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4 Random Processes 

4.1 Definition of a Random Process 

From chapter 2 and 3 we leaned that an experiment is specified by the three tuple   PBFS ,, ,where S  

is a countable or noncountable set representing the outcomes of the experiment, BF  is a Borel field 

specifying the set of events for which consistent probabilities exist, and  P  is a probability measure that 

allows the calculation of the probability of all the events in the Borel field. A real random variable  eX  

was defined as a real-valued function of S subject to (a) the event specified by   xeXe )(:  is a 

member of the BF for all e , thus guaranteeing the existence of the cumulative distribution, and (b) 

  0)(: eXeP  or   0)(: eXeP , or both. 

If, instead of assigning a real value to each e , a time function  etX ,  is defined for each e , we 

say a random process is specified. Roughly speaking, a random process is a family of time functions 

together with probability measure. For a finite sample space S  we can visualize the random process as in 

Figure 4.1, that of a mapping from the sample space to a space of time waveforms. 

 

A random process can also be viewed as shown in Figure 4.2. For a particular outcome ie , with 

probability iP , the time waveform shown  ietX ,  occurs. The n  time signals represent an ensemble of 

time waveforms. 

If we evaluate these time waveforms at 0t , the values on the second column from the right are 

obtained . Coming down that column of values, we have a mapping from the outcomes on the far left, and 

this mapping describes a particular random variable  0tX . Similarly a random variable  1tX  is 

defined for the mapping shown at time 1t  as in the last column. A simple example of random process will 

now be given.   

ei X(t,ei) 

S Waveform Space 

Figure 4.1      A Random process viewed as a functional mapping 
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It should be noted that a random process  etX ,  is a function of two variables, t  and e , where 

t  is the time variable and e  is the outcome variable. For a particular time 0tt  ,  etX ,0  specifies a 

random variable. If iee  , or the outcome is fixed, then  ietX ,  is a particular time function called a 

sample function or realization of the random process. With both t  and e  fixed, say at 0t and ie , 

 etX ,0  becomes a real number for a real random process or a complex value for a complex random 

process.  

As the notation for a random variable is usually a capital letter X ,Y or Z  rather than the more 

formal  eX ,  eY ,  eZ , a random process is usually denoted as  tX  rather than  etX ,  . Also, it is 

common to use a small x  or  tx , to indicate a particular value of the random variable X or a particular 

time function of a random process  tX , respectively. Such an  tx , or  ietX , , is called a sample 

function or a realization of the process. 

Also as  etX ,  is a particular random variable for each t , a common alternative definition of a 

random process is an indexed set of random variables where t  the indexing set. If the index set γ can 

be put into a one to one correspondence with the set of integers, the random process is called a random 

sequence or a discrete time random process if t  is time. While, if the indexing set takes on a continuum 

of values, we will call the resulting process a continuous random process or continuous time random 

process. 
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Figure4.2     Illustration of a random process as an ensemble of time waveforms and a related 
sample space and probability measure. 

t0 t1 



《Random Signal Processing》            Chapter4            Random Processes 
 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 4 of 49 

4.2 Characterization of a Random Process 

We saw in Chapter 2 that partial characterizations for a random variable include its mean, variance, 

moments, and the like, and similarly, useful partial characterizations for a random process include the mean, 

variance, and moments. However, all will, in general, be functions of time. For random processes new 

types of characterizations like the nth-order densities, autocorrelation function, and spectral density will be 

defined that will be useful in analyzing random processes. These characterizations give different statistical 

properties of the process and different amounts of information concerning the process. A hierarchical 

relationship between the various types of characterizations exists and is shown in Figure 4.3. Each of the 

characterizations will now be defined and their relationships explained.  

 

 

4.2.1 Total Characterization of a Random Process 

Remember that for every t ,  tX  is a random variable. This gives us a countably infinite or infinite 

number of random variables described for the random process. A random process is defined to be 

completely or totally characterized if the joint densities for the random variables      ,,...,, 21 ntXtXtX  

are known for all times 1t , 2t ,…, nt  and all n. 

 

Total 
Characterization

Nth-Order
Densities

2nd-Order
Densities

1st-Order
Densities

Higher-Order 
Moments 

Autocorrelation 
Function 

Higher-Order 
Spectrum 

Power Spectral 
Density 

Higher-Order
Moment 

Mean 

Partial 
Characterizations 

Variance

Figure 4.3 Relationships between various characterizations for random process 
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4.2.2 First-Order Densities of a Random Process 

The first-order probability density functions of the random variables tXtX


)(  defined for all time t 

will be denoted by  tX xf
t

or  txf ; . If they are all the same, then  txf ;  does not depend on t  and 

we call the resulting density the first-order density of the process; otherwise, we have a family of first-order 

densities. An example of such a family of first-order densities is shown in Fig. 4.4. 

  The first-order densities are only a partial characterization as they do not contain information that 

specifies the joint densities of the random variables defined at two or more different times. 

 

 

4.2.3 Mean of a Random Process  

The mean of a random process,  tX , is thus a function of time specified by 

        



 ttXt t

 )( dxxfxXEtXEt tX                          (4.1) 

For the case where the mean of tX  does not depend on t , we use the notation    XtXE  , where 

X is a constant. 

4.2.4 Variance of a Random Process  

The Variance of a Random Process )(tX  is similarly defined by 

             tXEttXEt XtxX
222                           (4.2) 

x-1 x0 x1 x2 x3 x4 

t-1 t0 t1 t2 t3 t4 
t 

f(x-1) 

f(x0)

f(x1)

f(x2)

f(x3) f(x4)

F(x;t)
X(ti)=Xi 

f(x;ti)=f(xi) 

Figure 4.4 Family of first order densities for different times ti. 
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4.2.5 Second-Order Densities of a Random Process 

For any two times 1t  and 2t , the random variables   11 XtX   and   22 XtX   are defined. The 

second-order densities of the random process )(tX  are the family of densities specified for all 1t  and 

2t  where  1t  and 2t  are not equal. These densities can be denoted as  21 , xxf  or  2121 ,;, ttxxf . 

4.2.6 Autocorrelation and Autocovariance Functions of Random Process 

Given the two random variables )( 1tX and )( 2tX  we know that a measure of linear relationships 

between them is specified by the correlation     21 tXtXE .As 1t  and 2t  go through all possible 

values，this correlation can change and is thus a function of 1t and 2t . The autocorrelation function of a 

real process is, in general, a two-dimensional of the variables 1t and 2t defined by 

      2121 , tXtXEttRXX                                  (4.3) 

Since        1221 tXtXtXtX  ,  21 , ttRXX  is seen to be symmetrical in 1t  and 2t as 

   1221 ,, ttRttR XXXX                                 (4.4) 

In certain cases, what we will define latter as wide sense stationarity, the autocorrelation function is seen to 

depend only on the time difference 21 tt  . For this case, we define a one-dimensional autocorrelation 

function  XXR  by 

      tXtXERXX                                  (4.5) 

Since the  tX  can be interchanged with )(tX , we see that  XXR  is an even function of 

 ,which is written as 

    XXXX RR                                     (4.6) 

An autocovariance function,  21, ttCXX , is defined by 

                  2121221121 ,, ttttRttXttXEttC XXXXXXXX      (4.7) 

If  21 , ttC XX  is normalized, we obtain the normalized autocovariance function defined by 

   
   2211

21
21

,,

,
,

ttCttC

ttC
tt

XXXX

XX
XX                             (4.8) 

In general, the autocorrelation function for a complex random process  tX  is defined by 

      2121 *, tXtXEttRXX



                                 (4.9) 

Where * stands for complex conjugate. By writing  tX  as    tjXtX IR  , we can easily show the 

autocorrelation function to have the properties 
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   
    XXXX

XXXX

RR

ttRttR
*

12
*

21 ,,




                              (4.10) 

An autocovariance function  21 , ttCXX  for a complex process  tX is defined by 

                    2
*

121
*

221121 ,, ttttRttXttXEttC XXXXXXXX       (4.11) 

If  21, ttCXX  for a complex process is normalized, the normalized autocovariance function is defined 

by  

   
   22

*
11

21
21

,,

,
,

ttCttC

ttC
tt

XXXX

XX
XX                           (4.12) 

 

4.2.7 Power Spectral Density of a Random Process  

A very important class of random processes are those for which the autocovariance function  21 , ttRXX  

can be written as a function of the time difference  21 tt  as  XXR .This type of process will be 

described later as being stationary in autocorrelation. This characterization is called a power spectral 

density  XXS  and defined as the Fourier transform of the autocorrelation function as follows: 

  deRS j
XXXX   )()(                              (4.13) 

This formulation roughly describes the region in the frequency domain where power of the process exists 

and the relative proportion of power at each frequency. 

   The power spectral density of a given real ransom process has the following properties: 

   wSwS XXXX    Even function of w  

  0wSXX   Real and nonnegative 

    
    wSFR

RFwS

XXXX

XXXX
1





  Fourier Transform Pairs 

   0
2

1
XXXX RdwwS 




  Total average power in the process        (4.14) 

      



 1

2

2

1

2

1 2

1

2

11 w

w

w

w XXXX

w

w XX dwwSdwwSdwwS


 

Average power in frequency band  21,ww  

 

4.2.8 Higher-order Moments 

For the n random variables      ntXtXtX ,,, 21   the higher-order moments include  321 XXXE  
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 4321 XXXXE ,  2
2

2
1 , XXE , and so on. In liner systems we will find that these higher-order 

characterization are not necessary and that the mean and autocorrelation are sufficient to discuss 

input-output characteristics. On the other hand, for nonlinear systems the order of densities and moments 

required depends entirely on the type of system considered.  

4.2.9 Higher-order Spectra 

For certain random process, especially those generated as the output of a nonlinear system, it become 

conventions to define higher-order spectra. Precise definition and properties of higher-order spectra are 

presented in Chapter 6.  

4.2.10 Nth-Order Densities 

The nth order density function for the random process  tX  at times nttt ,,, 21  , are given by 

 nxxxf ,,, 21   or  nn tttxxxf ,,;,,, ,2121   to emphasize the times. 

