学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 陈雪利的留言板


Book Chapters


  1. Xueli Chen*, Nan Wang, Lin Wang, and Peng Lin. Instrumentation and methodology for volumetric stimulated Raman scattering imaging (Chapter 14), Stimulated Raman Scattering Microscopy: Techniques and Applications (Editors: Ji-Xin Cheng, Wei Min, yasuyuki Ozeki, and Dario Polli), Elsevier, 12/2021.

  2. Xueli Chen, Dongmei Chen, Fenglin Liu, Wenxiang Cong, Ge Wang, and Jimin Liang*. Optical-CT Imaging (Chapter 11), Handbook of Small Animal Imaging: Preclinical Imaging, Therapy, and Applications (Editors: George C. Kagadis, Nancy L. Ford, Dimitrios Karnabatidis, and George K. Loudos), Taylors & Francis Inc, 11/03/2016

  3. Jie Tian, Jimin Liang, Xueli Chen, and Xiaochao Qu. Molecular Optical Simulation Environment (Chapter 2), Molecular Imaging: Fundamentals and Applications (Editor: Jie Tian), Zhejiang University Press and Springer-Verlag, 15-46, 2012.



Selected Papers


  1. Nan Wang, Xinyu Wang, Tianyu Yan, Hui Xie*, Lin Wang, Feng Ren, Dan Chen, Dongjie Zhang, Qi Zeng, Shouping Zhu*, and Xueli Chen*, “Label-free structural and functional volumetric imaging by dual-modality optical-Raman projection tomography,” Science Advances 2023, 9(12), eadf3504. DOI: 10.1126/sciadv.adf3504. (Raman)

  2. Xueli Chen#, Chi Zhang#, Peng Lin, Kai-Chih Huang, Jimin Liang, Jie Tian, and Ji-Xin Cheng*, “Volumetric chemical imaging by stimulated Raman projection microscopy and tomography,” Nature Communications 2017, 8, 15117. DOI: 10.1038/ncomms15117. (SCI Citation: >50) (Raman)

  3. Xueli Chen#,*, Xinyu Wang#, Lin Wang#, Peng Lin, Yonghua Zhan, and Ji-Xin Cheng, “Stimulated Raman scattering signal generation in scattering medium using self-reconstructing Bessel beams,” Photonics Research 2020, 8(6), 929-939. DOI: 10.1364/PRJ.384604. (Raman)

  4. Xueli Chen#,*, Shouping Zhu#, Huiyuan Wang, Cuiping Bao, Defu Yang, Chi Zhang, Peng Lin, Ji-Xin Cheng, Yonghua Zhan, Jimin Liang, and Jie Tian, “Accelerated stimulated Raman projection tomography by sparse reconstruction from sparse-view data,” IEEE Transactions on Biomedical Engineering 2020, 67(5), 1293-1302. DOI: 10.1109/TBME.2019.2935301. (Raman)

  5. Nan Wang#, Feng Ren#, Li Li, Haoyu Wang, Lin Wang, Qi Zeng*, Yali Song, Tingting Zeng, Shouping Zhu, and Xueli Chen*, “Quantitative chemical sensing of drugs in scattering media with Bessel beam Raman spectroscopy,” Biomedical Optics Express 2022, 13(4), 2488-2502. (Raman)

  6. Qi Zeng#, Xu Nie#, Li Li, Huifang Liu, Yangyao Peng, Wangting Zhou, Xiaojia Hum, Xinyi Xu*, and Xueli Chen*, “Salidroside promotes sensitization to Doxorubicin in human cancer cells by affecting the PI3K/Akt/HIF signal pathway and inhibiting the expression of tumor-resistance related proteins,” Journal of Natural Products 2022, 85(1), 196-204. (Raman: Chinese medicine)

  7. Tianyu Yan, Xinyu Wang, Siting Liu, Daiwei Fan, Xinyi Xu*, Qi Zeng, Hui Xie, Xiaoli Yang, Shouping Zhu, Xiaopeng Ma*, Zhen Yuan, and Xueli Chen*, “Confocal laser scanning microscopy based on a silicon photomultiplier for mutlicolor in vivo imaging in near-infrared regions I and II,” Small Methods 2022, DOI: 10.1002/smtd.202201105. (Microscopy: fluorescence)

  8. Zhong Ji, Yujin Liu*, and Xueli Chen*, “Mosaic-free compound eye camera based on multidirectional photodetectors and single-pixel imaging,” Optics Letters 2022, 47(24), 6349-6352. DOI: 10.1364/OL.478591 (Microscopy: fluorescence)

  9. Wangting Zhou, Jiangshan He, Yu Li, Zhiyuan Sun, Jiangbo Chen, Lidai Wang, Hui Hui*, and Xueli Chen*, “Multi-focus image fusion with enhancement filtering for robust vascular quantification using photoacoustic microscopy,” Optics Letters 2022, 47(15), 3732-3735. (Microscopy: photoacoustic)

  10. Huan Kang, Qianqian Xu, Duofang Chen, Shenghan Ren, Hui Xie, Lin Wang, Yuan Gao, Maoguo Gong, and Xueli Chen*, “Assessing the performance of fully supervised and weakly supervised learning in breast cancer histopathology,” Expert Systems with Applications 2024, 237, 121575. DOI: 10.1016/j.eswa.2023.121575

  11. Xin Cao#, Xueli Chen#, Fei Kang#, Yonghua Zhan, Xu Cao, Jing Wang*, Jimin Liang*, and Jie Tian*, “Intensity enhanced Cerenkov luminescence imaging using terbium-doped Gd2O2S microparticles,” ACS Applied Materials & Interfaces 2015, 7(22), 11775-11782. (Cerenkov endoscope)

