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but most depend on the relative magnitude of the cross-section thickness and width, which might be
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changing during the design phase (especially for design optimization) or is variant for variable cross-
section beams such as circular flexure hinges and tapered bars. After summarizing current equations and
analyzing their computational accuracy, two new equations are proposed, which are thickness-to-width
ratio independent, and suitable for variable cross-section beams and optimization design of torsional
elements in compliant mechanisms. The closed-form equations for the torsional compliance of elliptical
and circular flexure hinges are derived by using the new equations.
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ompliant mechanism

. Introduction

Elastic deformation due to torsion is a valuable and often-
sed approach for producing motion in many devices, including
ompliant mechanisms and compliant microelectromechanical
ystems (MEMS). Jacobsen et al. [1] used torsion to achieve out-
f-plane motion in lamina emergent mechanisms. Goldfarb et al.
2] designed a “split-tube” flexure which is based on the torsion of
he open-section hollow shaft. Degani et al. [3] and Bao et al. [4]
esearched torsion micromirrors, which have been used in various
EMS such as optical displays and optical switches. Torsion ele-
ents have been employed in many compliant mechanisms [5]. The

esign of torsion elements or modules is of practical importance in
any current and future compliant mechanism applications.
The flexure hinges in some compliant mechanisms are subject

o unexpected moments created by torsion. For example, although
single-axis circular flexure hinge is designed to primarily have

arge compliance about its input axis, the torsional compliance is
omparable in magnitude. Therefore, the torsional compliance of

ingle-axis flexure hinges should be treated carefully, especially in
patial compliant mechanisms.

There are several equations available to calculate the torsion of
ectangular cross-section beams. Before using these equations, one

∗ Corresponding author at: School of Mechatronics, Xidian University, No. 2, South
aibai Road, Xi’an, Shaanxi 710071, China.
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f the two dimensions of the cross-section (for example the thick-
ess) must be defined as the wider of the two dimensions. This is
ecause the dimensions in the equations do not refer to geometry

n a specific direction (e.g. the width in the x direction), but rather
efer to the relative magnitude of the dimensions (i.e., which is
he smallest dimension). However, many applications use variable
ross-section beams such as circular flexure hinges and tapered
ars. Sometimes the cross-section varies, and the relative magni-
ude of the two dimensions changes. Fig. 1 shows a tapered bar,
hose width is w and thickness is t. t > w holds for the part left of
oint “S” (the “switch point”), while t < w elsewhere. In this case,
he equations are not adequate for the full length of the beam. At the
witch point where the largest dimension switches, the variables
n the equation will also have to switch.

In addition, the thickness-to-width ratio of the beam(s) subject
o torsion in a mechanism may change greatly during the design
teration process. This is especially true for an optimization design
rocess. When optimizing, currently available equations require
witching the variables at the switch point. Thus, an equation that
s valid regardless of the width-to-thickness ratio would be advan-
ageous in automating the design of the flexures using optimization
nd in better understanding their behavior.

The modeling effort on torsional compliance for variable cross-

ection flexure hinges is possible because of previous work on
orsion hinges. Koseki et al. [6] studied the torsional compliance
or constant rectangular cross-section flexures. Based on the simpli-
ed Young’s torsion equation [7], Lobontiu et al. [8–10] formulated
he closed-form torsional compliance equations for several variable

http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:guimin.chen@gmail.com
dx.doi.org/10.1016/j.precisioneng.2008.08.001
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Fig. 1. A tapered rectangular cross-section bar.

ross-section hinges by assuming that the thickness-to-width ratio
s equal to or larger than 1 (or equal to or less than 1) for the whole
otch region.

The present work compares different torsional equations for
ectangular cross-section bars, and proposes two precise and effec-
ive equations that is independent of the thickness-to-width ratio.
ased on these equations, torsional compliance equations for ellip-
ical and circular flexure hinges are derived.