   Each of the characterizations of a random process contains statistical information concerning the 

process, and the various relationships shown in Figure 4.3 provides a way to view the many different 

statistical characterizations for random processes. Relationships between forms of statistical stationarity 

exits and will be found useful for describing further statistical properties of random variables.  

4.3 Stationarity of Random Process 

A random process  tX is called strong sense or strict sense stationary if the sets of random variables 

     ntXtXtX ,...,, 21  and        ntXtXtX ,...,, 21  have the same probability density 

function for all it , all n  and all  . That is for all ,,...,, 21 nttt  and n , we have 

     nnnn tttxxxftttxxxf ,...,,;,...,,,...,,;,...,, 21212121           (4.15) 

A slightly weaker form of stationarity is stationarity of order N where the conditions are true for all 

Nn   for N a fixed integer. If the conditions are true for the Nn  , the joint density may be 

integrated to give one less variable, making the conditions true for all n  less than N . Stationarity of 

order N  does not preclude that the process could be stationary of an order greater than N . However, if 

it is not stationary of order N , it will be not stationary of any order greater than N . 

 

4.3.1 Wide sense Stationary Random Process 

A process  tX  is weak sense or wide sense stationary if  
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(1) The expected value of the process   tXE is a constant, thus independent of the time variable, and 

(2) The autocorrelation function  21, ttRXX  is a function of time difference  12 tt   only. 

When  21, ttRXX  can be written as a function of time difference, 12 tt   only, we will denote the 

autocorrelation of the process as  XXR  or sometimes as just  XR . 

If condition (2) above is satisfied, the process has the lowest form of stationary in autocorrelation .If 

condition (1) is satisfied, the process has the lowest form of stationarity called stationarity in mean. A 

random process  tX  is stationarity in mean if    XtXE  , a constant for all time. If a process is 

stationary of order one, then it must be stationary in mean. However, a random process can be stationary in 

mean without being stationary of order one or stationary in autocorrelation. In Figure 4.6 the relationships 

between the various forms of stationarity are shown. A solid arrow means implication, no arrow means no 

implication, while a dotted arrow with the further information given by the arrow means implication with 

that information. 

 

A random process is called asymptotically stationary of a particular sense if conditions for that sense 

are satisfied in the limit as all times approach infinite. We say that a process is cyclo stationary of a 

particular sense if the sense is satisfied for times that are periodically displaced by an amount T . 

   It has been shown that if a random process is Gaussian and weak sense stationary, it is strict sense 

stationary. This is truly a remarkable result as it means that the autocorrelation function and the mean of a 

weak sense stationary process must contain all the information necessary to determine the nth-order density 

function. This property will be examined further in Section 4.7 on Gaussian random process. 

 

Strict Sense 
Stationarity 
Strict Sense 
Stationarity 

Stationarity of
Order(n>2)

Stationarity of
Order 2 

Stationarity of
Order 1 

Stationarity 
in the Mean 

Wide Sense 
Stationarity 

Stationarity in
Autocorrelation

If Gaussian 

Figure 4.6 Conceptual relationship between some common forms of stationarity. 
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4.3.2 Properties for Wide Sense Stationary Random Processes 

The autocorrelation function for a wide sense stationary process is a function of the time difference and can 

thus be written in terms of that variable as  XXR . For a real process the following properties can be 

shown to be true: 

    XXXX RR           even function of τ 

   0XXXX RR             bounded function of τ 

   wSFR XXXX
1 ,      XXXX RFwS      Fourier transform pairs  

    allforRF XX 0         real and positive             (4.16) 

   



 dwwSR XXXX 2

1
0  average power in the process 

                    2
XXXXX CR      relationship to autocovariance function of process 

 

4.4 Examples of Random Processes 

4.4.1 Straight Line Process 

Given a random process  tX  defined as 

  QtPtX                                     (4.17) 

This expression is an abbreviation for 

     teQePetX ,                               (4.18) 

For every ie ,  ietX ,  is a straight line with intercept  ieP  and slope  ieQ . Some realizations 

of the process are presented in Figure 4.7. 

 

Example 4.2 

We are asked to find the following for the straight line process: 

(a) First-order densities of the process. 

(b) Second-order densities  2121 ,;, ttxxf  of the process. 

(c) Mean  tX  of the process. 

(d) Autocorrelation function  21, ttRXX  of the process. 

(e) The different type of stationarity for this process. 
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Solution 

(a) The first-order density  tX xf  of the process can be obtained from the transformational theorem as 

tX  can be written as QtPXt  , the sum of the two random variables P and Qt . By defining an     

auxiliary random variable PYt  , the joint density for tX  and tY  becomes 

   
 

  


ii
ii

tt
qp qp

PQ
ttYX qpJ

qpf
yxf

, ,
,

,
,                        (4.19) 

Where ip  and iq  are the roots of qtpxt   and pyt  . The only solution to these equations is  

t

yx
qyp tt

t


 ,                                (4.20) 

The Jacobian  qpJ ,  is easily calculated as 

  t
t

qpJ 









01

1
,                                (4.21) 

Since the desired marginal density is obtained by integrating out the auxiliary variable, we have 

     






 t

tttPQ
tX dy

t

tyxyf
xf

t

/,
                       (4.22) 

Noticed that if P  and Q  are statistically independent,  qpf p ,  can be written as a product and 

 tX xf  can be determined by the convolution of the two densities as tX  is a sum of two    

independent random variables. 

(b) The second-order densities of the process can be obtained by using the transformational theorem for 

two functions of two random variables, since   11 XtX  and   22 XtX   are given by 

 2211 , QtPXQtPX                             (4.23) 

P(e3)

P(e2)

P(e1)

P(en)

X(t,e)

X(t,e1)

X(t,e2)

X(t,en)

X(t,e3) 

t 

Figure 4.7 Four Realizations of the straight line process 
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The set of equations 

2211 , qtpxqtpx                               (4.24) 

has only one solution given by 

12

12

12

2112 ,
tt

xx
q

tt

xtxt
p








                             (4.25) 

The Jocabian is easily calculated as  12 tt  , so the joint probability density function for 1X  and 2X  

can be shown to be 

          
12

1221122112
21

/,/
,

21 tt

ttxxttxtxtf
xxf PQ

XX 


              (4.26) 

(c) The mean of the process,  tx , is computed by finding   tXE . One way to get the mean is to 

use the first-order density of  tX  determined in part (a), that is  

   



 ttXtx dxxfxt

t
                              (4.27) 

An alternative approach is to notice that the random variable tX  is really a function of the two random 

variables P  and Q . In this way  tx  can be written as  

         tQEPEQtPEXEt tX                      (4.28) 

Therefore, the mean of the process is a straight line that has intercept of  PE  and a slope of  QE . It is 

not necessary that the mean be one of he realizations of sample functions of the process. 

(d) To obtain the autocorrelation function for the random process, it is necessary to determine 

      2121, tXtXEttRXX                             (4.29) 

Again, this function can be found in several different ways. First, it can be found by using the joint density 

of the random variables   11 XtX   and   22 XtX   determined in part (b) as follows: 

    







 21212121 21

, dxdxxxfxxttR XXXX                        (4.30) 

If you do not have the second-order density, you must determine it before the integral above can be 

evaluated. An alternative approach is to notice that the product    21 tXtX  is a function of the two 

random variables P  and Q  and times 1t  and 2t , from which the excepted value can be caculated as 

                21
2

21
2

2121 )(, ttQEttPQEPEQtPQtPEttRXX         (4.31) 

Therefore, once  qpfPQ ,  is specified, the moments and joint moments given above can be calculated 

and  21, ttRXX  can be determined. 

 (e) The mean of the process is given by       tQEPEtXE  . If the   0QE , the mean is not a 

function of time and the random process  tX  is stationary in the mean. Otherwise, it will not be 

stationary in the mean. The first-order density given is inherently a function of time. Therefore the process 
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 tX  is not stationary of order 1, and consequently not stationary of any higher-order densities.  

For the process to be stationary in autocorrelation  21, ttRXX  must be a function of time difference 

only. Except for the degenerative case of   0PQE  and   02 QE , the process will not be stationary 

in autocorrelation, and thus it cannot be wide sense stationary well. 

 

4.4.2 Semirandom Binary Transmission process 

The h  and t  could represent the outcome of flipping an honest coin. It will be assumed that the 

probability of getting a head on a single trial is 1/2 and that tosses at different times are independent. The 

sample space consists of all possible doubly infinite sequences of heads and tails : 

  },{,...),,,(...,:{ 2101 thqforqqqqeeS i                  (4.32) 

With the above sample space, probability measure, and the Borel field equal to the power set, the 

semirandom binary transmission process,  tX , using 1 and -1 as values, is described on each subinterval 

of the time axis as 

TitiTfor
tqif

hqif
etX

i

i )1(,
1

1
),( 








            (4.33) 

A realization of the process  aetX ,  is shown in Figure 4.8 for the particular outcome ae  of the 

experiment described by   ,,,,,,,,,,,,,,,, hhthhhtththhtthea  . 

 

   The defined process  tX  is a collection or ensemble of time waveforms that change from 1 to -1, 

change from -1 to 1, or remain the same at possible transition time points that are equally spaced a distance 

T  apart along the time axis. We are unable for the process. We can, however, characterize the process by 

specifying certain statistical properties. In the following paragraphs the first-order density, the mean, the 

second-order density function, and the autocorrelation function of the process will be found. 

2T 4T 6T 8T t -2T-4T 6T 

1

-1

X(t,ea)

ea=(…, h, t, t, h, h, h, t, h, t, t, h, h, h, t, h, h,…) 
 

Figure 4.8      A Realization of the Semirandom Binary Transmission Process. 



《Random Signal Processing》            Chapter4            Random Processes 
 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 14 of 49 

First-Order Density. By cutting across the process at an arbitrary time t , a random variable is defined. 

