
−δt0 = max

t�r−τ
Z(t)e−δt > Z(s)e−δs, ∀s ∈ [r − τ, t0). (2.6)

It is easy to see that there exists a sequence {nk}+∞
k=1 such that

wnk
(t0) > 0, ∀k � 1 and lim

k→+∞
wnk

(t0) = Z(t0).

Let {tk}+∞
k=1 ⊂ (r, t0] be such that

wnk
(tk)e

−δtk = max
t∈[r,t0]

wnk
(t)e−δt . (2.7)

It then follows from (2.6) that lim
k→+∞

tk = t0. Since

wnk
(t0)e

−δt0 � wnk
(tk)e

−δtk � Z(tk)e
−δtk � Z(t0)e

−δt0 ,

we obtain that lim
k→+∞

wnk
(tk) = Z(t0). In view of (2.7), for each k � 1, we have

0 � eδtk
d

dt

(
wnk

(t)e−δt
)∣∣∣

t=t−k
= d

dt
wnk

(tk) − δwnk
(tk)

= − (δ + 1)wnk
(tk) +

m∑
i=1

αi

∫ τ

0
Ji(s)

[
f (x−

nk−i (tk − s)) − f (x+
nk−i (tk − s))

]
ds

+ a

∫ τ

0
Jm+1(s)

[
f (x−

nk
(tk − s)) − f (x+

nk
(tk − s))

]
ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)

[
f (x−

nk+j (tk − s)) − f (x+
nk+j (tk − s))

]
ds. (2.8)
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Since |f (u) − f (v)| � f ′(0)|u − v| for all u, v ∈ [0, K], it follows from (2.8) that

0 � − (δ + 1)wnk
(tk) + f ′(0)

m∑
i=1

αi

∫ τ

0
Ji(s) max

{
0, Z(tk − s)

}
ds

+ af ′(0)

∫ τ

0
Jm+1(s) max

{
0, Z(tk − s)

}
ds

+ f ′(0)

�∑
j=1

βj

∫ τ

0
Jm+1+j (s) max

{
0, Z(tk − s)

}
ds.

Taking k → +∞, we obtain

0 � − (δ + 1)Z(t0) + f ′(0)

m∑
i=1

αi

∫ τ

0
Ji(s)e

δ(t0−s) max
{

0, Z(t0 − s)e−δ(t0−s)
}

ds

+ af ′(0)

∫ τ

0
Jm+1(s)e

δ(t0−s) max
{

0, Z(t0 − s)e−δ(t0−s)
}

ds

+ f ′(0)

�∑
j=1

βj

∫ τ

0
Jm+1+j (s)e

δ(t0−s) max
{

0, Z(t0 − s)e−δ(t0−s)
}

ds

�
{

− δ + f ′(0)

∫ τ

0

( m∑
i=1

αiJi(s) + aJm+1(s) +
�∑

j=1

βjJm+1+j (s)
)

e−δs ds
}
Z(t0)

�
(

− δ + f ′(0)

∫ τ

0
J (s) ds

)
Z(t0).

Therefore Z(t0) � 0 and which contradicts to Z(t0) > 0. Hence, x+
n (t) � x−

n (t) for n ∈ Z

and t � r . The proof is complete. �
Moreover, we give an a priori estimate of solutions of (1.7) in the following lemma.

Lemma 2.5. Assume that x(t; ϕ) = {
xn(t; ϕ)

}
n∈Z

is a solution of (1.7) with the initial value
ϕ = {ϕn}n∈Z satisfying ϕn ∈ C

(
[r − τ, r], [0, K]

)
, then there exists a positive constant M ,

independent of ϕ and r , such that for any n ∈ Z, t > r + τ and h � 0,∣∣x ′
n(t; ϕ)

∣∣ � M and
∣∣x ′

n(t + h; ϕ) − x ′
n(t; ϕ)

∣∣ � Mh. (2.9)

Proof. For convenience, we denote xn(t; ϕ) by xn(t). From lemma 2.4, we know that

0 � xn(t) � K for n ∈ Z and t ∈ [r − τ, +∞).