. Torsion compliance of flexure hinges

Flexure hinges [11] in various forms find wide use in a variety of
ompliant mechanisms such as micro-grabbers, micro-positioning
tages, high-accuracy alignment devices, displacement amplifiers
nd parallel micromechanisms because they are small in size, high
n sensitivity, and without mechanical friction and backlash.

The cutout profile selection and parameter design of flexure
inges are two important aspects in the process of compliant mech-
nism design. Although circular flexures are often used, there are
any applications where other kinds of hinges are preferable. For

xample, elliptical flexures were used in displacement amplifiers
f large amplification factors and long-travel micro-positioning
tages. Compared with circular flexures, elliptical flexures dis-
ribute the deformation more evenly over the length of the hinge,
hus lowering stress concentrations and achieving larger compli-
nce for a given hinge length [12]. Larger compliance means less
orce is needed to actuate the mechanism, while lower stress con-
entrations mean reducing the probability of fatigue failure and
hus prolonging the life of the mechanism.

Fig. 2 illustrates an elliptical flexure hinge, where “t0” denotes
he minimum thickness of the hinge, “w” denotes the hinge width,
and b are the two semi-axes of the notch ellipse, and t(x) is the

ariable thickness of the notch region which varies along the notch
egion. Two special cases of elliptical hinges are shown in Fig. 2,
.e., a circular hinge (where a = b) and a leaf-type hinge (where b =
). The torsional compliance equation for elliptical flexure hinges
erived in this paper also applies to circular hinges.

Assume that the flexure hinge is fixed at one end, while the
orsion load is applied at the opposite, free end. Denote the torsion
ngle due to pure torsion Mx by ˛x, which can be expressed as∫ l

Mx

x =

0 GI(x)
dx, (1)

here l is the length of the hinge, G is the modulus of rigidity, and
(x) is the torsional moment of inertia for the infinitesimal strip
t position x, which depends on the form and dimensions of the

˛

w
o
t

Fig. 2. Elliptical flexure hinges.

ross-section at x. Therefore, the torsional compliance, C, is given
y

= ˛x

Mx
=

∫ l

0

1
GI(x)

dx. (2)

or variable rectangular cross-section flexure hinges, each strip of
he hinge can be treated as a constant rectangular cross-section
eam. There are several methods to calculate I(x), where the calcu-

ation accuracy depends on the thickness-to-width ratio (w/t(x)) of
he hinge. It should be noted that the following three cases are to be
onsidered when calculating I(x) for variable cross-section flexure
inges:

Case 1: w ≤ t0. This is the case dealt with in [10], which often
applies for MEMS flexures because of the fabrication methods
used.
Case 2: w ≥ (t0 + 2b). This is the case discussed in [9].
Case 3: w ≤ (t0 + 2b) while w ≥ t0. This is the case where switch-
ing w and t(x) is required during the integration (piecewise
integration).

. Different methods for calculation of the torsional
oment of inertia I

In this section, the constant-cross-section (i.e., leaf-type) flexure
inge is assumed to simplify the analysis of different equations for
alculation of I, that is to say, b = 0 or t(x) = t0 for the whole notch
egion (same as [10]). Thus Eq. (2) can be simplified as

= l

GI
. (3)

ithout loss of generality, we can assume that the thickness-to-
idth ratio t0/w ≥ 1 for the constant cross-section.

.1. The series solution

The look-up-table method is often used for the torsion calcula-
ions for rectangular section beams. The angle of twist, ˛x, is given
y

Mxl

x =

kt0w3G
, (4)

here k is a geometrical constant, whose value depends on the ratio
f t0/w. Table 1 summarizes many representative values of k when

0 ≥ w, and is the result of the works of many different authors
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Fig. 3. g(5), g(7), g(9) and g(11) in Eq. (6).