Since the valued of  tX  for all t  are either 1 or -1, this random variables are the same. From the honest 

coin assumption the probability of getting either a head or a tail (1 or -1 for the process during each interval) 

is 1/2. Therefore the first-order density is as follows for all t : 

     1
2

1
1

2

1
 tttX xxxf

t
                           (4.34) 

Mean. The mean,   tXE , of the process can be found directly from the first-order density by  

      

   

    01
2

1
1

2

1

1
2

1
1

2

1







 














tttt

ttXtX

dxxxx

dxxfxtXEt
t





                      (4.35) 

Second-order Density. 1X  and 2X  representing  1tX  and  2tX  for arbitrary times 1t  and 2t  

are discrete random variables which take on values of +1 and -1. Their joint density function is given by  

     
   
   
   1,11,1

1,11,1

1,11,1

1,11,1,

2121

2121

2121

212121







xxXXP

xxXXP

xxXXP

xxXXPxxf







                       (4.36) 

If  1t  and 2t  are in different intervals, 1X  and 2X  are independent random variables as the tosses 

were independent. If 1t  and 2t  are in the same intervals, they are the same random variable. The 

second-order density thus depends on whether 1t  and 2t  are in the same or different intervals. 

For 1t  and 2t  in different intervals, 

     
4

1

2

1

2

1
111,1 2121  XPXPXXP                   (4.37) 

Similarly  1,1 21  XXP ,  1,1 21  XXP , and  1,1 21  XXP  are seen to be equal to 

1/4. Thus the second-order density from equation (4.36) becomes 

           1,11,11,11,1
4

1
, 2121212121  xxxxxxxxxxf      (4.38) 

   For 1t  and 2t  in same intervals, the probabilities needed can be obtained by using the conditional 

probabilities as follows: 

     1111,1 11221  XPXXPXXP                    (4.39) 

In the same interval   11 12  XXP . Therefore 



《Random Signal Processing》            Chapter4            Random Processes 
 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 15 of 49 

   
2

1
11,1 121  XPXXP                           (3.40) 

Similarly   2/11,1 21  XXP . Since 1X  and 2X  in the same interval cannot changing sign, 

 1,1 12  XXP  and  1,1 12  XXP  are both zero. Thus 

    0111,1 1221  XXPXXP                      (4.41) 

Using these results in Eq. (4.36) gives the second-order density of the random process for times 1t  and 2t  

in the same interval as  

       1,11,1
2

1
, 212121  xxxxxxf                      (4.42) 

Autocorrelation Function. The autocorrelation function  21,ttRxx  is found by computing the expected 

value of the product of  1tX  and  2tX  as 

             







 212121212121 ,,

21
dxdxxxfxxXXEtXtXEttR XXXX       (4.43) 

As the density  21, xxf  is different for the cases of 1t  and 2t  in the same and different intervals, 

the autocorrelation function is computed as follows: 

   For 1t  and 2t  in different intervals, 

          

             011111111
4

1

1,11,11,11,1
4

1
, 21212121212121



  







dxdxxxxxxxxxxxttRXX 

 (4.44) 

For 1t  and 2t  in the same interval, 

      

      1
2

1
11

2

1
11

1,11,1
2

1
, 21212121



  







dxdxxxxxttRXX 

              (4.45) 

Therefore  21, ttRXX  is the two-dimensional “snake of blocks” function along the line 21 tt   shown in 

Figure 4.9. 

Stationarity. The semirandom binary transmission process is stationary in the mean since    0tXE ,  

which is not a function of time t , and stationary of order 1 since its first-order densities are not a function 

of time. However, the semirandom process is not stationary of order 2, and thus all higher orders, because 

the second-order densities are not the same for shifted versions of time differing by a set amount. Similarly 

the process is seen to be not stationary in autocorrelation and thus not wide sense stationary also. 
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4.4.3 Random Binary Transmission Process 

The random binary transmission process, )(tY , is defined by 

    )()( DtXtY                                     (4.46) 

Where )(tX  is the semirandom binary transmission process and D  is a uniform random variable on 

 T,0  that is independent of )(tX .  

 

First Order Densities of Random Binary Transmission Proccess. The first-order density for this process 

can be obtained by first finding the first-order density function for )( dtX   conditioned on a particular 

value of D and then integrating this conditional density with the probability density function for D . The 

first-order density function for )( dtX   is obtained similarly to (4.34), and since d  plays no part,the 

conditional density is the same. Since the result is not a function of d , the integration gives the first-order 

density as the same as that for the semirandom binary process: 

     1
2

1
1

2

1
 ttt xxxf                             (4.47) 

Mean of Random Binary Transmission Process. Since the first-order density is the same for the random 

binary transmission process, the expected value will also be the same, that is, zero. Alternatively, we can 

find the mean by using the iterated expected value formula as follows: 

       0 DddtYEEtYE                             (4.48) 

Second Order Densities of Random Binary Transmission Process. To obtain the second-order densities, it 

will be convenient to use the conditional probability density function for )( dtX  , where d  is any 

value between 0 and T . Thus the second-order density conditioned on d  is as follows: For values of 1t  

3T2TT -T -2T 3T

2T 

3T 

t2 

t1 

RXX(t1,t2) 

T 

Figure 4.9   The autocorrelation function RXX(t1,t2) for the semitandom binary transmission process.

-T
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and 2t  inside and outside the doubly shaded area shown in Figure 4.10, the density becomes: 

inside: 

     1,1
2

1
1,1

2

1
, 212121  xxxxdDxxf               (4.49a) 

outside: 

         1,1
4

1
1,1

4

1
1,1

4

1
1,1

4

1
, 2121212121  xxxxxxxxdDxxf   

(4.49b) 

 

For 21 tt   multiplying (4.49a) and (4.49b) by the appropriate probabilities and adding gives  

        

      1,11,1
4

1,11,1
42

1
,

2121
21

2121
21

21










 



xxxx
T

tt

xxxx
T

tt
xxf




             (4.50) 

Autocorrelation Function of Random Binary Transmission Process. The autocorrelation function for the 

random binary transmission process can be found by using the iterated expected value approach as follows: 

           
  
  







T

XX

DdXX

YY

dddtdtR
T

dtdtRE

DtXDtXEtYtYEttR

0 21

21

212121

,
1

,

,

                   (4.51) 

where  21,ttRXY , is known to be 1 for  21,tt  in the same box as shown in Figure 4.10 and zero outside 

that region. So the  dtdtRXX  21 ,  will be one provided that the point  dtdt  21 ,  falls in one of 

the intervals. Assume that 21 tt  , that  21 tt , and that t0 . Then the point  dtdt  21 ,  

will appear as in Figure 4.11. It will be in a proper interval provided that Tdt 1 and 02  dt . 

d T 2T
t1d 

T 

2T 

t2

Figure 4.10 Regions for the conditional densities 
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Rearranging these conditions to be put as a region for d  gives Ttd  1 and 2td   to be in the 

proper interval for the value of the  dtdtRXX  21 ,  to be one. Thus from (4.51) we have  

   

T

tt
T

Ttt
dd

T
ttR

t

TtYY

21

12
21

1

1
1

,
2

1





  

                              (4.52) 

Repeating the steps above for 21 tt  , we find that     TttttRYY /1, 2121  . If  21 tt  where 

t , the point will never fall in an interval because d  is always T , so   0, 21 ttRYY  for those 

values of 1t  and 2t . Thus the autocorrelation function for the random binary transmission procress can be 

expressed as 

   


 


otherwise

TttTTtt
ttRYY

,0

/1
, 2112

21

，
                  (4.53) 

Stationary of the Random Binary Transmission Process. The random binary random transmission wave is 

thus seen to be stationary of mean, stationary in autocorrelation, stationary of order one, and wide sense 

stationary. 

4.4.4 Semirandom Telegragh Waves Process  

Consider the experiment of a random selection of times at a uniform rate   per unit time such that the 

probability of k points in the interval  t,0  is given by 

                      

   
!

],0[int
k

ek
tspokP

tk  

                          (4.54) 

The outcome of a single trial of the experiment results in a sequence of times  

T 2T

t1

T 

2T 

t2

Figure 4.11 Regions for the random binary transmission process 

1

1

1

t1-t2=τ
0<τ<T

(t1, t2 ) 

(t1-d,t2-d)
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   ,...,,,,...., 21012 tttttei                                (4.55) 

Define the semirandom telegraph process as follows: 

 





],0[int1

],0[int1
,1 tinspoofnumberoddanhaseifttimeat

tinspoofnumberevenanhaseifttimeat
etX

i

i
i    (4.56) 

First-Order Density. At any given time t , tX  is a discrete random variable denoted by tX  which takes 

on only the values 1 or -1. The probability density function for tX  can be written as  

         1111  tttttX xXPxxPxf
t

                     (4.57) 

Where  

   
   

 
 

}

,0int2

,0int2

,0int0{

],0[int1





or

tskpoexactlyor

tspoexactlyor

tspoexactlyP

evenistspoofnumberthePXP t







              (4.58) 

Since the events exactly k2  and j2 points are mutually exclusive for jk  , the probability of the 

union of all the events can be written as the sum of probabilities. Substituting the probability of exactly 

k2  points from Eq. (4.54) into (4.58) gives the following for 0t : 

     
 










0

2

0 !2
],0[int21

k

kk

k
t k

t
tinspokPXP e


                   (4.59) 

Factoring out the te   and recognizing the sum as cosh  t ,  1tXP  simplifies to  

)cosh(}1{ teXP t
t                               (4.60) 

In a similar fashion the  1tXP  can be written as 

 
)sinh(

)!12(
]},0[int12{}1{

0

12

0

t
k

t
tinspokPXP ee t

k

tk

k
t 

 














       (4.61) 

From these results the first-order density of the semirandom telegraph wave become  

)1()sinh()1()cosh()(  
t

t
t

t
tX xtextexf

t
              (4.62) 

For 0t , the density is obtained by replacing t  by t . 

