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ABSTRACT
The pseudo-rigid-body model (PRBM) method has been

widely accepted as one of the most important tools for synthe-
sis and analysis of compliant mechanisms. However, the lack
of quantitative study on the accuracy of PRBM for predicting
the kinetostatic behavior of flexible members always makes users
feel unconfident in the results achieved by PRBM. In this paper, a
strain-energy-based approach is proposed for evaluating the ac-
curacy of PRBM for predicting kinetostatic behavior of flexible
segments, which compares the results of strain energy calculate
using PRBM to those obtained using the derived closed-form so-
lutions. The approach was used to evaluate the accuracy of the
PRBM for flexible cantilever beams. It is proved that the PRBM
is accurate for modeling segments subject to end-moment loads.
A thorough comparison for segments subject to end-force loads
is also presented. The results could be useful for PRBM users to
assess the accuracy of the models for their compliant mechanism
designs, or to choose appropriate values for the characteristic
parameters. The results may also be used to improve the PRBM.

1 Introduction
Compliant mechanisms, which achieve at least some of their

mobility from the deflection of flexible segments rather than from
articulated joints only, offer many advantages such as energy
storage, increased precision, and reduced wear, backlash and part

∗Address all correspondence to this author.

number. Since many of the flexible segments undergo large de-
flection, the major challenge of compliant mechanisms lies in the
difficulty modeling the nonlinear deflection [1].

The pseudo-rigid-body model (PRBM) method [1], which
approximates the nonlinear deflection as motion of rigid links,
bridges the gap between compliant mechanisms and rigid-body
mechanisms. Due to its straightforwardness and effectiveness,
PRBM has been accepted as one of the most important tools
for synthesis and analysis of compliant mechanisms. The use of
PRBM enables us to apply the knowledge available in the field of
rigid-body mechanism to compliant mechanisms. So far, PRBM
had been successfully used for identifying multistability [2, 3],
characterizing dynamic behaviors [4, 5] and achieving static bal-
ancing [6] of compliant mechanisms.

The characteristic parameters of PRBM were determined by
first finding the characteristic radius factor (γ) that best fits the
tip locus of flexible members (i.e., to maximize the maximum
pseudo-rigid-body angle by limiting the relative deflection er-
ror of the tip less than 0.5% [1]), and then using it to compute
the approximate values for the stiffness coefficient (KΘ) and the
parametric angle coefficient (cθ). That is to say, the principle ob-
jective of PRBM is to accurately predict the kinematic behavior
of flexible members (without considering their stiffness behav-
ior). Because there lacks of quantitative study on how accurate
could PRBM be in predicting the kinetostatic behavior (namely
the force-deflection behavior) of flexible members subject to dif-
ferent load modes or in deflected configurations, users sometimes
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feel unconfident in the results produced by PRBM thus are reluc-
tant to use it, which provides the motivation of this work.

In this work, we propose to use strain energy as the met-
ric for accuracy evaluation of PRBM in predicting the kineto-
static behavior of flexible members due to the following rea-
sons. First, by using the strain energy modeling approach, one
can neglect the details of the internal loads and the load equi-
librium in flexible members. Second, by taking the first deriva-
tive of the strain energy stored in a compliant mechanism, one
can achieve the corresponding force-deflection behavior easily.
Third, studying strain energy modeling approaches can benefit
the research on characterizing dynamic behaviors of compliant
mechanisms. Fourth, strain energy modeling based on PRBM
(SE-PRBM for short) has already been studied [5] and used in
analysis and design of compliant mechanisms. Therefore, the
accuracy of PRBM in predicting the kinetostatic behavior may
be assessed by comparing the results of SE-PRBM to those ob-
tained using other analysis methods. Among various methods
for modeling nonlinear deflections, the elliptic-integral solution
is often considered as the most accurate one and had been used
as the exact solution in determining the characteristic parameters
of PRBM [1]. Based on the Euler-Bernoulli beam theory, we de-
rive the closed-form solution for stain energy of large deflection
using the elliptic-integral approach and use it for the accuracy
evaluation of SE-PRBM.