6,13–19]. Therefore, the corresponding torsional moment of inertia
using the subscript “S” for series solution) can be expressed as

S = kt0w3. (5)

These discrete values are often inadequate for engineering
esign and a more continuous relationship is needed to calcu-

ate the torsional compliance for variable rectangular cross-section
eams. In fact, torsion of rectangular sections can be calculated ana-

ytically and the result expressed in terms of an infinite series as
20,21]:

= 1
3

− 64
�5

w

t0

∞∑
i=1,3,5,...

tanh(it0�/2w)
i5

= 1
3

− 64
�5

w

t0

∞∑
i=1,3,5,...

g(i) (6)

here “tanh” is the hyperbolic tangent function. The series con-
erges rapidly, which can be seen from g(5), g(7), g(9) and g(11)
f the series shown in Fig. 3. The results of Eq. (6) agree with the
ata in Table 1 when the series is added from i = 1 to i = 5. In the
ollowing, we sum the first 500 terms of the series solution (i.e.,
= 1, 3, 5, . . . , 999) as the exact-form equation for comparisons of
arious methods.
.2. The torsion equation: Young and Budynas

Young and Budynas [7] give an approximate equation for the
orsional moment of inertia for rectangular cross-sections, which

able 1
able of k values for rectangular sections in torsion

0/w k

1.0 0.141
1.2 0.166
1.25 0.172
1.5 0.196
1.75 0.214
2.0 0.229
2.5 0.249
3.0 0.263
4.0 0.281
5.0 0.291
6.0 0.299
8.0 0.307

10.0 0.313
0.0 0.329

∞ 0.333

w
w
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an be expressed as

Y = t0w3

[
1
3

− 0.21
w

t0

(
1 − w4

12t4
0

)]
, (7)

here the subscript “Y” indicates it was obtained from Young and
udynas’ book [7]. The torsional compliance associated with IY is
Y and is found using Eq. (3). The high-power term in IY makes CY
ifficult to integrate in the case of variable cross-section beams.
owever, numeric integration could be used if high precision is

equired.
Note that Eq. (7) was incorrectly written in [10] as

YL = t0w3

[
1
3

− 0.21
w

t0
+ 0.001

w4

t4
0

]
. (8)

his transcription error did not result in any problem for the deriva-
ion of the simplified equation discussed next, other than the
ssessment of its accuracy. The corresponding torsional compli-
nce, CYL is found from IYL and Eq. (3).

.3. The torsion equation: Lobontiu et al.

The width of a flexure hinge is smaller than the minimum thick-
ess in many MEMS applications. In order to deduce the design
quations of torsional stiffness of such flexure hinges, Lobontiu et
l. [10] simplified Eq. (8) by neglecting the high-power term and
educing the equation to

L = t0w3
[

1
3

− 0.21
w

t0

]
, (9)

here the subscript “L” indicates it was obtained from Lobontiu’s
ork. The errors caused by neglecting the high-power term are no
ore than 0.8% when compared to Eq. (8), but unfortunately Eq. (8)

s not the correct form of the equation, and the deviation is greater
hen compared to Eq. (7).

It should be noted that Eqs. (5) to (9) are subject to the assump-
ion of t0/w ≥ 1. That is to say, once t0/w < 1, all the w’s in these
quations should be switched to t0’s and all the t0’s should be
witched to w’s.

.4. The torsion equation: Hearn

Hearn [13] proposed the following approximate form:

˛x

Mx
= 42LJ

GA4
= L

G

42J

t4
0w4

, (10)

here A is the cross-sectional area of the section (A = wt0) and J =
t0(w2 + t2

0)/12. From Eq. (10), we can obtain the corresponding
pproximate equation for the torsional moment of inertia, which
an be expressed as

H = t4
0w4

42J
= 2t3

0w3

7t2
0 + 7w2

= t0w3

3.5 + 3.5w2/t2
0

, (11)

here the subscript “H” indicates it was obtained based on the
quation presented in Hearn’s book [13]. One of the distinct features
f this approximate equation is the symmetric relation between