Then it is easy to see that∣∣x ′
n(t)

∣∣ � M1 := (a + α + β) max
u∈[0,K]

f (u) + K = 2K

for n ∈ Z and t ∈ [r, +∞). Moreover, for n ∈ Z and t > r + τ , we have∣∣x ′
n(t + h) − x ′

n(t)
∣∣ �

∣∣xn(t + h) − xn(t)
∣∣

+f ′(0)

m∑
i=1

αi

∫ τ

0
Ji(s)

∣∣xn−i (t + h − s) − xn−i (t − s)
∣∣ ds

+af ′(0)

∫ τ

0
Jm+1(s)

∣∣xn(t + h − s) − xn(t − s)
∣∣ ds

+f ′(0)

�∑
j=1

βj

∫ τ

0
Jm+1+j (s)

∣∣xn+j (t + h − s) − xn+j (t − s)
∣∣ ds

� M2h := [f ′(0)(a + α + β) + 1]M1h.

Taking M := max{M1, M2}, then the assertion of this lemma follows. �
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Lemma 2.6. Let x+
n (t) ∈ C

(
[r − τ, +∞), [0, +∞)

)
and x−

n (t) ∈ C
(
[r − τ, +∞), (−∞, K]

)
be such that x+

n (s) � x−
n (s) for all n ∈ Z and s ∈ [r − τ, r], and

d

dt
x+

n (t) � −x+
n (t) + f ′(0)

[ m∑
i=1

αi

∫ τ

0
Ji(s)x

+
n−i (t − s) ds + a

∫ τ

0
Jm+1(s)x

+
n (t − s) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)x

+
n+j (t − s) ds

]
,

d

dt
x−

n (t) � −x−
n (t) + f ′(0)

[ m∑
i=1

αi

∫ τ

0
Ji(s)x

−
n−i (t − s) ds + a

∫ τ

0
Jm+1(s)x

−
n (t − s) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)x

−
n+j (t − s) ds

]
for all n ∈ Z and t > r . Then x+

n (t) � x−
n (t) for all n ∈ Z and t � r .

Proof. The proof is similar to part (2) of lemma 2.4. We omit it here. �

3. Existence of entire solutions

In this section, we will use the properties of previous sections to obtain an appropriate upper
estimate for solutions of (1.7) and then prove the existence result of theorem 1.3.

For any k ∈ Z
+, h1, h2, h3 ∈ R, c1 < c∗

1, c2 > c∗
2 and χ1, χ2, χ3 ∈ {0, 1} with

χ1 + χ2 + χ3 � 2, we denote

ϕk
n(s) := max

{
χ1φc1(n − c1s + h1), χ2ψc2(n − c2s + h2), χ3�(s + h3)

}
,

xn(t) := max
{
χ1φc1(n − c1t + h1), χ2ψc2(n − c2t + h2), χ3�(t + h3)

}
,

where s ∈ [−k − τ, −k] and t > −k. Let xk(t) = {xk
n(t)}n∈Z be the unique solution of the

following initial value problem

d

dt
xk

n(t) =
m∑

i=1

αi

∫ τ

0
Ji(s)f

(
xk

n−i (t − s)
)

ds + a

∫ τ

0
Jm+1(s)f

(
xk

n(t − s)
)

ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f

(
xk

n+j (t − s)
)

ds − xk
n(t), n ∈ Z, t > −k,

xk
n(s) = ϕk

n(s), n ∈ Z, s ∈ [−k − τ, −k].

(3.1)

Then, by lemma 2.4, we have xn(t) � xk
n(t) � K for all n ∈ Z and t � −k. The following

result provides the appropriate upper estimate of xk(t).

Lemma 3.1. The unique solution xk(t) = {xk
n(t)}n∈Z of (3.1) satisfies

xn(t) � xk
n(t) � min

{
K, �1(n, t), �2(n, t), �3(n, t)

}
for any n ∈ Z and t � −k − τ . Note that �1(n, t), �2(n, t) and �3(n, t) are defined in
theorem 1.3.