Mean of  tX . Using the above obtained first-order density function for the process  tX , we calculate 

the mean   tXE  as 

 















tt
t

t
t

t

tt

dxxtextex

dxxfxtXE

)1()sinh()1()cosh(

)(  )]([ tx t

 
      (4.63) 

The sampling property of the delta function can be used to simplify   tXE  as follows: 
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  ttt etetetXE   2)sinh()cosh()]([                       (4.64) 

 For 0t ,   tXE  becomes 2e ,and thus   tXE  can finally be written as  

tetXE 2)]([                                   (4.65) 

A plot of the mean   tXE  is shown in Figuring 4.13. It is noticed that for positive time it starts at 1 and 

goes to zero as t . Close to the origin tiis almost 1.since each realization of the process starts at 1. 

 

Second-order Density. The random variables  1tX  and  2tX  denoted by 1X  and 2X  ,respectively, 

are discrete random variables taking on only values 1 and -1 with joint probability density function 

 21,21
xxf XX  as 

   

)1,1(}1,1{

)1,1(}1,1{

)1,1(}1,1{

)1,1(}1,1{),(

2121

2121

2121

21212121







xxXXP

xxXXP

xxXXP

xxXXPxxf XX







                  (4.66) 

The weights of the delta functions are found by written the random variables joint probability in terms of a 

conditional probability and marginal probability as follows: 

}1{}11{}1,1{ 12121  XPXXPXXP                 (4.67) 

The conditional probability that an odd number of points occur in interval  21,tt  is for 21 tt  the 

following 

      1212 sinh11 12 tteXXP tt                        (4.68) 

The  11 XP  was found earlier as 

   11 sinh1 1 teXP t                             (4.69) 

Using the conditional and marginal probabilities just determined gives the joint probability as 

      12121 sinhcosh1,1 2 ttteXXP t                        (4.70) 

In a similar way the other joint probabilities can be determined, resulting in the joint probability density 

function 

1

0 t 

E[X(t)]=e-2λ|t|

Figure 4.13 Mean of the semirandom telegraph wave process 
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
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

                  (4.71) 

Autocorrelation Function. From the  21,21
xxf XX  above the autocorrelation function 

    







 21212121 21

, dxdxxxfxxttR XXXX                         (4.72) 

Carrying out the integration and using the sampling property of the two-dimensional delta 

function,  21,ttRXX  can be simplified to give 

   
12

2
21

12, ttforettR tt
XX                          (4.73) 

By reversing the roles of 1t  and 2t  and repeating the procedure described above,  21,ttRXX  can be 

shown to be  

   
12

2
21

12, tandtallforettR tt
XX

 
                    (4.74) 

A plot of  21,ttRXX  as a function of 1t  and 2t  is shown in Figure 4.14a and is a “trough” of absolute 

exponentials. In Figure 4.14b,  21,ttRXX  is plotted as a function of the time difference. Since 

 21,ttRXX  is a function of time difference only, it can be written as  XXR  where 21 tt  . Thus 

the semirandom telegraph wave process is stationary in autocorrelation. However, it is not wide sense 

stationary since   tXE  is a function of t  as shown in Figure 4.13. 

 

 

t1-t2=τ

t1=t2

t1 

t2 

RXX(t1,t2)=exp(-2λ|t1-t2|) 

1

τ

RXX(τ) 

e-2λ|τ| 

τ=t1-t2

(a) (b)

Figure 4.14 Autocorrelation function for the semirandon telegraph wave process. 
(a) plot of RXX(t1,t2) as function of t1 and t2,        (b) plot of RXX(τ). 
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4.4.5 Random Telegraph Process 

Let  tX  be the semirandom telegraph random process. The random telegraph wave can be defined as  

    )()( tAXtY                                    (4.75) 

Where A is discrete random variable with probability density as 

   )1(
2

1
)1(

2

1
)(  aaaf A                          (4.76) 

A is assumed to be independent of the random process  tX . A random variable is independent of a 

random process if it is group independent of all random variables defined across the process. 

   The expected value or mean of the process  tY  can be determined as follows since the expected 

value of A  is zero: 

           0 tXEAEtAXEtYE                        (4.77) 

The autocorrelation function for  tY  can be found as follows: 

             
  122

21

21
2

2121

,1

,
tt

XX

YY

ettR

tXtXEAEtAXtAXEttR





                 (4.78) 

The expected value of the product above can be written as the product of the expected values because 2A  

is also independent of the process (function of independent processes are independent), and since 

  12 AE , the autocorrelation function can be written in terms of the time difference   as  

  2
21,

 ettRYY                                  (4.79) 

Since the mean is a finite constant, (zero), and the autocorrelation function is a function of time difference 

only, we have shown hat the random telegraph wave is a wide sense stationary random process. 

   A logical question at this time is: Is the random telegraph wave stationary of any other variety? For 

example, is it stationary of order 1 ? In order to answer that question the first-order density for the 

semirandom binary transmission must be found. One way of obtaining the density is to integrate out the 

conditional density for tY : 

      daafayfyf AttYt 



                                 (4.80) 

Where  afA  is given by Eq.(4.76) and  tY yf
t

 can be determined by modifying Eq.(4.62), which 

for the semirandom telegraph first-order density, at amplitude aA  , is 

         ayteayteayf t
t

t
t

t     sinhcosh                   (4.81) 

Substituting the two densities into the equation for  tY yf
t

 and integrating using the samping 

property of the delta function fives, after simplification, the density as  

     15.015.0  tttY yyyf
t

                           (4.82) 
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The first-order density is thus shown to be independent of time t , and hence the random telegraph wave is 

stationary of order one. 

   The answer to the question of stationarity of order two is saved for the reader’s homework. 

 

4.4.6 Random Sinusoidal Signals 

In many situations collections of these signals have different radian frequencies, different phases, and 

different phases, and different amplitudes. If these parameters can be modeled as random variables, then the 

random sinusoidal signal random process can be defined by 

    tAtx cos                               (4.83)  

Where A ,   and   are random variables. 

 

Example 4.3 

Define random process  tX  as     tAtx cos , where A  and   are independent random 

variables with known probability density functions  afA  and  f  and where 0  is deterministic 

and known. This is the case of a known sinusoidal frequency signal with random amplitude and phase. 

Further it is assumed that A is a Rayleigh random variable and   is a uniform random variable with the 

following probability density functions: 

     




 

 


elsewhere
faaeaf a

A

,0

20,
2

1
22 

               (4.84) 

For this defined random process determine (a) the mean of the process, (b) the autocorrelation function of 

the process, (c) the first-order densities of the process, (d) the second order density functions, and (e) the 

types of stationarity of the process. 

Solution 

(a) The mean of the process,  tXE ( , is 

          tAEAEtAEtXE 00 coscos(                 (4.85) 

The second step can be made since the expected value of a product of independent random variables is the 

product of the expected values. Since   is uniform on  2,0 , the second expected value above is zero, 

thus giving for all t , 

   0tXE                                        (4.86) 

(b) The autocorrelation function  21,ttRXX  is 

              2010
2

201021 coscoscoscos, ttEAEtAtAEttRXX  

(4.87) 
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Again the second step can be done since functions of independent random variables are independent. The 

first term is easily obtained from the density  afA , whereas the second term takes slightly more work. 

Using the product identity for cosines the second term becomes 

       



 



  )(cos(

2

1
2)(cos

2

1
coscos 2102102010 ttEttEttE  

(4.88) 

The first expected value on the right side of the equation above is zero since the integration of a cosine over 

two periods is zero, while the second expected value gives the bracketed term since it is nonrandom. 

Therefore the auto correlation function becomes  

)(cos(][
2

1
),( 120

2
21 ttAEttRXX                        (4.89) 

(c) The first-order densities  txf ;  can be obtained in several different ways for the random variable tX  

defined by  

    tAtXt 0cos                              (4.90) 

From the equation above, tX  is one function of the two random variables A  and  . Defining a 

random variable B  by   tB 0cos , tX  is seen as the product of A and B . The density for the 

product tX  has been shown to be  

     



 dbbfbxfxf BtXtX tt

|                          (4.91) 

Where  bfB  is known to be 

 





 


elsewhere

b
bbfB

,0

1,
1

1
2                        (4.92) 

And  afA  is given in the problem statement. Strange as it may seem, the result of performing the 

integration gives  txf  

 












 2

2

2
exp

2

1

tt

t

x

t

X

tX

x
xf


                         (4.93) 

Therefore the first order density for the process is Gaussian with variance given by evaluating Eq.(4.89) for 

ttt  21  as   

  2146.0
2

2
2

1

2

1 22 





 

 AE
tX                        (4.94) 

(d) The second-order density for  1tX  and   2tX   defined by  1tX   and   2tX as functions 

of the random variables A  and  ,, respectively, can be found using the two functions of two random 

variables transformation theorem on the following transformation: 
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   
   






2022

1011

cos

cos

tAXtX

tAXtX
                           (4.95) 

Another way to obtain the density uses the result obtained in Chapter 2, that  1tX  and   2tX  are 

Gaussian random variables since  is a Rayleigh distributed random variable independent of the random 

variable A  which is uniformly distributed. By this result, the problem of characterizing the two Gaussian 

random variables  1tX   and   2tX  is equivalent to finding the means, variances, and correlation for 

those variables. It becomes expedient in finding those moments that we expand out the cosine functions 

from above to give 

   
   20202

10101

sinsincoscos

sinsincoscos

tAtAX

tAtAX




                      (4.96) 

    

Since cosA  and sinA  are independent and Gaussian, the random variables  1X  and  2X  are 

jointly Gaussian as they are linear functions of Gaussian random variables. By taking expected values, we 

can show the moments to be 

 

   
     
 

   22
2
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21
2
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1

2

1
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1

0

AEXE

XE

ttRAEXXE

AEXE

XE

XX










                            (4.97) 

These five parameters determine the second-order Gaussian density function for the random sinusoidal 

described in this example. 

(e) Since the mean of  tX  is zero for all time, the process is stationary in mean. As the autocorrelation 

function is a function of time difference only, the process is stationary on auto correlation, and since it is 

stationary in mean, it is also wide sense stationary. Further, since  tX  is a Gaussian random process and 

wide sense stationary, it is strict sense stationary. 