0 and w. This means that users do not need to consider whether
0/w ≥ 1 or t0/w < 1. In addition, Hearn’s equation is easy to inte-
rate, so it is more suitable for the torsion calculation of variable
ross-section beams.
.5. Error analysis

The torsional compliances calculated by using IS, IY, IYL, IL and IH
re CS, CY, CYL, CL and CH, respectively. The error functions compared
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Fig. 4. Errors.

o the torsional compliance calculated by the series equation of Eq.
6)(CS) can be defined as

Y = CY − CS

CS
= IS

IY
− 1, (12)

YL = CYL − CS

CS
= IS

IYL
− 1, (13)

L = CL − CS

CS
= IS

IL
− 1, (14)

H = CH − CS

CS
= IS

IH
− 1. (15)

The errors eY, eYL, eL and eH are plotted in Fig. 4 for w/t0 ranging
rom 0.0001 to 1. From Fig. 4 we learned that

The errors between the CS and CY are less than 0.5%.
CL may result in errors up to 14% as w/t0 approaches 1.
The maximum error between IYL and IL is about 0.8% as w/t0
approaches 1, which agrees with the statement in [10].
CH is easy to use but may result in a large error (up to 17%).

. Improved equations with symmetric relation of t0 and w

It is hypothesized that it is possible to create a relationship that,
ike Eq. (11), is symmetric with t and w, but has increased accuracy.
his section develops this as an equation for a leaf-type flexure
nd also is used to develop a more general relationship for variable
ross-sections. Let z = w/t. Leaf-type flexure hinges have constant

and t0, and z0 = w/t0. To improve the calculation precision of
H while not overly complicating the analytical equation, a com-
ensatory function is introduced. This compensation function is a
unction of z and is denoted by f (z):

C = f (z)IH. (16)

In addition, in order to maintain the symmetric feature of IH, f (z)
ught to bear the same symmetric relation between t0 and w, that

s to say, f (z) = f (1/z).

According to Eq. (15), we want

C = IS
f (z)IH

− 1 = 0. (17)

F
p

fl
w

ig. 5. Errors of CC compared to CS as a function of the width-to-thickness ratio w/t0.

Combining Eqs. (15) and (17) yields

(z) = eH + 1. (18)

Two steps were followed to determine f (z):

First, eH was extended from [0.0001,1] to [0.0001,10000]. The data
in the region from [1,10000] was mapped using f (z) = f (1/z).
Second, a rational quadratic polynomial fitting was performed to
find the numerator and the denominator for f (z), which yields

f (z) = 1.17z2 + 2.191z + 1.17
z2 + 2.609z + 1

. (19)

Therefore, the improved compliance equation for leaf-type flex-
re hinges (z = z0) can be expressed as

C = CH

f (z0)
= 7l

2Gf (z0)

(
1

t0w3
+ 1

t3
0w

)
, (20)

nd the errors of CC compared to CS are plotted in Fig. 5. The largest
rror is less than 0.28% when z spans from 0.0001 to 10000. That is
o say, CC is more accurate than CY (and thus also more accurate than
YL, CL and CH) while calculating torsional deformation. In addition
o having an improved accuracy over other equations, the relative

agnitude of w and t are not important in the equation.
Even better fitting results may be achieved with a 5th degree

olynomial numerator and 5th degree polynomial denominator
denoted it as f ′(z)):

′(z) = 1.167z5 + 29.49z4 + 30.9z3 + 100.9z2 + 30.38z + 29.41
z5 + 25.91z4 + 41.58z3 + 90.43z2 + 41.74z + 25.21

,

(21)

nd the corresponding compliance equation for leaf-type flexure
inges can be expressed as

′
C = CH

f ′(z)
= 7l

2Gf ′(z)

(
1

t0w3
+ 1

t3
0w

)
. (22)

he errors of C ′
C compared to CS are less than 0.03% , as shown in
ig. 6. But Eq. (21) is too complex for practical use. The quadratic
olynomial of Eq. (19) is sufficient for most applications.