Proof. We only prove xk
n(t) � �1(n, t) for all n ∈ Z and t � −k − τ . The other cases can

also been proved in the same way. Assume χ1 = 1 and set

Zk
n(t) := xk

n(t) − φc1(n − c1t + h1).
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By assumption (A2) and direct computation, we obtain

d

dt
Zk

n(t) � f ′(0)

m∑
i=1

αi

∫ τ

0
Ji(s)Z

k
n−i (t − s) ds + af ′(0)

∫ τ

0
Jm+1(s)Z

k
n(t − s) ds

+f ′(0)

�∑
j=1

βj

∫ τ

0
Jm+1+j (s)Z

k
n+j (t − s) ds − Zk

n(t),

Zk
n(s) = ϕk

n(s) − φc1(n − c1s + h1),

(3.2)

where n ∈ Z, t > −k, s ∈ [−k − τ, −k]. Taking

Vn(t) := χ2Bc2 eλ3(c2)(n−c2t+h2) + χ3eλ∗(t+h3),

it is easy to verify that

d

dt
Vn(t) = f ′(0)

m∑
i=1

αi

∫ τ

0
Ji(s)Vn−i (t − s) ds + af ′(0)

∫ τ

0
Jm+1(s)Vn(t − s) ds

+ f ′(0)

�∑
j=1

βj

∫ τ

0
Jm+1+j (s)Vn+j (t − s) ds − Vn(t), for n ∈ Z, t > −k.

According to definition 1.2 and lemma 2.2, we have

ψc2(z) � Bc2 eλ3(c2)z and �(z) � eλ∗z for all z ∈ R,

which implies

Vn(s) := χ2Bc2 eλ3(c2)(n−c2s+h2) + χ3eλ∗(s+h3) � χ2ψc2(n − c2s + h2) + χ3�(s + h3)

� ϕk
n(s) − φc1(n − c1s + h1)

= Zk
n(s) for s ∈ [−k − τ, −k].

It then follows from lemma 2.6 that

Zk
n(t) � Vn(t) for all n ∈ Z and t > −k − τ,

that is,

xk
n(t) � φc1(n − c1t + h1) + χ2Bc2 eλ3(c2)(n−c2t+h2) + χ3eλ∗(t+h3) = �1(n, t).

If χ1 = 0, then the assertion xk
n(t) � �1(n, t) obviously reduces to

xk
n(t) � χ2Bc2 eλ3(c2)(n−c2t+h2) + χ3eλ∗(t+h3).

Hence the assertion of the lemma follows. The proof is complete. �
Now we prove the result of theorem 1.3.

Proof of theorem 1.3. By lemmas 2.4 and 3.1, we have

xn(t) � xk
n(t) � xk+1

n (t) � min
{
K, �1(n, t), �2(n, t), �3(n, t)

}
for any n ∈ Z and t � −k − τ . Using the a priori estimate of lemma 2.5 and the
diagonal extraction process, there exists a subsequence xkl (t) = {xkl (t)}l∈N of xk(t) such
that xkl (t) converges to a function �p(t) = {

�n,p(t)
}

n∈Z
in the sense of topology T . Since

xk
n(t) � xk+1

n (t) for any t > −k, we have

lim
k→+∞

xk
n(t) = �n,p(t) for any (n, t) ∈ Z × R.

The limit function is unique, whence all of the functions xk(t) converge to the function �p(t)

in the sense of topology T as k → +∞. Clearly, �p(t) is an entire solution of (1.7) satisfying
(1.9). The proof is complete.
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4. Qualitative properties of the entire solutions

In addition to the existence result of theorem 1.3, in this section we further investigate some
qualitative properties of the entire solutions.

For any N ∈ Z and γ ∈ R, we denote the regions T i
N,γ , i = 1, . . . , 6 by

T 1
N,γ := [N, ∞) × [γ, ∞), T 2

N,γ := (−∞, N ] × [γ, ∞), T 3
N,γ := Z × [γ, ∞),

T 4
N,γ := (−∞, N ] × (−∞, γ ], T 5

N,γ := [N, ∞) × (−∞, γ ], T 6
N,γ := Z × (−∞, γ ].

Various qualitative properties of the entire solutions are stated in the following.

Proposition 4.1. Let �p(t) = {�n,p(t)}n∈Z be the entire solution of (1.7) as stated in
theorem 1.3, then the following properties hold.

(1) �n,p(t) > 0 and �′
n,p(t) � 0 for all n ∈ Z and t ∈ R. Moreover, if f ∈

C1([0, ∞), [0, ∞)) then �′
n,p(t) > 0 for all n ∈ Z and t ∈ R.

(2) lim
t→+∞ sup

n∈Z

∣∣�n,p(t) − K
∣∣ = 0 and lim

t→−∞ sup
|n|�N

�n,p(t) = 0 for any N ∈ N.