It should be noted that the proposed method can also be used
to evaluate the accuracy of other PRBM variants, for example,
the PRBMs discussed in Refs. [8–13]. A brief summary of the
work on various PRBMs can be found in Ref. [14].

The outline of this paper is as follows. Section 2 provides
a brief summary of the PRBM for cantilever beams and presents
the equations of SE-PRBM. Section 3 derives the elliptic-integral
solution for stain energy stored in beams undergo large deflec-
tions based on the Euler-Bernoulli beam theory. Section 4 com-
pares the results of SE-PRBM to those of the closed-form so-
lutions and presents the accuracy evaluation of PRBM. The last
section has concluding remarks.

2 The pseudo-rigid-body model (PRBM)
The solutions to the large-deflection equations show that the

deflected tip locus for a flexible cantilever beam subject to an end
force or an end moment is nearly a circular arc (as shown in Fig-
ure 1(a)), therefore, PRBM developed by Howell and Midha [1]
uses a rigid link rotating around a “characteristic pivot” (i.e.,
a revolving joint) to approximate the tip locus, as shown in
Figure 1(b). A torsional spring is attached to the characteris-
tic pivot to approximate the stiffness of the beam. The PRBM
uses three characteristic parameters to identify kinematic and
force-deflection characteristics of a flexible segments, namely,
the characteristic radius factor (γ), the stiffness coefficient (KΘ),
and the parametric angle coefficient (cθ). The characteristic pivot

is located at a length of γL (the characteristic radius) from the
beam tip in its undeflected position, where L is the length of the
beam.

The characteristic radius factor γ was found by best fitting
the tip locus of flexible members without considering their stiff-
ness behavior. Once γ is determined, the tip position of the de-
flected beam can be parameterized in terms of the pseudo-rigid-
body angle, Θ. The parametric angle coefficient cθ represents the
ratio of θo (the beam tip angle) to Θ, namely,

θo = cθΘ (1)

There is a nearly linear relationship between θo and Θ, thus cθ
can be approximated as a constant for a given loading condi-
tion. The stiffness coefficient KΘ is a nondimensionalized tor-
sional spring constant to model the beam’s resistance to deflec-
tion. Once KΘ is determined, the spring stiffness of the equiva-
lent torsion spring, K, can be calculated as

K = γKΘ
EI
L

(2)

where EI is referred to as the flexural rigidity of the beam.

Table 1. Numerical values for γ, cθ, KΘ and Θmax for different n (se-
lected from Ref. [1]).

n γ cθ KΘ Θmax (KΘ)

-1 0.8707 1.2323 2.7282 31.5

0 0.8517 1.2385 2.6762 58.5

1 0.8360 1.2467 2.6126 67.5

2 0.8276 1.2511 2.5971 69.0

5 0.8192 1.2557 2.5625 67.5

10 0.8156 1.2578 2.5660 69.7

2.1 Segment subject to an end-force
When an end force (which is decomposed into a verticle

component P and a horizontal force nP, as shown in Figure 1(a))
is applied , γ, KΘ and cθ can be represented as functions of n
(or the force direction angle ϕ). Table 1 lists some numerical
values for γ, cθ and KΘ for different values of n. Because the val-
ues for these characteristic parameters do not vary much over a
large range of n, their averaged values, i.e., γ = 0.85, KΘ = 2.65

2 Copyright c⃝ 2011 by ASME



Figure 1. (a) A cantilever beam subject to a combined end force and moment at the free end, and (b) its PRBM.

and cθ = 1.24, are often used for convenience. The strain energy
stored in the beam’s PRBM (SE-PRBM) can be approximated as

UP =
1
2

KΘ2 (3)

Because the moment at the characteristic pivot is given as

Mp = γL(nsinΘ+ cosΘ)P = KΘ (4)

for a known end force (n and P), we can solve Eq. (4) for Θ, then
use Eq. (3) to calculate UP.