These two general torsional compliance equations for leaf-type
exure hinges CC and C ′

C, maintain the symmetric relation between
and t0 and are more accurate than CH. CC and C ′

C also apply to
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ig. 6. Errors of C ′
C compared to CS as a function of the width-to-thickness ratio w/t0.

ariable rectangular cross-section beams because every infinitesi-
al strip along the length of the beam can be treated as a constant

ross-section beam.
The equations for leaf-type flexure hinges provide a foundation

or the derivation of the torsional compliance for variable rectan-
ular cross-sections. Allowing for both flexure thickness and width
o vary as a function of x and substituting Eq. (11) into Eq. (2) yields

H =
∫ l

0

7
2G

[
1

w3(x)t(x)
+ 1

w(x)t3(x)

]
dx (23)

he accuracy of this equation can be improved by using IC in Eq. (2),
esults in

C =
∫ l

0

7
2G

[
1

w3(x)t(x)f (t(x)/w(x))
+ 1

w(x)t3(x)f (t(x)/w(x))

]
dx

(24)

r if the more complex f ′(x) is used, the torsional compliance is

′
C =

∫ l

0

7
2G

[
1

w3(x)t(x)f ′(t(x)/w(x))
+ 1

w(x)t3(x)f ′(t(x)/w(x))

]
dx

(25)

Eqs. (24) and (25) provide general equations for the torsional
ompliance of variable rectangular cross-sections and are still sym-
etric in w and t because f (z) = f (1/z) and f ′(z) = f ′(1/z).

. Torsional compliance equation for single-axis elliptical
nd circular flexure hinges of variable rectangular
ross-sections

The two general torsional equations can be demonstrated by
eriving the torsional compliance for elliptical flexure hinges. A
iscussion of flexure geometry is followed by the derivation of a
ymmetric relation for torsional compliance based on IH. This is fol-
owed by the derivation of another symmetric relationship, based
n IC, that has improved accuracy compared to that developed using

H.

As shown in Fig. 7, the thickness of the infinitesimal strip (dx)

t position x for an elliptical flexure hinge can be expressed as

(x) = 2b + t0 − 2b

a

√
2ax − x2, (26)

e

c
i
t

Fig. 7. Analysis of the profile of elliptical flexure hinge.

nd the width is a constant, with w(x) = w. In order to simplify the
eduction of the torsional compliance equation for elliptical hinges,
ccentric angle � was introduced as the integral variable. For

= a + a sin �, (27)

q. (26) can be rearranged to yield

(�) = 2b + t0 − 2b cos �. (28)

ifferentiation of Eq. (27) yields

x = d(a sin �) = a cos � d�. (29)

By substituting Eqs. (27)–(29) into Eq. (23), the symmetric tor-
ional compliance equation [13] can be expressed as

H =
∫ �/2

−�/2

7
2G

[
a cos �

w3t(�)
+ a cos �

wt3(�)

]
d�. (30)

upposing s = b/t0 and substituting it into Eq. (28), the strip height
t position � can be expressed as

(�) = t(�)/b = 2 + 1/s − 2 cos �. (31)

ubstituting Eq. (31) into Eq. (30) yields

H = 7a

2Gw3b

∫ �/2

−�/2

cos �

p(�)
d� + 7a

2Gwb3

∫ �/2

−�/2

cos �

p3(�)
d�

= 7a

2Gwb

(
N1

w2
+ N2

b2

)
, (32)

here

1 = 2(2s + 1)√
4s + 1

arctan
(√

4s + 1
)

− �

2
, (33)

2 = 2s3(6s2 + 4s + 1)

(4s + 1)2(2s + 1)
+ 12s4(2s + 1)

(4s + 1)5/2
arctan

√
4s + 1. (34)