4.4.7 Random Walk Process 

Consider the experiment of tossing a coin countably infinite number of times. The outcome of the 

experiment is a cartesian product of single tosses that are either heads or tails. The samplr space for the 

random process is then the set of all countably infinite sequences of heads and tails. The Borel field is 

defined as the power set of the sample space that is the set of all possible subsets of this sample space. 

Assume that the probability of getting a head at each toss is equal to p  and that each toss is 

“independent” of the others. 
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The random walk process is defined along uniform segments of the time axis for each outcome 

 ,...,,,..., tthhea   as follows: 

   
aeofelementsfirstintailsofnumber-headsofnumber=C

,....2,1,1,,  nnTtTncSetX a
    (4.98) 

The T  and S  are time duration and step size, respectively, and fixed. If there are k  heads in the first 

n  elements, then the number of tails is  kn   and the number of heads minus the number of tails is 

 knk   or nk 2 . Therefore the process can be defined as follows for each outcome: 

      ,2,1,1,2,  nnTtTnSnKetX             (4.99) 

where K  is a random variable representing the number of heads. A few realizations of the process are 

shown in Figure 4.15. 

 

The first-order density, mean, second-order density, and autocorrelation function for the random walk are 

now presented. 

First Order Density. By the independent assumption, K  has a binomial density ad follows: 

     


 







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K jkpp
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n
kf

0

1                         (4.100) 

Where p  is the probability of a head in each toss and  p1  is the probability of a tail. Since 

 SnKXt  2  or a transformation of K , the probability density of tX  for   nTtTn 1  

becomes  

      
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tX Snkxpp

k

n
xf

t
0

21                       (4.101) 

The result above was obtained by using the procedure for transformation of a discrete random variable. If 

t 5T4T3T2TT

S
2S 
3S

…

…

t 5T4T3T2TT
S

-S
-2S

…

…

t 5T4T3T2TT

S
…

…

e1=(h, h, t, h, h,…) 

e2=(h, t, t, t, h,…) 

e3=(h, t, h, t, h,…) 

Figure 4.15 Realization of the random walk process. 

X(t,e1)

X(t,e2)

X(t,e3)
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we fix t  in the first interval Tt 0 , the density becomes  

       SxSxpxf tttX t
 1                         (4.102) 

and for any 21  t , the second interval, we have  

           SxpxppSxpxf ttttX t
  22 121              (4.103) 

Representative probability density function for several t ’s are shown in Figure 4.16. As t  becomes large, 

the envelope of the density functions approaches a Gaussian function centered at np  and with a variance 

parameter of  1pnp .  

 

Mean. Using the density function for tX  given in Eq. (4.101), we can write the mean of tX  as  
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          (4.104) 

Using the sampling property of the delta function, we can write the expected value of the random walk 

process for   nTtTn 1 , is  

      






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k

n
SnktXE

0

12                      (4.105) 

The first part of the sum is just the average value the binomial density times 2 and the second is just n  

times 1, since it is a sum over the binomial density. Therefore   tXE , for   nTtTn 1 , is  

         SpnSnSnptXE 122                        (4.106) 

A plot of the expected value is shown in Figure 4.17 for 2/1,2/1  pp , and 2/1p . For all p  

other than 1/2 the line   tXE  as t . Thus, unless 2/1p , the random walk process is not stationary 

in the mean. 
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t1 t2 t3

1/2

1/2
1/2

1/4

1/4 1/8

1/8 

3/8

3/8

for p=1/2 

Figure 4.16 Representative first order probability density functions for the random walk process 
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Autocorrelation Function. One approach that can be used to find the autocorrelation is to first find the 

second-order density and then compute the expected value using that density. 

An alternative approach, which for this particular problem is easier, is to compute the expected value 

directly as a function of other random variables. To do this, we have to view the random process as the sum 

of independent identically distributed random variables: 

    ,2,1,1,
1




nnTtTnXtX
n

i
i               (4.107) 

where iX  are discrete independent random variables with identical probability density functions 

       SxpSxpxf iiiX i
 1                        (4.108) 

Reminiscent of the random telegraph wave development, the autocorrelation function  21,ttRXX  will 

take on different intervals along the t  axis. 

   Assuming 21 tt  , where 1t  is in the n th intervals,   nTtTn 1 , the autocorrelation function 

becomes for nm  , 
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             (4.109) 

   Because the iX  are independent and identically distributed, the first expected value can be written as 

T 3T2T 4T 5T …

…

…-4(2p-1)S 

-2(2p-1)S 

2(2p-1)S 

4(2p-1)S 

E[X(t)] 

t 

P<1/2 

Figure 4.17 The mean of the random walk process for various of p, the Probability of a heads. 
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     ii XEnnXnE 222   and the second becomes    iXnEnm 2 , since products contain all 

different random variables. Therefore  21,ttRXX  becomes  

           iiiXX XnEnmXEnnXnEttR 2222
21,                 (4.110) 

Since the are identically distributed with densities, Eq. (4.108), their first- and second-order moments are 

      
       2222

1 1

121

SSpSpXE

SppSSpXE i




                      (4.111) 

   Substituting these moment into Eq.(4.110) and simplifying, gives  21,ttRXX , for nm  , as follows: 

     222
21 121, SpmnnSttRXX                      (4.112) 

Interchanging m  and n  gives us the following for nm  : 

     222
21 121, SpnmmSttRXX                      (4.113) 

If we set 2/1p , then  21,ttRXX  becomes as shown in Figure 4.18. 

 

4.5 Definite In tegrate of Random Processes 

For a given random process  etX ,  and a given e , say 1e , we have the definite integral of that 

particular waveform by 

   
b

a
dtetXeI 11 ,                              (4.114) 

As e  goes over the sample space,  eI  specifies a random variable. For simplicity, we will write that 

random variable  eI  and denote it by I : 

 
b

a
dttXI                                 (4.115) 

   It is logical at this point to ask what is the mean and the variance of such a random variable and 
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Figure 4.18 Autocorrelation function for the random walk when p=5 
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what information about the random process do we need to find them. The mean of I is given as 

    



 

b

a
dttXEIE ][                               (4.116) 

It can be shown in most cases that the expected value and the integral can be interchanged to give 

      
b

a X

b

a
dttdttXEIE ][                        (4.117) 

In a similar fashion the second moment of I  can be found as 

          
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dtduutR

dtduuXtXEduuXdttXEIE

,

2

               (4.118) 

Given  IE  and  2IE , the variance of I is easily seen to be 

      
b

a

b

a XXI dtduutCIEIE ,222                      (4.119) 

Therefore the mean and variance of I are determined by the second-order characterization of the process, 

namely its mean  tX  and autocovariance function  utCX , . Higher-order moments require 

higher-order characterizations of the process  tX  itself. In order to obtain the probability density 

function for I , a total characterization of the process  tX  on the intervial of integration is required. 

If the process  tX  is a wide sense stationary process with mean X  and autocorrelation function 

 XXR  the formulas for  IE  and 
2

I  can be simplified. The expected value of I  from equation 

then becomes 

        
b

a XX

b

a
abdttdttXEIE ][                    (4.120) 

Since the autocorrelation function  XXR  is a function of the time difference ut  , the 

two-dimensional integral given in the equation can be changed to a one-dimensional integral . The 

incremental area required in this change is shown in Figure 4.19, and the resulting integral for the variance 

becomes 

     
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ab XXXI

dCab
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dRab
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

2

22

                 (4.121) 

An example illustrating the procedure for finding the mean and variance of a definite integral of a wide 

sense stationary process is now presented. 
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Example 4.4 

A wide sense stationary random process  tX  is characterized by its mean and autocorrelation function as 

follows:    2tXE  and     eRXX 4 . Define a random variable I  and  
3

1
dttXI . 

Determine  IE  and 
2

I . 

Solution 

The expected value of the random variable I  is easily obtained from (4.120) as 

      4213  XabIE                                

   From the given mean and autocorrelation function, the variance of I  can be determined using (4.121) 

as follows: 
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


                       

4.6 Joint Characterizations of Random Process 

Two random process  tX  and  tY  are defined to be independent if any set of random variables 

defined across the random process  tX  is group independent of any set of random variables defined 

across the other process  tY . Two random process are called uncorrelated if their cross-correlation 

function can be written as the product 

               21212121 ,ttallfortttYEtXEtYtXE YX          (4.122) 
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Figure 4.19 Incremental area for the change of variables t-u=τ. 
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which implies that any random variable defined across the process  tX  at time is uncorrelated with any 

random variable across the process  tY  at time 2t . 

4.6.1 First-Order Joint Densities 

Define the random variables  1tX  and  2tY , notation 1X  and 2Y  respectively. The second-order 

joint density is given as the joint probability density function for these two random variables as 

 2121 ,;, ttyxf . The notation  21, yxf  is commonly used. The first-order joint densities consist of all 

joint densities from all choices of times 1t  and 2t . 

4.6.2 Cross-correlation Function 

The cross-correlation function, denoted as  21,ttRXY , is defined as 

)]()([),( 2121 tYtXEttRXY



                           (4.123) 

If the random processes are complex process, a useful definition for the cross-correlation function can be 

obtained by taking the complex conjugate of the second process as 

)]()([),( 2
*

121 tYtXEttRXY                           (4.124) 

4.6.3 Cross-covariance Function 

Similar to the auto correlation function except now defined across two processes the cross-covariance 

function  21, ttCXY  is defined by  

      
   )()()()(

)]([)()()(,

2211

221121

ttYttXE

tYEtYtXEtXEttC

YX

XY

 


               (4.125) 

If the process are complex, then the following definition is used for the cross-correlation function: 

     *
221121 )()()()(, ttYttXEttC YXXY                     (4.126) 

   The cross covariance function and cross correlation function are related by  

    )()(,, 2
*

12121 ttttRttC YXXYXY                          (4.127) 

where )( 1tX  and )( 2tY  represent the means of process  tX  and  tY  as functions of 1t  and 

2t , respectively. 

