doi :10.3772/j.issn.1002-0470.2009.07.015

以减轻重量为目标的索网桁架式可展开太空天线结构的优化设计①

尤国强② 杨东武 张 杰

(西安电子科技大学机电工程学院 西安 710071)

摘 要 针对索网桁架式可展开天线的结构特点和性能要求 对其结构初始设计进行了 优化研究。选取天线的桁架单元壁厚和索单元半径为设计变量,并对不同类型的设计变 量进行了合理的归并,继而以结构重量为优化目标,以表面精度和基频为约束条件,建立 了优化设计数学模型。考虑到索网结构有限元分析给计算带来的非线性和复杂性,使用 序列二次规划法对模型求解,并给出了相关动力特性的敏度分析。通过算例分析可知,采 用上述优化计算方法可以在保证天线工作性能的前提下有效地降低结构的重量 同时由 优化迭代过程中约束函数值的变化情况可知 在一定范围内减小桁架单元壁厚和增大索 单元半径,可以有效地提高天线表面精度和改善结构动力性能。

关键词 可展开天线,索网结构,表面精度,序列二次规划法,敏度分析,优化设计

0 引言

太空可展开天线目前已被广泛应用于数字通 讯、地面侦测和天文研究等多种领域。在不同形式 的可展开天线中,索网桁架式可展开天线以其收缩 比大、重量轻、精度高等显著优点成为该领域研究的 热点。对于此类天线的结构形式、展开机理、力学分 析等方面的研究已较为多见[14] 但在各类文献中却 很少提及如何通过优化设计来提高天线性能的计算 方法。考虑到天线重量是决定其工程造价和运输成 本的主要因素 故本文以减轻结构重量为优化设计 目标建立了相应的天线优化数学模型,并研究了不 同结构参数对天线工作性能的影响规律。

索网桁架式可展开天线属于比较柔的组合张拉 结构,其形式复杂,单元数目众多,并且具有几何非 线性效应 对于此类结构的动、静力分析计算都较为 困难。序列二次规划法是 20 世纪 80 年代和 90 年 代发展起来的一种最优化方法,它是研究非线性约 束最优化快速收敛算法中十分有效的工具[56]。为 了保证能够迅速稳定的计算,本文采用该法对优化 模型进行分析求解,并取得了较好的效果。

优化模型的建立 1

本文所研究的索网桁架式可展开天线主要是由

可折叠的周边桁架、反射面索网系统和中央圆筒三 部分组成(见图1)。在对其进行优化设计时需根据 结构特点考虑如下环节。

图 1 天线总体结构简图

1.1 设计变量

由于展开天线在太空环境工作时初级电源不 足 使得在索网结构中施加的张拉力不可能很大 而 且无法随意调节 因此 要使天线在固有张力条件下 达到预定的的网面精度 较为合理的方法是通过改 变索单元横截面积来调节索网反射面内的张力分布 状态从而使网面上的各点尽量接近理想位置。另 外 决定天线结构重量和频率特性的主要因素也是 索单元和周边桁架单元的截面积大小。因此,本文 将索单元半径和周边桁架单元壁厚作为优化设计变

国家部委预研 51321040102 资助项目。 男 ,1980 年生 ,博士生 ,研究方向 :空间结构优化设计 ,联系人 ,E-mail:simonyou@tom.com (收稿日期 2008-07-03)

量。对于索单元,考虑到挂网时网面的平整和方便 加工等因素,将索网结构中的上弦索、下弦索和中间 纵向索的半径分别归并为3类设计变量(见图2); 周边桁架单元均为具有相同外径的圆管,针对天线 的结构特点将桁架单元壁厚归并为8类优化设计变 量(见图3),分别为 DG、DE、EG、AD、EM、GM、GH和 GJ。

1.2 目标函数

在航天技术方面对太空结构有着苛刻的轻质量 要求。相关研究表明,卫星重量每减轻 1kg,运载火 箭就能减少 500kg 的燃料重量,即大约能降低 10000 美元费用,因此在满足工作性能要求的前提下降低 天线的重量是尤为重要的。为此本文将结构重量作 为优化目标函数。