By substituting w(x) = w into Eq. (24), the torsional compliance
s given by

C =
∫ l

0

7
2Gw3t(x)f [t(x)/w]

dx +
∫ l

0

7
2Gwt3(x)f [t(x)/w]

dx. (35)

Like CY, the CC and C ′
C equations are still difficult if not impos-

ible to integrate in their original form for variable cross-section
inges because of the high-degree items in the integration. If high-
alculation precision is required, numerical integration methods
hould be used to determine the compliance (denoted by CC). How-

ver, unlike CY, it requires no switch of t(x) and w.

The integration of the equation is made easier by simplifying the
ompensation function, f (z). Using z0 = t0/w instead of z = t(x)/w
n the compensation function, f (z), while maintaining a variable
hickness, t(x), elsewhere, simplifies the integration with little loss
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Table 2
Torsional compliance calculations for several examples using various methods

Example Type w (mm) b (mm) CS CY CL CH CC CCS

1 Leaf 0.08 0 965.05 965.02 965.02 1065.48 966.67 966.67
2 Leaf 0.8 0 2.1441 2.1402 2.4439 2.1099 2.1462 2.1462
3 Leaf 8 0 0.0965 0.0965 0.0965 0.1065 0.0967 0.0967
4 Circular 0.5 5 2.3240 2.3230 2.3300 2.3673 2.3232 2.3869
5 Circular 0.01 5 212995 212995 212995 247238 212559 213215
6 Circular 0.08 5 431.74 431.73 431.73 485.28 432.10 440.28
7 Circular 0.7 5 0.9965 0.9984 1.0210 0.9990 0.9967 1.0155
8 Circular 0.8 5 0.7279 0.7288 0.7680 0.7263 0.7282 0.7388
9 Circular 2 5 – – – 0.1283 0.1278 0.1266
10 Circular 6 5 – – – 0.03361 0.03136 0.03095
11 Circular 10 5 – – – 0.01972 0.01790 0.01772
12 Circular 11 5 0.01615 0.01615 0.01615 0.01789 0.01617 0.01601
13 Circular 10.8 5 0.01647 0.01647 0.01647 0.01823 0.01649 0.01632
14 Circular 15 5 0.01164 0.01164 0.01164 0.01306 0.01165 0.01156
15 Circular 20 5 0.00863 0.00863 0.00863 0.00977 0.00864 0.00858
16 Circular 50 5 0.00338 0.00338 0.00338 0.00390 0.00338 0.00337
17 Elliptical 0.5 3 2.7985 2.7973 2.8063 2.8372 2.7974 2.8607
18 Elliptical 0.01 3 252230 252229 252229 292695 251724 252416
19 Elliptical 0.08 3 512.35 512.34 512.34 574.72 512.86 521.42
20 Elliptical 0.7 3 1.2092 1.2116 1.2407 1.2074 1.2094 1.2273
21 Elliptical 0.8 3 0.8865 0.8877 0.9381 0.8815 0.8869 0.8967
22 Elliptical 2 3 – – – 0.1605 0.1600 0.1584
23 Elliptical 4 3 – – – 0.06655 0.06366 0.06280
24 Elliptical 6 3 – – – 0.04267 0.03979 0.03930
25 Elliptical 11 3 0.02052 0.02052 0.02052 0.02276 0.02055 0.02036
26 Elliptical 10.8 3 0.02093 0.02093 0.02093 0.02319 0.02096 0.02076
27 Elliptical 15 3 0.01480 0.01480 0.01480 0.01661 0.01482 0.01471
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7

pliance equaton in an application. Fig. 8 shows a parallel-guiding
mechanism utilizing elliptical flexure hinges. The device is fabri-
cated from a single planar layer but provides micromotion out of
that plane. All the elliptical flexure hinges are of the same size
8 Elliptical 20 3 0.01098
9 Elliptical 50 3 0.00431

or all the designs t0 = 0.8 mm, a = 5 mm and G = 8.1 × 1010 N/m2.