Eq. (3) can also be rewritten as

UP =
1
2

γL(nsinΘ+ cosΘ)PΘ (5)

2.2 Segment subject to an end-moment
For a pure moment load Mo, the characteristic parameters

of PRBM are given as: γ = 0.7346, KΘ = 2.0643, and cθ =
1.5164 [1]. The strain energy stored in the beam’s PRBM (SE-
PRBM) can be calculated as [5]

UM =
1
2

cθKΘ2 (6)

Because Mo = KΘ and K = γKΘEI/L, Eq. (6) can be rewritten
as

UM =
cθM2

o

2γKΘEI/L
(7)

3 Closed-form Solutions for Strain Energy
This section derives the closed-form solutions for stain-

energy modeling of large-deflection beams. The solution for pure
end-moment load is obtained using simple integral techniques,
while the solution for pure end-force load is derived based the
elliptic-integral approach.

Figure 2. The strain and stress of infinitesimal ds

The Euler-Bernoulli beam theory is based on the assumption
that cross-sections remain plane and perpendicular to the longi-
tudinal fibers of the beam during bending. As a result of bending,
the top fibers of the beam is extended while the bottom is com-
pressed, as illustrated in Figure 2(a). It is reasonable to suppose
that somewhere between the two there is a fiber layer that is nei-
ther extended nor compressed (the stress is zero) [15]. This layer
is called the neutral layer, and it always pass through the centroid
of the cross-section. The radius of curvature R is then measured
to the neutral axis.

For infinitesimal ds shown in Fig. 2(a), O1O2 is the neutral
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layer, ρ is the curvature radius of the neutral layer, dθ is the an-
gular displacement of the infinitesimal (between the two cross
sections). The curvature radius of the top fibers is less than ρ
due to compression, while that of the bottom fibers greater than
ρ due to elongation. The lengthways fiber with a distance of Y
from the neutral layer Q1Q2 is elongated by

ε =
(ρ+Y )dθ−ρdθ

ρdθ
=

Y
ρ

(8)

that is to say, the strain of fiber is proportional to the distance (Y )
from the neutral axis. According to the law of Hooke, Q1Q2:

σ = Eε = E
Y
ρ

(9)

For an infinitesimal length ds,

dV =

(∫
A

σ2

2E
dA

)
·ds =

(∫
A

(EY/ρ)2

2E
dA

)
·ds

=
E

2ρ2

(∫
A

Y 2dA
)
·ds =

EI
2ρ2 ·ds

(10)

where A is the area of the cross-section, Y is the distance of area
infinitesimal dA from the neutral axis, and I =

∫
A Y 2dA is area

moment of inertia of the beam cross-section about the neutral
axis.

The Euler-Bernoulli beam theory states that the bending mo-
ment is proportional to the beam curvature, that is

M = EI
dθ
ds

=
EI
ρ

(11)

By replacing EI/ρ in Eq. (10) by the bending moment M, we get

dV =
M2

2EI
·ds (12)

Therefore, the total strain energy stored in the beam can be ex-
pressed as (note that M is different from Mo)

V =
∫ L

0
dV =

∫ L

0

M2

2EI
ds (13)

3.1 Elliptic-integral solution for segment subject to
an end-force

Eq. (13) can be rewritten as

VP =
∫ L

0

M2

2EI
ds =

∫ L

0

1
2EI

(
EI

dθ
ds

)2

ds =
∫ L

0

EI
2

(
dθ
ds

)2

ds

(14)

According to the derivation in Ref. [1], the curvature of a
beam subject an end-force load can be expressed as

1
ρ
=

dθ
ds

=

√
2P
EI

(λ− sinθ+ncosθ) (15)

where

λ = sinθo −ncosθo (16)

Eq. (15) can also be rewritten as

ds =
dθ√

2P
EI

(λ− sinθ+ncosθ)
(17)

Substituting Eqs. (15) and (17) into Eq. (14) yields

VP =

√
PEI

2

∫ θo

0

√
λ− sinθ+ncosθdθ (18)

We denote that

N =
∫ θo

0

√
λ− sinθ+ncosθdθ (19)

which will be solved using the elliptic-integral approach in the
following.