4.6.4 Joint Stationarity 

The random processes are jointly wide sense stationary if each process  tX  and  tY  are wide sense 
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stationary themselves and the cross-covariance function is only a function of time difference and 

    21 tYtXE  is a constant and not a function of 1t  or 2t . When this is true, the cross-correlation 

function and cross-covariance function are written in terms of the time difference   only: 

    YXXYXY RC                               (4.128) 

   Joint strict sense stationarity would imply that for every time translate of amount   for any n , the 

joint probability densities are the same. This can be expressed as 

 
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21212121
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   (4.129) 

4.6.5 Cross-spectral Density 

When the random process  tX  and  tY  are jointly wide sense stationary, it is convenient to define a 

cross-spectral density that gives spectral content information to the joint process. The cross–spectral 

density for processes  tX  and  tY   is defined as the Fourier transform of the cross-correlation 

function  XYR  as  
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4.7 Gaussian Random Processes 

A random process  tX  is a Gaussian random process if the random variables      ,,...,, 21 ntXtXtX  

are jointly Gaussian for all choices of nttt ,,, 21  , and for all n . 

There are a number of properties and theorems related to Gaussian random process. Three of the most 

useful follow. 

(1) A random process that is wide sense stationary and Gaussian is strict sense stationary. 

(2) Integrals of Gaussian random process over a given time interval are Gaussian random variables and 

random variables over many different intervals are jointly Gaussian random variables. 

(3) The process defined by the integral of a Gaussian random process over the interval   to t , as t  

varies from   to  , is a Gaussian random process, which can be written as 

      
tfordttXtY

t
                      (4.131) 

4.7.1 First-Order Densities for Gaussian Random Processes 

If a Gaussian random process is characterized by its mean  tX  and autocorrelation function 
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 21,ttRXX , its first- and second-order density functions can be written in terms of the mean and 

autocovariance function  21,ttCXX  .The first-order density is  

   
 

  
  
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                     (4.132) 

4.7.2 Second-Order Densities for Gaussian Random Processes 

The second-order density for the random variables  1tX  and  2tX  defined, respectively, as 1X  and 

2X  is 
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           (4.133) 

When the Gaussian random process is wide sense stationary, the first- and second- order densities can be 

written in terms of the mean X  and autocovariance function  XXC  as  
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                     (4.134) 

And 
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              (4.135)  

4.8 White Random Processes 

For case in analysis, it is convenient to define the while noise process. The name comes from the fact that 

the spectral density is assumed to be flat and contain all frequencies. A useful definition is that a white 

noise random process is characterized by its power spectral density  XXS as follows: 

    forNSXX 02

1
                   (4.136) 

The autocorrelation function for the white noise process is the inverse Fourier transform of the power 

spectral density, which becomes 
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    02

1
NRXX                               (4.137)   

The autocorrelation function and power spectral density for the while noise process are given in Figure 4.20. 

This particular definition implies the following: 

(1)    0tXE  

(2)      021 tXtXE  for 1t  not equal 2t . This means that the random variables defined at two not 

equal times are orthogonal and because of the zero mean, they are also uncorrelated. Furthermore, if the 

white noise process is Gaussian, they are independent random variables. 

 

(3) The average power is infinite. Thus the white noise process is not physically realizable, but it can be 

used as a basis for generating realizable processes by passing white noise through filter. White noise should 

not be thought of as an observable process; only its output after filtering is observable. Nonetheless, it is 

convenient to make white noise assumptions to simplify analysis. 

No other characterizations are given in the definition, so it is possible to have any first-order and 

higher-order probability density functions. In many problems it is convenient to use densities that are 

Gaussian, and thus the words Gaussian white noise are commonly used to identify a white noise random 

process with the same autocorrelation as given  

And the nth order densities being Gaussian. 

In some problems the power is not constant but varies with time. A white noise process is defined as a 

nonstationary white random process if its autocorrelation function is written as 

     utTNutRXX  02

1
,                            (4.138) 

4.9 ARMA Random Processes 

In working with continuous linear time-varying and time-invariant systems, a useful system model is a 

differential equation in terms of the input and output. For time-invariant systems the coefficients of the 

differential equation are constant, and the Laplace transform is convenient and expedient for analysis. For 

discrete time shift invariant linear systems, a difference equation in terms of input and output is a useful 

1/2N0 1/2N0

SXX() RXX(τ) 

 τ 

(a) White Noise PSD (b) White Noise Autocorrelation 

Figure 4.20 Power spectral density and autocorrelation function for the white noise random process.
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model, and the Z-transform plays a significant role in analyzing such systems. Further discussions on these 

relationships will be presented in Chapter 5, while in this section we investigate a special class of random 

process resulting from driving a discrete time system with a white noise process. 

If  nw  represents the input to a linear time-invariant causal system and  nx  the output, the 

input-output relationship can be written as 

     knwbknxanx
p

k
k

p

k
k  

 01

                       (4.139) 

It is usually assumed that qp   and that the equation above is defined for either all n  or for 0n . 

If  nw  is a white sequence with    0nwE  and      jkkwjwE  2  for all j  and k , the 

resulting process  nx  is called an autoregressive moving average(ARMA) random process of order 

p , q , which is written as ARMA  qp, . 

If all the 0ka  for all pk ,...,2,1 , the resulting random process  nx  is called a moving 

average (MA) process of order q  abbreviated as MA  q  and governed by 

   knwbnx
p

k
k 

0

                             (4.140) 

If 0kb  for all pk ,...,2,1 , the resulting random process  nx  is called an auto regressive(AR) 

process of order p , written as AR  P  and governed by 

     nwbknxanx
p

k
k 0

1

 


                        (4.141) 

The word “autoregressive” comes form the statistical community and implies that the  nx  regresses on 

itself, which means that it can be written as a linear function of its own previous values. 

   Depending on the statistical properties assumed for  kw , the ARMA processes defined by (4.139) 

have varying properties with respect to characterizations like mean, variance, autocorrelation, first-order 

densities, and so on. Also different results are obtained if the  nw  is defined for all time indexes or just 

for indexes greater than or equal zero. If  nw  and  nx  are defined for all n , the system will have 

reached a steady state output. However, if they are defined for only time indexes 0n , the beginning 

samples will contain a transient portion reaching steady state only for large values of the time index n . 

4.9.1 Moving Average Process, MA(q) 

For this discussion let the governing equation for a moving average process of order q, MA  q  in Eq. 

(4.140), be defined as 
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    0,
0

 


nknwbnx
p

k
k                        (4.142) 

 

Where  nw  is a white stationary process, not necessarily Gaussian, with zero mean, 

   0nwE  ,and variance given by    22 nwE  for all 0n . 

Mean of MA(q) Process. The mean of the moving average process of order q can be found by taking the 

expected value of Eq. (4.142) as  

       0,][
00










 


nknwEbknwbEnXE
p

k
k

p

k
k                (4.143) 

Since    0 knwE  for 0k  to q , the mean of the MA  q  process is given by  

   0,0  nnxE                                (4.144) 

Variance of the Moving Average Process, MA(q). The variance of the MA  q  process is given by 

         0,22  nnxEnxEnX                        (4.145) 

The variance  nX
2  is zero by definition for all 0n , From(4.144) we know that    0E nx .For all 

0n  ,so the variance is just the second moment. After substituting the  nx  of Eq. (4.142) into Eq. 

(4.145), the variance becomes 

    
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
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][][][

00
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0

22 jnwbknwbEknwbEnxEn
q

j
j

q

k
k

q

k
kX   (4.146) 

Multiplying out the terms in the brackets and taking the expected value through the summations gives for 

pn  , 

     qnbjnwknwEbbn
q

k
k

q

k

q

j
jkX  

 

,][][
0

22

0 0

2       (4.147) 

The last step is possible because the only terms where  ][][ jnwknwE   are nonzero are those for 

which kj  . Notice that this variance is thus a constant for pn  . 

   If pn 0 , the result above is modified to include only those  knw   and  jnw   that have 

arguments 0 , and is thus a function of n : 

  qnbn
n

k
kX  



0,
0

222                             (4.148) 

The variance  nX
2  is thus seen to be a function of n  and a part of the initial transient period until n  

reaches q  yielding a steady state after that. 

Autocorrelation Function for the Moving Average Process. MA(q). For k and j less than zero the 

autocorrelation function  kjRXX ,   for the MA(q) process is defined to be zero ,while in general, it will 
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depend on two  time indexes mk    and k ,where k and m are positive integers and can be written as  

      0,,][][
00










 


mkjkwbimkwbEkxmkxE
q

j
j

q

i
k         (4.149) 

Let qk   to begin with and qm 0 . For this range of m , Eq. (4.149) can be written as 

 
      
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1

1
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10

10
       (4.150) 

Looking at all cross product terms, we see that the only ones that give a nonzero value of 2  are those 

with equal indexes, so Eq.(4.150) reduces to 

                

    

qmbb

rkwEbbkmkR

mq

r
mrr
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r
mrrXX
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



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
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,

0

2

2
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
                   (4.151) 

For qm   there are no overlaps in the products, so we have 

                     0,  kmkRXX                                (4.152) 

   Clearly, the autocorrelation function for the MA  q  process is independent of the staring time k  and 

a function of the time difference m , provided that qk  . Thus after the time q , the process becomes 

wide sense stationary since the mean was previously shown to be a constant, namely 0, and the 

autocorrelation has been shown to be a function of time difference only. 

 

Example 4.5 

Find the mean, autocorrelation function, and variance for the MA(1), MA(2), and MA(3),random processes 

assuming that a steady state has been reached, qk  , for the models given and with the  nw  as a zero 

mean white random process. 

Solution 

For the MA  q  random process the means are all zero because of the assumption that  nw  is a white 

random process;    0nxE  for 0n , and defined to be zero for 0n . 

MA(1)  For this process we have the defining equation 

      0110  nfornwbnwbnx                      (4.153) 

The autocorrelation function evaluated at lags of 0,1, and 2 after steady state are given from (4.151) as  
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                          (4.154) 
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The steady state variance  kX
2  is given by    02

XXX Rk  , since the mean is zero. The 

autocorrelation function for negative time difference is obtained by symmetry    kRkR XXXX  . 