(3) If χ1 = 1 then lim
n→+∞ sup

t�T

∣∣�n,p(t) − K
∣∣ = 0 for any T ∈ R.

(4) If χ2 = 1 then lim
n→−∞ sup

t�T

∣∣�n,p(t) − K
∣∣ = 0 for any T ∈ R.

(5) If χ3 = 1, m = �, αi = βi and Ji(·) = Jm+1+i (·) for i = 1, . . . , m, then

�n,p(t) ∼ �(t + h3) ∼ eλ∗(t+h3) as t → −∞ for every n ∈ Z.

(6) If χ3 = 0 then for any n ∈ Z, there exist constants Dn > Cn > 0 such that

Cneϑ(c1,c2)t � �n,p(t) � Dneϑ(c1,c2)t

for t � −1, here ϑ(c1, c2) := min{−c1λ1(c1), −c2λ3(c2)}.
(7) For any n ∈ Z, �n,p(t) is decreasing with respect to h2 and increasing with respect to h1

and h3, respectively.
(8) For any N ∈ Z and γ ∈ R, �p(t) converges to K in the sense of topology T as hi → +∞

and uniformly on (n, t) ∈ T i
N,γ for i = 1, 3. If h2 → −∞ then �p(t) converges to K in

the sense of topology T and uniformly on (n, t) ∈ T 2
N,γ .

Proof. The assertions for parts (2)–(4) and (6)–(8) are direct consequences of (1.9). Therefore,
we only prove the results of parts (1) and (5).

(1) From (1.9), one can see that �n,p(t) > 0 for all n ∈ Z and t ∈ R. Since

xk
n(t) � xn(t) � xn(s) = ϕn(s) for all (n, t) ∈ Z × [−k, +∞)

and s ∈ [−k − τ, −k],

by lemma 2.4, we have d
dt

xk
n(t) � 0 for (n, t) ∈ Z × (−k, +∞), which yields to �′

n,p(t) � 0
for all n ∈ Z and t ∈ R.

Moreover, if f ∈ C1([0, ∞), [0, ∞)), then

�′′
n,p(t) = − �′

n,p(t) +
m∑

i=1

αi

∫ τ

0
Ji(s)f

′(�n−i,p(t − s))�′
n−i,p(t − s) ds

+ a

∫ τ

0
Jm+1(s)f

′(�n,p(t − s))�′
n,p(t − s) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f

′(�n+j,p(t − s))�′
n+j,p(t − s) ds, (4.1)
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where n ∈ Z and t ∈ R. Hence, for any r < t , we have

�′
n,p(t) = �′

n,p(r)e−(t−r) +
∫ t

r

h(s)e−(t−s) ds, (4.2)

where

h(t) =
m∑

i=1

αi

∫ τ

0
Ji(s)f

′(�n−i,p(t − s))�′
n−i,p(t − s) ds

+ a

∫ τ

0
Jm+1(s)f

′(�n,p(t − s))�′
n,p(t − s) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)f

′(�n+j,p(t − s))�′
n+j,p(t − s) ds.

Clearly, h(t) � 0 for all n ∈ Z and t ∈ R. Suppose on the contrary that there exists a
(n0, t0) ∈ Z × R such that �′

n0,p
(t0) = 0, then it follows from (4.2) that �′

n0,p
(r) = 0 for

all r � t0. Hence �n0,p(t) = �n0,p(t0) for all t � t0, which implies that lim
t→−∞ �n0,p(t) =

�n0,p(t0). However, following from (1.9), we have lim
t→−∞ �n0,p(t) = 0 and �n0,p(t0) > 0.

This contradiction implies that �′
n,p(t) > 0 for all t ∈ R.

(5) By lemma 2.1, we know that

min
{ − c1λ1(c1), −c2λ3(c2)

}
> λ∗ for any c1 < c∗

1 and c2 > c∗
2 .

Then (1.9) implies

�(t + h3) � �n,p(t) � χ1Ac1 eλ1(c1)(n−c1t+h1) + χ2Bc2 eλ3(c2)(n−c2t+h2) + �(t + h3)

� χ1Ac1 eλ1(c1)(n−c1t+h1) + χ2Bc2 eλ3(c2)(n−c2t+h2) + eλ∗(t+h3).