1.3 约束条件

可展开天线工作性能的高低主要取决于其反射 面精度的大小,因此必须严格控制这项指标以确保 天线的正常工作,故文中将可以反映实际抛物面与 理想网面偏差程度的表面节点均方根(RMS)误差值 作为约束条件之一^[7]。另外,天线在展开和工作时 都会遇到振动的情况,为了避免谐振现象对天线的 破坏,必须使结构的固有频率远离激励(卫星姿态调 整或变轨)频率,同时天线中各单元的工作应力不能 超过许用应力,因此应该将结构基频和单元应力也 — 746^万方数据 作为优化时的约束条件。

i = 1

1.4 优化数学模型

```
综合以上各项,可建立如下优化数学模型:
```

Find
$$r_1$$
, r_2 , r_3 and b_1 , b_2 , \dots , b_8
Min $W = \sum_{i=1}^{N} \rho_i A_i l_i$ (1)

.t.
$$D - D^L = \sqrt{\frac{\sum_{i=1}^m \delta_i^2}{m}} - D^L \leq 0$$
 (2)

$$\sigma_e - \left[\sigma \right]_a \leq 0 \tag{3}$$

$$-\bar{\omega} + \bar{\omega}_{\min} \leq 0 \tag{4}$$

$$r_i \in [r^L, r^U], i = 1, 2, 3$$
 (5)

$$p_j \in [b^L, b^U], j = 1 \ 2 \ \dots \ 8$$
 (6)

其中, $r_i n b_j$ 为优化设计变量,分别代表索单元半径 和桁架单元壁厚;W 是与设计变量相关部分的结构 重量,即索网体系和周边桁架的总重, ρ_i 为单元密 度, A_i 为单元截面积, l_i 为单元长度,N 为单元总 数;D 和 D^L 分别为天线的上弦网面节点均方根误差 及其允许最大值, δ_i 是上弦网面采样节点的坐标误 差值; σ_e 和[σ]_a分别代表各单元的工作应力和许 用应力值; $\overline{\omega}$ 和 $\overline{\omega}_{min}$ 为结构基频及其允许最小值; r^L 、 r^U 、 b^L 、 b^U 为设计变量的上下限值。

2 动力特性敏度分析

对于无阻尼自由振动系统 ,其振动有限元方程 可写为

[*K*]{*u*}-λ[*M*]{*u*}=0 (7) 式中[*K*][*M*]分别代表结构的刚度阵和质量阵 ,λ 为特征值的对角矩阵 ,{*u*}是对应的特征向量。[*K*] 和[*M*]均与优化设计变量有关 ,λ 也是设计变量的 隐函数。

在优化算法中,敏度分析对于寻优方向和求解 速度均有很大的影响,所以如何有效地进行敏度分 析,是优化计算中的一个十分重要的环节。对于任 意优化设计变量 *x_i*,结构的第 *j* 阶模态特征值 λ_j 的 灵敏度表达式可以由式(7)对 *x_i* 微分得到:

$$\frac{\partial \boldsymbol{\lambda}_{j}}{\partial \boldsymbol{x}_{i}} = \{ \boldsymbol{u}_{j} \}_{i}^{\mathrm{T}} \left(\frac{\partial \boldsymbol{K}}{\partial \boldsymbol{x}_{i}} - \boldsymbol{\lambda}_{j} \frac{\partial \boldsymbol{M}}{\partial \boldsymbol{x}_{i}} \right) \{ \boldsymbol{u}_{j} \}_{i}$$
$$= \{ \boldsymbol{u}_{j} \}_{i}^{\mathrm{T}} \left(\frac{\partial \boldsymbol{K}_{e}}{\partial \boldsymbol{x}_{i}} - \boldsymbol{\lambda}_{j} \frac{\partial \boldsymbol{M}_{e}}{\partial \boldsymbol{x}_{i}} \right) \{ \boldsymbol{u}_{j} \}_{i}$$

 $i = 1 \ 2 \ \dots \ n$ (8)

式中, { u_j }_{*i*} 是第*j* 阶模态特征值 λ_j 对应的特征相量, *n* 是设计变量的总数, 这里共有 11 类设计变量

值。我们可以将方程变化为如下形式:

$$\frac{\partial \lambda_i}{\partial x_i} = 2\left(\frac{E'}{E}ES - \frac{1}{x_i}EK\right) \quad i = 1 \ 2 \ \dots \ n \quad (9)$$

$$ES = \frac{1}{2} \{ u_j \}_i^k [K_e] \{ u_j \}_i$$
 (10)

$$EK = \frac{1}{2} \{ u_j \}_i^{\text{T}} M_e \}_i^{\text{T}} (11)$$

式中, E和 E'分别代表单元弹性模量以及单元弹性 模量的微分, ES和 EK分别代表单元的应变能和动能, 它们可以在进行结构有限元分析后方便的得到。

由于结构的振动频率和特征值之间的关系为

$$\boldsymbol{\omega}_i = \frac{1}{2\pi} \sqrt{\boldsymbol{\lambda}_i} \tag{12}$$