We define the following transformation

sn2(u, t) =
η+ sinθ−ncosθ

λ+η
(20)

where sn is one of the Jacobian elliptic functions, t the elliptic
modulus given as

t =

√
λ+η

2η

and

η =
√

1+n2

Differentiating Eq. (20) with respect to θ and simplifying yields

dθ =

√
2
η

√
λ− sinθ+ncosθdu (21)
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Substituting Eq. (21) into Eq. (19) results in

N =

√
2
η

∫ u2

u1

(λ− sinθ+ncosθ)du

=

√
2
η
{2η[E(t)−E(γ, t)]+(λ−η)[F(t)−F(γ, t)]}

(22)

where

γ = sin−1
√

η−n
λ+η

sn(u1, t) = sinγ

and

sn(u2, t) = 1

F(γ, t) and E(γ, t) are the elliptic integrals of the first and second
kind, and F(t) and E(t) are the complete elliptic integrals of the
first and second kind.

Substituting Eq. (22) into Eq. (18) yields

VP =

√
PEI

η
{2η[E(t)−E(γ, t)]+(λ−η)[F(t)−F(γ, t)]} (23)

Because (see Ref. [1], Eqs. (2.83) and (2.90))

√
PL2

EI
=

1√
2

∫ θo

0

dθ√
λ− sinθ+ncosθ

=
1
√

η
[F(t)−F(γ, t)]

(24)

by substituting Eq. (24) into Eq. (23) and eliminating P, VP can
be rewritten as

VP =
EI
L
{2[E(t)−E(γ, t)][F(t)−F(γ, t)]+

λ−η
η

[F(t)−F(γ, t)]2}

=
EI
L

· f (n,θo)

(25)

3.2 Solution for segment subject to an end-moment
For pure moment load (Mo at the free end), the bending mo-

ment is constant along the beam and the deflected beam exhibits
a circular arc with a constant curvature. The strain energy stored
in the beam can be calculated as

VM =
∫ L

0

M2
o

2EI
ds =

M2
oL

2EI
(26)

4 Accuracy Evaluation

Figure 3. Flowchart for the comparison calculation.

In this section, the accuracy of PRBM for predicting kine-
tostatic behaviors is evaluated by comparing the results of SE-
PRBM to those of the closed-form solutions derived in Section 3.
The nondimensionalized error of PRBM for modeling the strain
energy of cantilever beams is defined as (compared to the elliptic-
integral solution)

EP =
UP −VP

VP
×100% (27)
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In the comparison, the following values for the beam’s properties
are used: L = 0.03 m and EI = 1.067×10−4 N·m2. The force P
was increased step by step until Θ reaches Θmax given in Table 1.
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Figure 4. Strain energy versus P for different n (UP was calculated using
the numerical values for the characteristic parameters given in Table 1).

4.1 Comparison for end-force load (under equal load)
This subsection conducts the comparison by applying equal

end-force to both the cantilever beam and its PRBM. The
flowchart for the comparison calculation is shown in Figure 3.

We first compare the SE-PRBM employing the numerical
values listed in Table 1 as its characteristic parameters to the
elliptic-integral solution under the same load condition. The
curves for UP and VP versus P are plotted in Figures 4 for dif-
ferent n. Figure 5 shows the corresponding EP.

Second, we compare the SE-PRBM employing the averaged
values as its characteristic parameters (i.e., γ = 0.85, KΘ = 2.65
and cθ = 1.24) to the elliptic-integral solution with equal end-
force load. Figures 6 plots the curves for UP and VP versus P for
different n, and the corresponding EP is shown in Figure 7.