   In a similar fashion we obtain the autocorrelation functions for the MA(2) and MA(3) as follows: 

MA(2)  

        021 210  nfornwbnwbnwbnx              (4.155) 

The autocorrelation function after steady state is easily found from (4.151) to be  
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

                             (4.156) 

The steady state variance  kX
2  is given by    02

XXX Rk  , since the mean is zero. 

MA(3) 

          0321 3210  nfornwbnwbnwbnwbnx         (4.157) 

The autocorrelation function after steady state is easily determined from (4.151) as 

   
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                             (4.158) 

The steady state variance  kX
2  is given by    02

XXX Rk  , since the mean is zero. 

4.9.2 Autoregressive Processes, AR(p) 

An autoregressive process, AR  p , is a special case of the ARMA  qp,  process. For this discussion it is 

assumed that AR  p  is governed for 0n  by 

      0,
1

0  


nnwbknxanx
p

k
k                      (4.159) 

The excitation process  nw , for 0n , is a white stationary random process with 

     jkkwjwE  2 . We would like to determine the mean, variance, and autocorrelation for this 

AR  p  random process. 

Mean of AR(p) Process. The mean of the AR  p  process is obtained by taking the expected value of the 
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governing Eq. (4.159) to yield the following difference equation: 

      0,][][][ 0
1

 


nnwEbknxEanXE
p

k
k               (4.160) 

Since    0nwE , and   0nx , for 0n , the solution of the difference equation yields 

   0,0  nnxE                                 (4.161) 

Variance of AR(p) Process. The variance of the defined AR  p  process can be found directly from the 

definition of the variance and the process  nx  given in Eq. (4.159). Using the zero mean assumption, we 

write variance as  
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The expected value of all cross products of  nw  with the summations of the  knx  , given by   
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are all zero, since  knx   are not functions of  nw  as they are from a time preceding  nw   

Thus the variance reduces to 
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       (4.164) 

Multiplying the product terms out, taking the expected value and rearranging, we find the variance from Eq, 

(4.164) to be 

   
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XXkjX bjnknRaan

1 1

22
0

2 ,                       (4.165) 

The variance at time index n  is thus seen to be a function of the variances at the p  previous times, plus 

a function of various preceding autocorrelation functions at various time indexes, plus a weighted sum of 

the white sequence variance. 

   An alternative form for the variance can be obtained by multiplying the  nx  of Eq. (4.159) by  nx  

and taking the expected value as 
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Multiplying out and taking the expected value of the terms results in the following equation for the variance 

which, because of the zero mean, is the autocorrelation function at n  and n : 

   
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k
XXkXX bknnRannR

1

22
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In the form the variance is written in terms of the autocorrelation functions for indexes n , kn   as k  
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goes from 1 to p . This same approach will now be used to determine the autocorrelation function for the 

autoregressive process at other lags. 

 

Autocorrelation of AR(p) Process. The autocorrelation function, in general, goes through a transient period 

since the signal starts at zero with zero initial conditions. To derive the autocorrelation function, it is 

assumed that pn  . The derivation begins with the single step difference by taking the expected value of 

   1nxnx  as follows: 
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                 (4.168) 

Multiplying out, taking the expected value through the sum, and using the fact that 

     01 nxnwE ,since  1nx  is not a function of  nw  and  nw  is a white process, yields the 

equation 

     



p

k
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1

,11,                       (4.169) 

Similarly multiplying  nx  of Eq. (4.159) by  jnx   for 2j  to p , taking the expected value, 

and simplifying leads to  
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                (4.170) 

Thus Eqs. (4.167), (4.169), and (4.170) gives a set of equations that determines the autocorrelation 

functions at lags 0 to p  in terms of various other autocorrelation functions, and these are the key 

equations in solving for the steady state. If pj  , Eq. (4.170) holds as well. 

If we assume that a steady state has been reached, the  srRXX ,  are functions of time difference sr   

only. So we can rewrite Eqs. (4.169) and (4.170) as  

    pjjkRajR
p

k
XXkXX ,,2,1,

1

 


                     (4.171) 

By the symmetry property of the autocorrelation function for a stationary random process, 

   jRjR XXXX  , these equations can be put into the following matrix form: 
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              (4.172) 

The equations represented in this matrix form are called the Yule-Walker equations for the autoregressive 

process defined in Eq.(4.159). If we know the  0XXR  through  pRXX , or their estimates, these 

equations may be solves for the AR parameters ,,,, 21 paaa  and thus be used for system identification. 
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The Levinson recursion algorithm [11] can be used to expedite the solution, since the coefficient matrix is a 

Toepliz matrix. 

   However, if we have the paaa ,,, 21   values, meaning the system is known, and we want to solve for 

the autocorrelation function, we must use Eq.(4.167) for  0XXR  and rearrange the equations of (4.172) 

so that the  kRXX  are the unknown autocorrelations at the lags 0 through p : 
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



















0

0

0

0

1

2

1

0

1

10

001

01

1 2
0

1221

1231

4312

1321

1221













 b

pR

pR

R

R

R

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

XX

XX

XX

XX

XX

ppp

pp

p

pp

ppp

        (4.173) 

Examples 4.6 and 4.7 illustrate this procedure for finding the autocorrelation function for AR(1) and 

AR(2). 

 

Example 4.6 

Find the mean, autocorrelation, and variance for the autoregressive process AR(1) random process defined 

by 

      0,1 01  nnwbnxanx                        (4.174) 

Where 1a  is such that a stable system is represented. 

Solution 

From (4.167) and (4.169) the autocorrelation function at 0 and 1 must satisfy the two equations 

   
   1,11,

1,,

1

22
01



nnRannR

bnnRannR

XXXX

XXXX 
                           (4.175) 

If we assume that a steady state has been reached, then the autocorrelation function can be written in terms 

of time difference only and with the symmetry property of the autocorrelation functions (4.175) becomes 

   
   01

10

1

22
01

XXXX

XXXX

RaR

bRaR


 

                                (4.176) 

Solving these two equations for  0XXR  and  1XXR  gives 

   
2
1

22
01

2
1

22
0

1
1,

1
0

a

ba
R

a

b
R XXXX 








                        (4.177) 

To obtain the autocorrelation function at lags greater that 1,Eq. (4.170) and 1j , we have  

   1,, 1  njnRajnnR XXXX                           (4.178) 

and in the steady state we obtain 
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          1,
1

11 12
1

22
01

11 


  ja
a

b
RajRajR j

XX
j

XXXX


            (4.179) 

 

4.9.3 Autoregressive Moving Average Process, ARMA (p, q) 

For this discussion it will be assumed that the governing equation for a moving average process of order q, 

ARMA  qp,  given in Eq. (4.139) is defined as 

0],[][][
01

 


nknwbknxanx
q

k
k

p

k
k                  (4.189) 

for positive time index n  from 0 to   and that  nw  is a white stationary process, not necessarily 

Gaussian, with    0nwE  for all 0n , and variance given by    22 nwE  for all 0n , We 

would like to partially characterize the resulting ARMA  qp,  process by finding its mean, variance, and 

autocorrelation function. 

Mean of ARMA (p, q). The mean of the ARMA  qp,  process is easily found by taking the expected value 

of Eq. (4.189) to give 

      0,][][][
01

 


nknwEbknxEanxE
q

k
k

p

k
k                (4.190) 

Since    0 knwE  for all qk ,,1,0  , Eq. (4.190) can be written as a difference equation for 

  nxE  with a zero driving function: 

    0,][][
1

 


nknxEanxE
p

k
k                           (4.191) 

Since all initial conditions are assumed equal to zero, the mean    0nxE  for 0n . 

 

Variance of ARMA (p, q). Since the mean is zero for all n , the variance can be written in terms of the 

autocorrelation function evaluated at time indexes n  and n  as 

         
















 



nxknwbknxaEnnRnxEn
q

k

p

k
kXX

0
0

0

22 ][,][       (4.192) 

On taking the expected value in Eq. (4.192), we can show the variance to be  

      



q

k
kXX

p

k
k nxknwEbknnRan

01

2 ],[                 (4.193) 

This result can be written as 

   



q

k
XWkXX

p

k
k knnRbknnRan

01

2 ,],[                   (4.194) 
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Thus the variance is written in terms of the weighted sum of the autocorrelation function evaluated at 

different times and the weighted sum of various cross correlations at different times. These terms will be 

determined in the following section on the determination of the autocorrelation function for a general 

ARMA process. 

 

Autocorrelation for ARMA (p, q). The autocorrelation function, in general, goes though a transient period 

since the signal starts at zero initial conditions. To derive the autocorrelation function, it is assumed that 

pn  . The derivation begins with the expected value of the product of  nx  and  1nx , where  nx  

is from (4.189), as follows: 

          
















 



11
01

nxknwbknxEnxnxE
q

k
k

p

k

              (4.195) 

Multiplying out and taking the expected value through the sum yields the equation 

        



q

k
k

p

k
XXkXX nxknwEbknnRannR

01

1,11,             (4.196) 

Similarly multiplying  nx  of Eq. (4.189) by  jnx   for 2j  to p , taking the expected value, 

and simplifying leads to 

      



q

k
k

p

k
XXkXX pjjnxknwEbknjnRajnnR

01

,....,3,2,[],,   (4.197) 

Thus Eqs. (4.196) and (4.197) give a set of equations that determine the autocorrelation function at lags 1 to 

p  in terms of various other autocorrelation functions. If we assume that a steady state has been reached, 

the  srRXX ,  are functions of time difference sr   only. So we can rewrite Eqs. (4.196) and (4.197) as 

    pjbafjkRajR j

p

k
XXkXX ,....,2,1),(

1

 


                 (4.198) 

Where the ),( baf j  are the second sums shown in Eqs. (4.196) and (4.197).  