Since lim
t→−∞ �(t)e−λ∗t = 1, the statement of (5) holds obviously. The proof is complete. �

Moreover, according to the assumption χ1, χ2, χ3 ∈ {0, 1} with χ1 + χ2 + χ3 � 2 in
theorem 1.3, we further denote the entire solution �p(t) of (1.7) by

�p(t) :=


�p0(t) = {�n,p0(t)}n∈Z, if (χ1, χ2, χ3) = (1, 1, 1);
�p1(t) = {�n,p1(t)}n∈Z, if (χ1, χ2, χ3) = (0, 1, 1);
�p2(t) = {�n,p2(t)}n∈Z, if (χ1, χ2, χ3) = (1, 0, 1);
�p3(t) = {�n,p3(t)}n∈Z, if (χ1, χ2, χ3) = (1, 1, 0),

(4.3)

where p = pχ1,χ2,χ3 = (χ1c1, χ2c2, χ1h1, χ2h2, χ3h3), p0 = (c1, c2, h1, h2, h3), p1 =
(0, c2, 0, h2, h3), p2 = (c1, 0, h1, 0, h3) and p3 = (c1, c2, h1, h2, 0). Then we have the
following convergence results.

Proposition 4.2. From (4.3), we have the following properties.

(1) For any N ∈ Z and γ ∈ R, �p0(t) converges (in the sense of topology T ) to
�p1(t) as h1 → −∞, and uniformly on (n, t) ∈ T 4

N,γ ;
�p2(t) as h2 → +∞, and uniformly on (n, t) ∈ T 5

N,γ ;
�p3(t) as h3 → −∞, and uniformly on (n, t) ∈ T 6

N,γ .

(2) For any N ∈ Z and γ ∈ R, �p1(t) converges (in the sense of topology T ) to{
�(t + h3) as h2 → +∞, and uniformly on (n, t) ∈ T 5

N,γ ;
ψc2(n − c2t + h2) as h3 → −∞, and uniformly on (n, t) ∈ T 6

N,γ .
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(3) For any N ∈ Z and γ ∈ R, �p2(t) converges (in the sense of topology T ) to{
�(t + h3) as h1 → −∞, and uniformly on (n, t) ∈ T 4

N,γ ;
φc1(n − c1t + h1) as h3 → −∞, and uniformly on (n, t) ∈ T 6

N,γ .

(4) For any N ∈ Z and γ ∈ R, �p3(t) converges (in the sense of topology T ) to{
ψc2(n − c2t + h2) as h1 → −∞, and uniformly on (n, t) ∈ T 4

N,γ ,

φc1(n − c1t + h1) as h2 → +∞, and uniformly on (n, t) ∈ T 5
N,γ .

(5) For any h1, h2, h
∗
1, h

∗
2 ∈ R, there exists (n0, t0) ∈ Z × R, depending on c1, c2, h1, h2, h∗

1,

h∗
2, such that

�n,p3(t) = �n+n0,p
∗
3
(t + t0) for all (n, t) ∈ Z × R

if and only if

c2(h1 − h∗
1) − c1(h2 − h∗

2)

c2 − c1
∈ Z. (4.4)

Here p∗
3 := (c1, c2, h

∗
1, h

∗
2, 0).

Proof.
(1) We only prove the case that �p0(t) converges to �p3(t) in the sense of topology T as
h3 → −∞, and uniformly on (n, t) ∈ T 6

N,γ . The proofs for the other cases are similar.
For (χ1, χ2, χ3) = (1, 1, 1), we denote ϕk(s) = {ϕk

n(s)}n∈Z by ϕk
p0

(s) = {ϕk
n,p0

(s)}n∈Z and
xk(t) = {xk

n(t)}n∈Z by xk
p0

(t) = {xk
n,p0

(t)}n∈Z, respectively. Similarly, when (χ1, χ2, χ3) =
(1, 1, 0), we denote ϕk(s) by ϕk

p3
(s) and xk(t) by xk

p3
(t), respectively. Let Wk(t) =

{Wk
n (t)}n∈Z := xk

p0
(t) − xk

p3
(t), then 0 � Wk

n (t) � K for all (n, t) ∈ Z × (−k, +∞) and

d

dt
Wk

n (t) � f ′(0)
[ m∑

i=1

αi

∫ τ

0
Ji(s)W

k
n−i (t − s) ds + a

∫ τ

0
Jm+1(s)W

k
n (t − s) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)W

k
n+j (t − s) ds

]
− Wk

n (t)

for n ∈ Z and t > −k. Note that

Wk
n (s) = ϕk

n,p0
(s) − ϕk

n,p3
(s) � �(s + h3) � eλ∗(s+h3) for s ∈ [−k − τ, −k]

and the function Ŵ (t) = eλ∗(t+h3) satisfies

d

dt
Ŵ (t) = f ′(0)