因此结构的最低固有频率的敏度表达式可写 为:

$$\frac{\partial \boldsymbol{\omega}_i}{\partial \boldsymbol{x}_i} = \frac{1}{2\pi} \frac{1}{2\sqrt{\boldsymbol{\lambda}_i}} \frac{\partial \boldsymbol{\lambda}_i}{\partial \boldsymbol{x}_i} = \frac{1}{8\pi^2 \boldsymbol{\omega}_i} \frac{\partial \boldsymbol{\lambda}_i}{\partial \boldsymbol{x}_i}$$
(13)

另外,结构重量和与节点位移有关的表面精度 的敏度分析比较简单,文中不再详细给出。

3 算例分析

55

50

45

40

35

30

25

20 40 60

重量 (kg)

本文以 17m 口径索网桁架式可展开天线为例 进行优化计算。天线的整体结构如图 1 所示,由 48 组形式相同的拉索桁架组成,其中反射面节点由抛 物线方程 $z = 0.0192305x^2 + 0.10005$ 确定。周边桁 架采用碳纤维材料,均为直径为 10mm 的圆管,弹性 模量为 2.35e11N/m²,密度为 1.8e3kg/m³;索网结构

80 100 120 140

优化迭代次数

采用芳纶纤维材料,索单元横截面均为圆形,弹性模 量为1.24e11N/m²,密度为1.45e3kg/m³。优化时以 8 类桁架单元壁厚和3 类索单元半径为设计变量, 其中桁架单元壁厚的上下限分别为0.2mm和 1.5mm,计算初始值均取为0.7mm;索半径的上下限 分别为0.1mm和1.5mm,计算初始值均取为1mm。 要求在反射面均方根误差不超过3mm,结构基频大 于0.7Hz的条件下桁架和索网的总重取得最小值。

使用序列二次规划法求解得到的优化结果如下 图 4 所示。计算得到结构重量的最优值为 28.06kg, 比初始值 52.91kg 减少了 47%,此时天线的反射面 均方根误差和结构基频分别为 2.97mm 和 0.702Hz。 取得最优解时设计变量的取值情况如表 1 所示 其 中第2类和第7类(见图3标注)桁架单元壁厚比较 大 这是因为这两类桁架内的应力远大于其它类型 桁架 因而在应力约束的作用下 使得桁架单元截面 积增大以降低其内部应力来满足约束条件。这样的 结果使各类桁架单元内应力分布较为均匀,结构也 更趋于稳定。另外,表内第2类桁架单元壁厚和上 弦索半径均小于对应的第7类桁架单元壁厚和下弦 索半径 即天线的上半部分单元截面积总的来说小 于下半部分对应单元的截面积,这是由于以上弦索 网的表面精度为约束条件,要求上弦索网的节点位 移必须保持在一个较小的范围内 因此天线上半部 分单元截面积比较小,以增大上弦网面内的应力来 减小节点位移量。从优化迭代过程中设计变量的变

图 4 优化结果图

160

長1 设计变量优化结果值 (单位 mm)

			农1 以1 文里儿15年世(半世·mm)								
	b1	b2	b3	b4	b5	b6	b7	b8	上弦索	中间索	下弦索
_	0.2	0.9105	0.2	0.2	0.2	0.2	0.96764	0.2	1.3096	0.7601	1.4077

化趋势还可以发现,在一定范围内选取较小的桁架 单元壁厚和较大索单元半径这样的结构参数组合更 有利于提高天线网面精度和结构基频。

4 结论

(1)算例表明,以单元结构参数为优化设计变量,应用序列二次规划法,可以解决带有几何非线性 计算及包含精度、频率等复杂约束的可展开天线优化问题。得到的优化结果对于工程实践具有一定的 指导意义。

(2)由于太空中初级电源不足,靠改变预应力 来调节索网形状的方法难以实现,因此,在一定张力 下通过优化索单元截面积来调节网面内的应力分布 从而提高天线的网面精度,是适用于太空环境下较 为合理的方法。