 These ),( baf j  in the simultaneous equations above are rather complex nonlinear function of the 

ARAM  qp,  model parameter vectors a and b. Using the symmetry property of the autocorrelation 

function for a stationary random process,    jRjR XXXX  , allows the equations of (4.198) to be put 

into the following matrix form: 

     
     

     

 
 

 

 
 

 




















































































pR

R

R

baf

baf

baf

a

a

a

RpRpR

pRRR

pRRR

XX

XX

XX

ppXXXXXX

XXXXXX

XXXXXX











2

1

,

,

,

021

201

110

2

1

2

1

    (4.199) 

Thus the solution for the autocorrelation function  kRXX  at all lags is no longer a solution of 

simultaneous linear equations but a solution of a set simultaneous nonlinear equations. The following 
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example illustrates the overall procedure in finding the mean, variance, and autocorrelation function of the 

simplest ARMA process, namely the ARMA(1,1) process. 

 

Example 4.8 

Find the (a) mean, (b) autocorrelation function, and (c) variance for the ARMA(1,1) random process given 

by the difference equation 

        0,11 101  nnwbnwbnxanx                   (4.200) 

Assume that  nw  is a zero mean white random process with variance      jkkwjwE  2 . Assume 

all initial conditions for negative time index to be zero and that a steady state has been obtained. 

Solution 

(a) It was shown in Eq. (4.191) that the mean of ARMA process is zero. Therefore    0nxE  for all 

0n . 

(b) The variance for n  is the same as the autocorrelation function at a zero lag since the mean is zero. 

Therefore we have using (4.193) that 

      
         

           11,

11

,

101

101

22






nwnxEbnwnxEbnnRa

nwbnwbnxanxE

nnRnxEn

XX

XX
           (4.201) 

The last two terms in the expression above will be evaluated separately. Substituting the difference 

equation for  nx , multiplying out, and taking the expected value gives 

              
    

         
2

1
2

01

2
11011

2
11

101

1212

11

1111







bba

bnwnwbnwbnxaEa

bnWnxEa

nwnwbnwbnxaEnwnxE









     (4.202) 

The first expected value in the expression above is zero because  1nx  is not a function of  nw , and 

the last term is zero because the  nw  is a white sequence. 

   The other expected value is given as 

               2
0101 11 bnwnwbnwbnxaEnwnxE             (4.203) 

Substituting the results from (4.202) and (4.203) into (4.201), we finally obtain the variance as 

    22
1

2
011

22
01

2 1,  bbbabnnRan XX                    (4.204) 

The  1, nnRXX  can be calculated by substituting the definition of the ARMA(1,1) process into the 

expected value; 

                
           1111,1

11111,

101

101




nxnwEbnxnwEbnnRa

nxnxbnwbnxaEnxnxEnnR

XX

XX
    (4.205) 

The     1nxnxE  term is zero because  1nx  is not a function of  nw . The third term above 
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    11  nxnwE  is determined by replacing  1nx  by its equivalent from the defining equation: 

              
2

0

101 212111

b

nwbnwbnxanwEnxnwE




        (4.206) 

Thus, after substituting (4.206) into (4.205), the single lag autocorrelation function of the ARMA(1,1) 

process becomes 

    2
101 1,11, bbnnRannR XXXX                         (4.207) 

To obtain the steady state solution, we assume that the autocorrelation function can be written in terms 

of time difference only. Thus (4.204) and (4.207) are written as 

   
  2

101

22
1

2
101

22
01

01

10





bbRaR

bbbabRaR

XXXX

XXXX




                    (4.208) 

Solving these two equations for  0XXR  and  1XXR  yields the following values for the 

autocorrelation function at 0 to 1: 

   

   
2
1

2
10

2
11

2
0110

2
1

2
1

2
101

2
1

2
0

1
1

1

2
0

a

bbbababba
R

a

bbabb
R

XX

XX















                        (4.209) 

To find the autocorrelation function for higher lads, 2j , we have that  2, nnRXX  with 

     02 nxnwE  and      021  nxnwE  is determined as  

      
         
 2,1

211

22,

1

101






nnRa

nxnwbnwbnxaE

nxnxEnnR

XX

XX

             (4.210) 

In a similar fashion it is easy to show that    1,, 1  jnnRajnnR XXXX  for lags 2j . This 

property is general for ARMA  qp,  processes whenever j  is greater than q , evaluating this result in 

the steady state yields the autocorrelation function for lags greater than one for the ARMA(1,1) process as 

follows; 

      2,11
1   jRajR XX

j
XX                         (4.211) 

(c) The steady state variance is just the  0XXR  given in (4.209), since the mean is zero. Thus 

     
2
1

2
101

2
1

2
02

1

2
0

a

bbabb
Rn XXXX 




                      (4.212) 

It becomes increasingly more difficult to obtain closed form solutions for the autocorrelation function 

and variance as the order p  and q  of the ARMA  qp,  process is increased. 
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4.10 Periodic Random Processes  

A wide sense stationary random process is defined as periodic if its autocorrelation function is periodic. 

The random sinusoidal process     tAtx 0sin  (defined in Example 4.3) has an autocorrelation 

function from (4.89): 

    0cos  KRXX                                   (4.213) 

This process is a periodic random process since its autocorrelation function is periodic. 

   In a similar fashion a random process  tX  defined by a Fourier series with independent zero mean 

random variables kA  and kB  as amplitudes given by 

     









0

0
0

00 sincos
k

k
k

k tkBtkAAtX                      (4.214) 

can be shown to have a periodic autocorrelation function and thus be periodic. 

4.11 Sampling of Continuous Random Processes 

The purpose of this section is to determine the statistical properties of a discrete time random process 

 kX  that is generated by sampling uniformly, with spacing T, a continuous time random process and thus 

defined by    kTXkX  . 

The mean of  kX  can be easily seen to be  

       nTnTXEnXE X                         (4.215) 

The autocorrelation function  21,kkRXX  is easily determined as 

        TkTkRTkXTkXEkkR XXXX 212121 ,,                   (4.216) 

Therefore the mean and autocorrelation function of a process generated by sampling a continuous process 

are just the sampled versions of the mean and autocorrelation function of the continuous process. 

It is also easy to see that is  tX  is a wide sense stationary continuous time process, the random 

sequence generated by uniform sampling is a wide sense stationary discrete time sequence, that is , its mean 

is independent of n and its autocorrelation function, depends only on the time difference, 21 kk  . The 

converse of this statement is not necessarily true; that is, if a discrete time process that is a sampled version 

of a continuous time process is wide sense stationary, the continuous time process is mot necessarily wide 

sense stationary. Similarly, if the sampled version of a random process is in some sensse stationary, this 

does not imply that the continuous time process is the same sense stationary. 

The first- and higher-order densities are easily seen to be just a sampled version of the respective 

densities, which can be expressed for      ntXtXtX ,,, 21  , as 

   TkTkTkxxxfkkkxxxf nnnn ,,,;,,,,,,;,,, 21212121                (4.217) 
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where TktTktTkt nn  ,,, 2211  . 

4.12 Ergodic Random Processes  

Say we are given a random process  tX  with a known mean   tXE . A realization of the process 

 ietX ,  is a deterministic waveform and has a time average 

   
T

T iiT dtetX
T

eN ,
2

1
 

The time average is a real value and possibly different for each outcome ie , thus defining a random 

variable TN . We will define N as the limit of TN  as T  as 

T
T

NN


 lim  

As T  the random variable TN  may converge in some cense to another random variable. The 

definition of convergence for the deterministic or nonrandom case must be modified to be able to discuss 

convergence of random variables as T . There are many different forms of convergence that have 

been defined, including mean squared convergence, convergence in the mean, convergence in probability, 

and convergence with probability 1. These forms of convergence and theorems relating to ergodicity are 

introduced in Papoulis [1], and a thorough treatment of them would take us far afield of our intent of 

introducing basic concepts of random process. 

   A random process  tX  is defined as ergodic in the mean if  the TN  converges to degenerate 

random variable with deterministic value equal to the statistical average given by    XtXE  . Notice 

that this definition implies that a random process  tX  that is not stationary in the mean cannot be 

ergodic in the mean. 

Similarly, if a random variable )(TR  is defined by 

 
T

TT dtXtX
T

R )()(
2

1
)(   

And we define )(R  as the limit of )(TR  as T , we can define a process to be ergodic in 

autocorrelation if )(TR  for all   converges to a degenerate random variable with deterministic value 

equal to the statistical average given by     tXtXE  , which is the autocorrelation function evaluated 

at  .  Again we see that if the process  tX  is not wide sense stationary, then it cannot possibly be 

ergodic in autocorrelation. 

The statistical means and autocorrelation functions for ergodic processes are thus interchangeable with 

their time determined counterparts. 
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4.13 Summary 

The main objective of this chapter was to present the basic background material in random processes 

including process formulation and analysis. The definition of a random process in terms of an indexed set 

of random variables where the indexing set could be continuous or discrete links the concepts of random 

variables and random processes. A random process could also be viewed as a mapping from the sample 

space of a defined experiment to a set of output functions. Evaluating a random process at a particular time 

gives a random variable, at a particular outcome gives a function of time, and evaluation of a random 

variable at a time and an outcome gives a real value. 

Although random processes can always be described in terms of an underlying experiment that gives a 

total characterization with respect to the calculation of probabilities of events, various partial 

characterization prove to be useful. These include the mean, variance, autocorrelations function, first- and 

second-order densities, as well as higher-order densities and moments. 

Various forms of stationatity of random process were defined including stationarity in the mean, 

variance, auto correlation function, first- and second-order densities, higher-order densities and moments. 

Perhaps most important here is the concept of wide sense stationarity. A random process is wide sense 

stationary provided that its mean is a constant, independent of time, and its autocorrelation function is a 

function of time difference only and does not depend on the particular times. The partial characterization of 

mean and autocorrelation function for wide sense stationarity random process will be shown to be enough 

information about the process to perform the various optimum filtering operations explored in Chapters 7 

and 8. 

Next a series of important examples of random processes were presented, including the straight line 

process, semirandom and random transmission processes, semirandom and random telegraph processes, the 

random sinusoidal process, and the random walk process. 

Important special cases of a white noise random process were discussed and processes generated by 

passing white noise through a discrete time linear system were shown to lead to MA, AR, and ARMA 

random processes. 

 

----------This is the end of Chapter04---------- 
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