f accuracy. The simplification is a reasonable assumption because
he deformation of a hinge is mainly distributed at the most flexi-
le part of the notch region. Because z0 is a constant for a specific
inge, f (z0) can be moved outside the integration in Eq. (2). The
ompliance equation can be expressed as

CS = z2
0 + 2.609z0 + 1

1.17z2
0 + 2.191z0 + 1.17

(
7a

2Gwb

)(
N1

w2
+ N2

b2

)
, (36)

he torsional compliance equation for elliptical hinges, CCS, is a
ymmetric relationship that does not depend on the relative mag-
itude of w and t, is more accurate than CH, and does not require
umerical integration for calculation. A similar equation can be
eveloped by using f ′(z0) rather than f (z0).

The equations for CC and CCS also apply to circular hinges by
pplying a = b.

. Torsional compliance calculations using various
quations

The torsional compliance was calculated for all the methods
escribed here for 29 different example designs. The parameters
escribing these designs are listed in Table 2. Designs 1–3 are leaf-
ype hinges, 4–16 are circular hinges and 17–29 are elliptical hinges.
he torsional compliance CS, CY and CC were calculated by using
igh-precision numerical integration, while the CL [10], CH, and CCS
ere calculated by using the closed-form equations. The results

re listed in Table 2. There are several grids in Table 2 left blank,

hich is because there are switch points in the designs (piecewise

ntegration is needed) not accounted for by certain equations.
From the results we may conclude that:

CS, CY and CL are dependent on the relative magnitude of w and
t(x);

F
m

0.01098 0.01098 0.01243 0.01098 0.01092
0.00431 0.00431 0.00496 0.00430 0.00429

CH, CC and CCS do not depend on the the relative magnitude of w
and t(x);
The errors of the results of CL are the largest when w/t0
approaches 1;
The errors of the results of CH become the largest when w/t0 � 1
or w/t0 	 1;
CC is more accurate than CH but difficult to integrate;
The simplified version of CC, i.e., CCS, is more accurate than CH and
only slightly less accurate than CC and integrable.

. Application example

Consider an example to illustrate the application of the com-
ig. 8. A parallel-guiding mechanism: (a) its 3D model and (b) its pseudo-rigid-body
odel illustrates the resulting motion.



2 n Eng

a
p

•
•
•
•
•
•

(
m
(
t
e

F

I

F

8

g
e
p
o
w
a
t
p

A

t
N

a
2

R

[

[

[

[
[

[

[

[

[

74 G. Chen, L.L. Howell / Precisio

nd are mainly subject to torsion when a force, F, is applied. The
arameters of the mechanism are given as following:

L = 0.05 m
w = 0.006 m
a = 0.005 m
b = 0.003 m
t = 0.0008 m
G = 8.1 × 1010 N/m2

The center platform will remain horizontal during the motion
as illustrated in Fig. 8b) and the angular rotation of the side seg-

ents is measured by the angle �. The compliance equation CCS
Eq. (36)), and the device geometry, are utilized to find out the rela-
ionship between force F and angle �. The resulting equation can be
xpressed as

= 8�

CCSL cos �
= 4071.2

�

L cos �
(37)

f CH is used instead of CCS in Eq. (37), F will be

= 8�

CHL cos �
= 3749.7

�

L cos �
(38)

. Conclusions

Several existing equations for torsional compliance of rectan-
ular cross-sections have been reviewed and compared. Two new
quations for calculating the torsional compliance have been pro-
osed. These equations are independent of the relative magnitude
f the cross-section thickness and width, making them particularly
ell suitable for calculation of the torsional compliance of vari-

ble rectangular cross-section beams and design optimization of
orsional hinges. The closed-form equation for the torsional com-
liance of elliptical and circular flexure hinges was derived.
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