(3)当取得最优解时,设计变量中上下对称单 元的结构参数值并不完全相同,这是由于约束条件 中的网面精度只是针对天线上弦网面而言,因而,虽 然本文讨论的索网桁架式可展开天线具有上下对称 的结构形式,但在选取优化设计变量时,不能将形式 上对称的单元归并为同一类设计变量。

(4) 由优化迭代过程中约束函数值的变化情况

可知,在一定范围内减小桁架单元壁厚和增大索单 元半径,可以有效地提高天线网面精度和结构基频。

参考文献

- [1] 刘明治,高桂芳.空间可展开天线研究进展.宇航学报, 2003,24(1) 82-87
- [2]朱敏波,曹峰云,刘明治等.星载大型可展开天线太空辐射热变形计算.西安电子科技大学学报,2004,31(1):28-31
- [3] Thomson M W. Astromesh deployable reflectors for Kn-and Kaband commercial satellites. In : Proceedings of the 20th AIAA International Communication Satellite Systems Conference and Exhibit, Montreal, Quebec, Canada, 2002
- [4] Tibert G. Deployment tensegrity structure for space applications : [Ph.D dissertation]. Stockholm, Sweden : Royal Institute of Technology Department of Mechanics, 2002. 16-32
- [5] Pan L, Du H. Structural topology optimization for dynamics performance using SQP method. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on multidisciplinary Analysis and Optimization, Long Beach, Canada, 2000
- [6] 陶海 沈祥福.斜拉桥索力优化的强次可行序列二次规 划法.力学学报 2006 38(3) 381-384
- [7] 狄杰建,段宝岩,仇原鹰等,周边桁架可展开天线的形面 调整,宇航学报,2004,25(5)583-586

Optimal design of cable-truss deployable spaceborne antennas for structure weight reduction

You Guoqiang , Yang Dongwu , Zhang Jie

(School of Electromechanical Engineering, Xidian University, Xi 'an 710071)

Abstract

In order to meet the requirements of the performance of space cable-truss deployable antennas, the initial antenna structure design was optimized according to their structural characteristics. In the optimization, the wall thickness of truss and the radius of cable were chosen as the design variables and they were merged properly to simplify the calculation. Then the optimal mathematical model was established with the minimum structural weight being the optimization goal and the surface accuracy and natural frequency being the constrains. In consideration of the difficulty in solving such a complex model due to the geometric nonlinearity in calculation, a sequential quadratic programming method was used, and the sensitivity analysis of frequency was given at the same time. The optimal result shows the validity and effectiveness of the proposed method and model. Moreover, it is clear from the iterative process that the antenna performance can be improved by reducing the radius of cable and increasing the wall thickness of truss properly.

Key words : deployable antenna , cablee-truss structure , surface accuracy , sequential quadratic programming , sensitivity analysis , optimal design

以减轻重量为目标的索网桁架式可展开太空天线结构的优化

设计

 作者:
 尤国强,杨东武,张杰,You Guoqiang, Yang Dongwu,Zhang Jie

 作者单位:
 西安电子科技大学机电工程学院,西安,710071

 刊名:
 高技术通讯[ISTIC EI]PKU

 英文刊名:
 CHINESE HIGH TECHNOLOGY LETTERS

 年,卷(期):
 2009, 19(7)

参考文献(7条)

- 1. 狄杰建;段宝岩;仇原鹰 周边桁架可展开天线的形面调整[期刊论文]-宇航学报 2004(05)
- 2. 陶海;沈祥福 斜拉桥索力优化的强次可行序列二次规划法[期刊论文]-力学学报 2006(03)
- 3. Pan L;Du H Structural topology optimization for dynamics performance using SQP method 2000
- 4. Tibert <u>G</u> Deployment tensegrity structure for space applications 2002
- 5. Thomson M W Astromesh deployable reflectors for Kn-and Ka-band commercial satellites 2002
- 6. 朱敏波;曹峰云;刘明治 星载大型可展开天线太空辐射热变形计算[期刊论文]-西安电子科技大学学报(自然科学

版) 2004(01)

7. 刘明治;高桂芳 空间可展开天线研究进展[期刊论文]-宇航学报 2003(01)

本文链接: <u>http://d.g.wanfangdata.com.cn/Periodical_gjstx98200907015.aspx</u>