From the results shown in Figures 4-7, we may conclude
that:

1. In general, the PRBM using different values for its charac-
teristic parameters is more accurate in predicting kinetostatic
behavior than the PRBM with the averaged values.
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Figure 5. Plot of EP versus P for different n (UP was calculated using
the numerical values for the characteristic parameters given in Table 1).

2. In most cases, the error of PRBM stays within 10 percent of
the results obtained by the elliptic integral solution in pre-
dicting the kinetostatic behavior of flexible segments.

3. When the horizontal component (nP) dominates the end
force (e.g., n = 10), the error may be rather large (the maxi-
mum error is nearly 18 percent for the PRBM using different
values for its characteristic parameters, and 30 percent for
the PRBM with the averaged values).

4.2 Comparison for end-force load (under equal tip
deflections, i.e., a and b)

The comparison presented in this subsection is conducted by
setting both the cantilever beam and its PRBM undergo equal tip
deflections (allowing for 0.5 percent error of the tip deflections
between the beam and its PRBM, as defined in Ref. [1]). Given
a set of (a,b) for the beam, the corresponding PRBM angle Θ is
determined as [1]

Θ = arctan
b

a−L(1− γ)
(28)

Then Θ is used to calculate the strain energy of the PRBM for
comparison. The flowchart for the comparison calculation is
shown in Figure 8.

We first compare the SE-PRBM employing the numerical
values listed in Table 1 as its characteristic parameters to the
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Figure 6. Strain energy versus P for different n (UP was calculated using
the averaged values for the characteristic parameters).

elliptic-integral solution. The curves for UP and VP versus δe
are plotted in Figures 9 for different n, where δe is defined as [1]

δe =
√
(L−a)2 +b2 (29)

Figure 10 shows the corresponding EP.
Second, we compare the SE-PRBM employing the averaged

values as its characteristic parameters (i.e., γ = 0.85, KΘ = 2.65
and cθ = 1.24) to the elliptic-integral solution. Figures 11 plots
the curves for UP and VP versus δe for different n, and the corre-
sponding EP is shown in Figure 12.

From the results shown in Figures 9-12, we may conclude
that:

1. Using the averaged values for its characteristic parame-
ters doesn’t deteriorate the approximation accuracy of the
PRBM as compared to the PRBM with varying values for
different n.

2. The error of predicting the kinetostatic behavior of flexible
segments is less than 5 percent.

3. Interestingly, the error decreases as the deflections increase.

4.3 Comparison for end-moment load
By comparing Eq. (7) to Eq. (26), we have

UM =
cθM2

o

2γKΘEI/L
=

cθ
γKΘ

M2
oL

2EI
≈ M2

oL
2EI

=VM (30)
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Figure 7. Plot of EP versus P for different n (UP was calculated using
the averaged values for the characteristic parameters).

Figure 8. Flowchart for the comparison calculation.
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Figure 9. Strain energy versus δe for different n (UP was calculated us-
ing the numerical values for the characteristic parameters given in Ta-
ble 1).
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Figure 10. Plot of EP versus δe for different n (UP was calculated using
the numerical values for the characteristic parameters given in Table 1).
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Figure 11. Strain energy versus δe for different n (UP was calculated
using the averaged values for the characteristic parameters).

That is to say, PRBM represents an accurate method in predict-
ing the kinetostatic behavior of flexible segments subject to end-
moment loads (Θmax = 82.04◦ [1]).

5 Conclusions
We proposed a strain-energy-based approach for evaluating

the accuracy of PRBM for predicting kinetostatic behavior of
flexible segments. The approach was used to evaluate the ac-
curacy of the PRBM for flexible cantilever beams. It has been
proved that the PRBM is accurate for modeling segments subject
to end-moment loads. A thorough comparison for segments sub-
ject to end-force loads is also presented. The results may be use-
ful for PRBM users to roughly assess the accuracy of the models
for their compliant mechanism designs, or to choose appropriate
values for the characteristic parameters. It is also possible to use
the approach for improving the PRBM.
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