[ m∑
i=1

αi

∫ τ

0
Ji(s)Ŵ (t − s) ds + a

∫ τ

0
Jm+1(s)Ŵ (t − s) ds

+
�∑

j=1

βj

∫ τ

0
Jm+1+j (s)Ŵ (t − s) ds

]
− Ŵ (t) for t > −k.

It then follows from lemma 2.6 that

0 � Wk
n (t) � eλ∗(t+h3) for all (n, t) ∈ Z × [−k, +∞).

Since lim
k→+∞

xk
p0

(t) = �p0(t) and lim
k→+∞

xk
p3

(t) = �p3(t), we obtain

0 � �n,p0(t) − �n,p3(t) � eλ∗(t+h3) for all (n, t) ∈ Z × R,

which implies that �p0(t) converges to �p3(t) as h3 → −∞ uniformly on (n, t) ∈ T 6
N,γ

for any γ ∈ R. For any sequence h�
3 with h�

3 → −∞ as � → +∞, the functions �p�(t)
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(here p� := (c1, c2, h1, h2, h
�
3)) converge to a solution of (1.7) (up to extraction of some

subsequence) in the sense of topology T , which turns out to be �p3(t). The limit does not
depend on the sequence h�

3, whence all of the functions �p0(t) converge to �p3(t) in the sense
of topology T as h3 → −∞. Hence the assertion of this part follows.

The proofs of parts (2)–(4) are similar to that of part (1), and omitted.

(5) When χ1 = χ2 = 1 and χ3 = 0, by (1.9), we have, for any n � 0 and t ∈ R,

0 � �n,p3(t) − φc1(n − c1t + h1) � Bc2 eλ3(c2)(n−c2t+h2) � Bc2 eλ3(c2)(−c2t+h2)

which implies that

lim
t→−∞ sup

n�0

∣∣�n,p3(t) − φc1(n − c1t + h1)
∣∣ = 0. (4.5)

Similarly, we obtain

lim
t→−∞ sup

n�0

∣∣�n,p3(t) − ψc2(n − c2t + h2)
∣∣ = 0. (4.6)

For any h1, h2, h
∗
1, h

∗
2 ∈ R, suppose that there exists a (n0, t0) ∈ Z × R such that

�n,p3(t) = �n+n0,p
∗
3
(t + t0) for all (n, t) ∈ Z × R. Then, from (4.5), we obtain

lim
t→−∞ sup

n�0

∣∣�n+n0,p
∗
3
(t + t0) − φc1(n − c1t + h1)

∣∣ = 0

and

lim
t→−∞ sup

n�−n0

∣∣�n+n0,p
∗
3
(t + t0) − φc1((n + n0) − c1(t + t0) + h∗

1)
∣∣ = 0.

Hence,

lim
t→−∞ sup

n�max{0,−n0}

∣∣φc1((n + n0) − c1(t + t0) + h∗
1) − φc1(n − c1t + h1)

∣∣ = 0. (4.7)

Let {tn}n∈N be such that n − c1tn = 0 for all n ∈ N, then (4.7) implies

n0 − c1t0 + h∗
1 = h1 (4.8)

as n → +∞. Similarly, by (4.6), we obtain

n0 − c2t0 + h∗
2 = h2. (4.9)

Solving (4.8) and (4.9), we obtain

n0 = c2(h1 − h∗
1) − c1(h2 − h∗

2)

c2 − c1
and t0 = (h1 − h∗

1) − (h2 − h∗
2)

c2 − c1
. (4.10)

Hence condition (4.4) holds obviously.
Conversely, if the condition (4.4) hold, one can easily verify that �n,p3(t) = �n+n0,p

∗
3
(t+t0)

for all (n, t) ∈ Z × R, where (n0, t0) is given by (4.10). This completes the proof. �

Remark 4.3. If the function f (·) is odd, then the function �p(t) := −�p(t) is also an entire
solution of (1.7) which satisfies the similar properties of �p(t) as stated in propositions 4.1–4.2.
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