  12. Hao Hu#, Xin Cao#, Fei Kang#, Min Wang, Yenan Lin, Muhan Liu, Shujun Li, Liping Yao, Jie Liang, Jimin Liang, Yongzhan Nie, Xueli Chen*, Jing Wang*, Kaichun Wu*, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” European Radiology 2015, 25(6), 1814-1822. (SCI Citation: >50) (Cerenkov endoscope)

  13. Yunpeng Dai#, Guodong Wang#, Duofang Chen, Jipeng Yin, Yonghua Zhan, Yongzhan Nie, Kaichun Wu, Jimin Liang*, and Xueli Chen*, “Intravenous administration-oriented pharmacokinetic model for dynamic bioluminescence imaging,” IEEE Transactions on Biomedical Engineering 2019, 66(3), 843-847. (Quantification)

  14. Xueli Chen#, Defu Yang#, Fangfang Sun, Xu Cao, and Jimin Liang*, “Adaptively alternative light-transport-model-based three-dimensional optical imaging for longitudinal and quantitative monitoring of gastric cancer in live animal,” IEEE Transactions on Biomedical Engineering 2016, 63(10), 2095-2107. (Quantification)

  15. Xueli Chen, Xinbo Gao*, Duofang Chen, Xiaopeng Ma, Xiaohui Zhao, Man Shen, Xiangsi Li, Xiaochao Qu, Jimin Liang, Jorge Ripoll, and Jie Tian*, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Optics Express 2010, 18(19), 19876-19893. (SCI Citation: >50) (Quantification)



生物医学光子学与分子影像实验室(BMI Lab)学术成果清单

BMI&Chen Lab paperlist 202211



 

同行评价

转化应用:与临床医院合作开展的胃肠道肿瘤内窥契伦科夫荧光成像临床试验相关工作(European Radiology 2015, 25(6), 1814-1822)受到了成像领域著名专家和临床医生的高度评价。国际同行(契伦科夫荧光成像概念提出者之一的A.E. Spinelli,法国马赛大学医院核医学科医生D. Taïe,契伦科夫荧光成像领域著名专家、美国纽约纪念斯隆凯特琳癌症中心的J. Grimm,以及英国国王健康联盟癌症中心主任、英国癌症研究协会高级临床顾问、伦敦国王学院乳腺癌专家A. Purushotham)的高度评价,称我们首次获得了病人的内窥式契伦科夫荧光成像结果(引文见Biomed. Opt. Express 2015, 6(6): 2168-2180),这在胃肠道恶性肿瘤的检测中具有潜在应用价值(引文见Eur. J. Nucl. Med. Mol. Imaging 2015, 42(7): 1144-1155),是首次的临床研究(引文见J. Nucl. Med. 2016, 57(11): 1661-1666),是迄今为止契伦科夫荧光成像技术的三个临床试验之一(引文见J. Nucl. Med. 2017, 58(6), 891-898)。

成像系统:高分辨率定量三维受激拉曼显微成像技术(Nature Communications 2017, 8, 15117)被哥伦比亚大学Wei Min教授在国际顶级期刊上撰文称候选人研发的快速三维受激拉曼显微成像技术为深层组织、大体积活体成像提供了希望(Nat. Commun. 2018,9:29995)、与样本透明化相结合可实现快速三维成像(PNAS 2019,116: 6608);卡迪夫大学P. Borri教授在分析化学顶级期刊上撰文称实现了快速三维容积成像(Anal. Chem. 2018,90:3775)。内窥契伦科夫荧光成像系统(Biomedical Optics Express 2014, 5, 3660)被国际同行、达特茅斯大学B. Pogue教授评价称通过采用内窥的方式探测人体内部器官是可行的(Biomed. Opt. Express 2015, 6, 3053)。

成像理论:关于自由空间光传输模型的研究结果(Optics Express 2010, 18(19), 19876-19893)得到光学三维成像领域国际著名专家(时任Opt. Express 副主编) Hamid Dehghani的肯定评价,称该工作扩展了自由空间光传输理论建模问题,为透镜系统提供了概念上的准确描述,同时可准确地提供体表三维能量的定性分布,对生物发光断层成像是非常有用的(引文见J. Opt. Soc. Am. A 2013, 30(12): 2572-2584)。关于生物组织光传输混合模型的研究结果(Journal of Biomedical Optics 2015, 20(9), 090502)得到国家同行、印度理工学院坎普尔分院N. Naik博士的肯定评价,在医学影像领域顶级期刊IEEE Transactions on Medical Imaging上撰文称该模型实现了计算效率和建模精度之间的平衡(IEEE Trans. Med. Imaging 2017, 36: 2308)。针对胃癌肿瘤特性的空腔结构处理模型(Applied Optics 2013, 52(3), 400-408)被意大利博洛尼亚大学先进信息与通信电子系统研究中心的S. Placati 博士评价为我们的方法相比于简单扩散近似模型显著改进了精度,相比于辐射传输方程或蒙特卡洛方法显著改进了计算效率(IEEE Trans. Biomed. Eng. 2016, 63:1874)。

成像方法:基于L0正则化的三维重建算法(Biomedical Optics Express 2012, 3(11), 2916-2936)被生物医学成像领域国际著名专家、德克萨斯大学分子影像中心的Eva M Sevick- Muraca 教授评价为其改进了计算效率和重建图像质量(Phys. Med. Biol. 2014, 59:R1)。